

XEmacs User’s Manual

July 1994
(General Public License upgraded, January 1991)

Richard Stallman

Lucid, Inc.

and

Ben Wing

Copyright c© 1985, 1986, 1988 Richard M. Stallman.
Copyright c© 1991, 1992, 1993, 1994 Lucid, Inc.
Copyright c© 1993, 1994 Sun Microsystems, Inc.
Copyright c© 1995 Amdahl Corporation.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “The GNU Man-
ifesto”, “Distribution” and “GNU General Public License” are included exactly as in the
original, and provided that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the sections entitled
“The GNU Manifesto”, “Distribution” and “GNU General Public License” may be included
in a translation approved by the author instead of in the original English.

i

Short Contents

Preface . 1

GNU GENERAL PUBLIC LICENSE . 3

Distribution . 9

Introduction . 11

1 The XEmacs Frame. 13

2 Keystrokes, Key Sequences, and Key Bindings 19

3 Entering and Exiting Emacs . 33

4 Basic Editing Commands . 41

5 Undoing Changes . 49

6 The Minibuffer . 51

7 Running Commands by Name. 57

8 Help . 59

9 Selecting Text . 63

10 Killing and Moving Text . 69

11 Registers . 79

12 Controlling the Display . 81

13 Searching and Replacement . 85

14 Commands for Fixing Typos. 97

15 File Handling . 101

16 Using Multiple Buffers . 125

17 Multiple Windows . 131

18 World Scripts Support . 137

19 Major Modes . 145

20 Indentation. 147

21 Commands for Human Languages 151

22 Editing Programs . 165

23 Compiling and Testing Programs 191

24 Abbrevs . 205

25 Editing Pictures . 211

26 Sending Mail . 215

27 Reading Mail . 221

28 Miscellaneous Commands . 251

29 Customization. 263

30 Correcting Mistakes (Yours or Emacs’s) 297

XEmacs Features . 303

ii XEmacs User’s Manual

Glossary . 307

The GNU Manifesto . 321

Key (Character) Index . 331

Command and Function Index . 337

Variable Index . 357

Concept Index . 367

iii

Table of Contents

Preface . 1

GNU GENERAL PUBLIC LICENSE 3
Preamble . 3
TERMS AND CONDITIONS . 3
Appendix: How to Apply These Terms to Your New Programs . . 7

Distribution . 9
Getting Other Versions of Emacs . 9

Introduction . 11

1 The XEmacs Frame . 13
1.1 Point . 14
1.2 The Echo Area . 14
1.3 The Mode Line . 15
1.4 Using XEmacs Under the X Window System 16

2 Keystrokes, Key Sequences, and Key Bindings
. 19
2.1 Keystrokes as Building Blocks of Key Sequences 19

2.1.1 Representing Keystrokes . 20
2.1.2 Representing Key Sequences . 20
2.1.3 String Key Sequences . 21
2.1.4 Assignment of the 〈META〉 Key 22
2.1.5 Assignment of the 〈SUPER〉 and 〈HYPER〉 Keys 22

2.2 Representation of Characters . 24
2.3 Keys and Commands . 24
2.4 XEmacs Pull-down Menus . 25

2.4.1 The File Menu . 26
2.4.2 The Edit Menu . 28
2.4.3 The Apps Menu . 29
2.4.4 The Options Menu . 29
2.4.5 The Buffers Menu . 30
2.4.6 The Tools Menu . 30
2.4.7 The Help Menu . 31
2.4.8 Customizing XEmacs Menus. 31

iv XEmacs User’s Manual

3 Entering and Exiting Emacs 33
3.1 Exiting Emacs . 33
3.2 Command Line Switches and Arguments 34

3.2.1 Command Line Arguments for Any Position 34
3.2.2 Command Line Arguments (Beginning of Line Only)

. 35
3.2.3 Command Line Arguments (for XEmacs Under X)

. 37
3.3 How XEmacs finds Directories and Files 38

3.3.1 XEmacs Directory Hierarchies 38
3.3.2 Package Hierarchies . 38
3.3.3 Directories and Paths . 39

4 Basic Editing Commands. 41
4.1 Inserting Text . 41
4.2 Changing the Location of Point . 42
4.3 Erasing Text . 43
4.4 Files . 43
4.5 Help . 44
4.6 Blank Lines . 44
4.7 Continuation Lines . 45
4.8 Cursor Position Information . 45
4.9 Numeric Arguments . 46

5 Undoing Changes . 49

6 The Minibuffer . 51
6.1 Minibuffers for File Names . 51
6.2 Editing in the Minibuffer . 52
6.3 Completion . 53

6.3.1 A Completion Example . 53
6.3.2 Completion Commands . 53

6.4 Repeating Minibuffer Commands . 55

7 Running Commands by Name 57

8 Help . 59
8.1 Documentation for a Key . 60
8.2 Help by Command or Variable Name . 60
8.3 Apropos . 61
8.4 Other Help Commands . 61

v

9 Selecting Text . 63
9.1 The Mark and the Region . 63

9.1.1 Setting the Mark . 63
9.1.2 Operating on the Region . 64
9.1.3 Commands to Mark Textual Objects 64
9.1.4 The Mark Ring . 65

9.2 Selecting Text with the Mouse . 66
9.3 Additional Mouse Operations . 66

10 Killing and Moving Text 69
10.1 Deletion and Killing . 69

10.1.1 Deletion . 69
10.1.2 Killing by Lines . 70
10.1.3 Other Kill Commands . 70

10.2 Yanking . 71
10.2.1 The Kill Ring . 71
10.2.2 Appending Kills . 72
10.2.3 Yanking Earlier Kills. 72

10.3 Using X Selections . 73
10.3.1 The Clipboard Selection. 73
10.3.2 Miscellaneous X Selection Commands 74
10.3.3 X Cut Buffers . 75
10.3.4 Active Regions . 75

10.4 Accumulating Text . 76
10.5 Rectangles . 77

11 Registers . 79
11.1 Saving Positions in Registers . 79
11.2 Saving Text in Registers . 79
11.3 Saving Rectangles in Registers . 80

12 Controlling the Display 81
12.1 Scrolling . 81
12.2 Horizontal Scrolling . 82
12.3 Selective Display . 83
12.4 Variables Controlling Display . 83

vi XEmacs User’s Manual

13 Searching and Replacement 85
13.1 Incremental Search . 85

13.1.1 Slow Terminal Incremental Search 87
13.2 Non-Incremental Search . 88
13.3 Word Search . 88
13.4 Regular Expression Search . 89
13.5 Syntax of Regular Expressions . 89
13.6 Searching and Case . 92
13.7 Replacement Commands . 93

13.7.1 Unconditional Replacement 93
13.7.2 Regexp Replacement . 93
13.7.3 Replace Commands and Case 94
13.7.4 Query Replace . 94

13.8 Other Search-and-Loop Commands . 95

14 Commands for Fixing Typos 97
14.1 Killing Your Mistakes . 97
14.2 Transposing Text . 97
14.3 Case Conversion . 98
14.4 Checking and Correcting Spelling. 98

15 File Handling . 101
15.1 File Names . 101
15.2 Visiting Files . 102
15.3 Saving Files . 104

15.3.1 Backup Files . 105
15.3.1.1 Single or Numbered Backups. 106
15.3.1.2 Automatic Deletion of Backups 106
15.3.1.3 Copying vs.Renaming 107

15.3.2 Protection Against Simultaneous Editing 107
15.4 Reverting a Buffer . 108
15.5 Auto-Saving: Protection Against Disasters 109

15.5.1 Auto-Save Files . 109
15.5.2 Controlling Auto-Saving . 110
15.5.3 Recovering Data from Auto-Saves 110

15.6 Version Control . 111
15.6.1 Concepts of Version Control 111
15.6.2 Editing with Version Control 112
15.6.3 Variables Affecting Check-in and Check-out . . . 113
15.6.4 Log Entries . 114
15.6.5 Change Logs and VC . 114
15.6.6 Examining And Comparing Old Versions 115
15.6.7 VC Status Commands . 116
15.6.8 Renaming VC Work Files and Master Files 117
15.6.9 Snapshots . 117

15.6.9.1 Making and Using Snapshots 117
15.6.9.2 Snapshot Caveats 117

vii

15.6.10 Inserting Version Control Headers 118
15.7 Listing a File Directory . 119
15.8 Comparing Files . 120
15.9 Dired, the Directory Editor . 120

15.9.1 Entering Dired . 120
15.9.2 Editing in Dired . 121
15.9.3 Deleting Files With Dired . 121
15.9.4 Immediate File Operations in Dired 122

15.10 Miscellaneous File Operations . 123

16 Using Multiple Buffers 125
16.1 Creating and Selecting Buffers . 125
16.2 Listing Existing Buffers . 126
16.3 Miscellaneous Buffer Operations . 126
16.4 Killing Buffers . 127
16.5 Operating on Several Buffers . 127

17 Multiple Windows . 131
17.1 Concepts of Emacs Windows . 131
17.2 Splitting Windows . 131
17.3 Using Other Windows . 132
17.4 Displaying in Another Window . 133
17.5 Deleting and Rearranging Windows. 134

18 World Scripts Support 137
18.1 Introduction to world scripts . 137
18.2 Language Environments . 137
18.3 Input Methods . 138
18.4 Selecting an Input Method . 139
18.5 Coding Systems . 140
18.6 Recognizing Coding Systems . 141
18.7 Specifying a Coding System . 142

19 Major Modes. 145
19.1 Choosing Major Modes . 145

20 Indentation . 147
20.1 Indentation Commands and Techniques 147
20.2 Tab Stops . 148
20.3 Tabs vs. Spaces . 149

viii XEmacs User’s Manual

21 Commands for Human Languages 151
21.1 Text Mode . 151

21.1.1 Nroff Mode . 151
21.1.2 TEX Mode . 152

21.1.2.1 TEX Editing Commands 153
21.1.2.2 TEX Printing Commands 154

21.1.3 Outline Mode . 155
21.1.3.1 Format of Outlines 155
21.1.3.2 Outline Motion Commands 156
21.1.3.3 Outline Visibility Commands 157

21.2 Words . 158
21.3 Sentences . 159
21.4 Paragraphs . 160
21.5 Pages . 161
21.6 Filling Text . 161

21.6.1 Auto Fill Mode . 162
21.6.2 Explicit Fill Commands . 162
21.6.3 The Fill Prefix . 163

21.7 Case Conversion Commands . 164

22 Editing Programs. 165
22.1 Major Modes for Programming Languages 165
22.2 Lists and Sexps . 166
22.3 Defuns . 168
22.4 Indentation for Programs . 168

22.4.1 Basic Program Indentation Commands 169
22.4.2 Indenting Several Lines . 169
22.4.3 Customizing Lisp Indentation 170
22.4.4 Customizing C Indentation 171

22.5 Automatic Display of Matching Parentheses 173
22.6 Manipulating Comments . 174

22.6.1 Multiple Lines of Comments 175
22.6.2 Options Controlling Comments 175

22.7 Editing Without Unbalanced Parentheses 176
22.8 Completion for Lisp Symbols . 176
22.9 Documentation Commands . 176
22.10 Change Logs . 177
22.11 Tags Tables . 177

22.11.1 Source File Tag Syntax . 178
22.11.2 Creating Tags Tables . 179
22.11.3 Selecting a Tags Table . 181
22.11.4 Finding a Tag . 182
22.11.5 Searching and Replacing with Tags Tables 183
22.11.6 Tags Table Inquiries . 184

22.12 Fortran Mode . 185
22.12.1 Motion Commands . 185
22.12.2 Fortran Indentation. 186

22.12.2.1 Fortran Indentation Commands 186

ix

22.12.2.2 Line Numbers and Continuation 186
22.12.2.3 Syntactic Conventions 187
22.12.2.4 Variables for Fortran Indentation. . . . 187

22.12.3 Comments . 187
22.12.4 Columns . 188
22.12.5 Fortran Keyword Abbrevs 189

22.13 Asm Mode . 189

23 Compiling and Testing Programs 191
23.1 Running “make”, or Compilers Generally 191
23.2 Major Modes for Lisp . 192
23.3 Libraries of Lisp Code for Emacs . 193

23.3.1 Loading Libraries . 193
23.3.2 Compiling Libraries . 194
23.3.3 Converting Mocklisp to Lisp 195

23.4 Evaluating Emacs-Lisp Expressions . 196
23.5 The Emacs-Lisp Debugger . 197
23.6 Lisp Interaction Buffers . 198
23.7 Running an External Lisp . 199
23.8 Packages . 199

23.8.1 Package Flavors . 200
23.8.2 Package Distributions . 200
23.8.3 Binary Packages . 200
23.8.4 Source Packages . 200
23.8.5 Getting Started . 200
23.8.6 Choosing the Packages You Need 201
23.8.7 XEmacs and Installing Packages 201
23.8.8 Other package installation interfaces 202
23.8.9 Manual Binary Package Installation 203
23.8.10 Prerequisites for Building Source Packages 204
23.8.11 What You Can Do With Source Packages 204

24 Abbrevs . 205
24.1 Defining Abbrevs . 205
24.2 Controlling Abbrev Expansion . 206
24.3 Examining and Editing Abbrevs . 207
24.4 Saving Abbrevs . 208
24.5 Dynamic Abbrev Expansion . 208

25 Editing Pictures . 211
25.1 Basic Editing in Picture Mode . 211
25.2 Controlling Motion After Insert . 212
25.3 Picture Mode Tabs . 213
25.4 Picture Mode Rectangle Commands 213

x XEmacs User’s Manual

26 Sending Mail . 215
26.1 The Format of the Mail Buffer . 215
26.2 Mail Header Fields . 216
26.3 Mail Mode . 218

27 Reading Mail. 221
27.4 Calendar Mode and the Diary . 221

27.4.1 Movement in the Calendar 221
27.4.1.1 Motion by Integral Days, Weeks, Months,

Years . 222
27.4.1.2 Beginning or End of Week, Month or Year

. 222
27.4.1.3 Particular Dates . 223

27.4.2 Scrolling the Calendar through Time 223
27.4.3 The Mark and the Region . 224
27.4.4 Miscellaneous Calendar Commands 224

27.5 LaTeX Calendar . 225
27.5.1 Holidays . 226
27.5.2 Times of Sunrise and Sunset 227
27.5.3 Phases of the Moon . 228
27.5.4 Conversion To and From Other Calendars 229

27.6 Supported Calendar Systems . 229
27.7 Converting To Other Calendars . 230
27.8 Converting From Other Calendars . 231

27.8.1 Converting from the Mayan Calendar 231
27.8.2 The Diary . 233
27.8.3 Commands Displaying Diary Entries 233
27.8.4 The Diary File . 234
27.8.5 Date Formats . 235
27.8.6 Commands to Add to the Diary 236
27.8.7 Special Diary Entries . 237
27.8.8 Customizing the Calendar and Diary 238

27.8.8.1 Customizing the Calendar 238
27.8.8.2 Customizing the Holidays 239
27.8.8.3 Date Display Format 242
27.8.8.4 Time Display Format 242
27.8.8.5 Daylight Savings Time 243
27.8.8.6 Customizing the Diary 244
27.8.8.7 Hebrew- and Islamic-Date Diary Entries

. 245
27.8.8.8 Fancy Diary Display 246
27.8.8.9 Included Diary Files 247
27.8.8.10 Sexp Entries and the Fancy Diary

Display . 247
27.8.8.11 Customizing Appointment Reminders

. 249

xi

28 Miscellaneous Commands 251
28.1 Sorting Text . 251
28.2 Running Shell Commands from XEmacs 252

28.2.1 Single Shell Commands . 253
28.2.2 Interactive Inferior Shell . 253
28.2.3 Shell Mode . 254
28.2.4 Interactive Inferior Shell with Terminal Emulator

. 255
28.2.5 Term Mode . 256
28.2.6 Paging in the terminal emulator 256

28.3 Narrowing . 256
28.4 Hardcopy Output . 257
28.5 Recursive Editing Levels . 258
28.6 Dissociated Press . 258
28.7 CONX . 259
28.8 Other Amusements . 260
28.9 Emulation . 260

29 Customization . 263
29.1 Minor Modes . 263
29.2 Variables . 263

29.2.1 Examining and Setting Variables 264
29.2.2 Easy Customization Interface 265

29.2.2.1 Customization Groups. 265
29.2.2.2 Changing an Option 266
29.2.2.3 Customizing Faces 268
29.2.2.4 Customizing Specific Items 269

29.2.3 Editing Variable Values . 269
29.2.4 Local Variables . 270
29.2.5 Local Variables in Files . 271

29.3 Keyboard Macros . 273
29.3.1 Basic Use . 274
29.3.2 Naming and Saving Keyboard Macros 274
29.3.3 Executing Macros With Variations 275

29.4 Customizing Key Bindings . 275
29.4.1 Keymaps . 275
29.4.2 Changing Key Bindings . 277

29.4.2.1 Changing Key Bindings Interactively
. 277

29.4.2.2 Changing Key Bindings Programmatically
. 278

29.4.2.3 Using Strings for Changing Key Bindings
. 279

29.4.3 Disabling Commands . 280
29.5 The Syntax Table . 280

29.5.1 Information About Each Character 280
29.5.2 Altering Syntax Information 282

29.6 The Init File, .emacs . 283

xii XEmacs User’s Manual

29.6.1 Init File Syntax . 283
29.6.2 Init File Examples . 284
29.6.3 Terminal-Specific Initialization 285

29.7 Changing the Bell Sound . 286
29.8 Faces . 287

29.8.1 Customizing Faces . 288
29.9 X Resources . 289

29.9.1 Geometry Resources . 290
29.9.2 Iconic Resources . 291
29.9.3 Resource List . 291
29.9.4 Face Resources . 293
29.9.5 Widgets . 295
29.9.6 Menubar Resources . 295

30 Correcting Mistakes (Yours or Emacs’s) . . 297
30.1 Quitting and Aborting. 297
30.2 Dealing With Emacs Trouble. 298

30.2.1 Recursive Editing Levels . 298
30.2.2 Garbage on the Screen . 298
30.2.3 Garbage in the Text . 298
30.2.4 Spontaneous Entry to Incremental Search 298
30.2.5 Emergency Escape . 299
30.2.6 Help for Total Frustration . 299

30.3 Reporting Bugs . 300
30.3.1 When Is There a Bug . 300
30.3.2 How to Report a Bug . 301

XEmacs Features . 303
General Changes . 303
New Commands and Variables . 304
Changes in Key Bindings . 306

Glossary . 307

The GNU Manifesto . 321
What’s GNU? GNU’s Not Unix! . 321
Why I Must Write GNU . 322
Why GNU Will Be Compatible With Unix 322
How GNU Will Be Available . 322
Why Many Other Programmers Want to Help 322
How You Can Contribute . 323
Why All Computer Users Will Benefit . 323
Some Easily Rebutted Objections to GNU’s Goals 324

Key (Character) Index . 331

xiii

Command and Function Index 337

Variable Index . 357

Concept Index . 367

xiv XEmacs User’s Manual

Preface 1

Preface

This manual documents the use and simple customization of the XEmacs editor. The
reader is not expected to be a programmer to use this editor, and simple customizations do
not require programming skills either. Users who are not interested in customizing XEmacs
can ignore the scattered customization hints.

This document is primarily a reference manual, but it can also be used as a primer.
However, if you are new to XEmacs, consider using the on-line, learn-by-doing tutorial,
which you get by running XEmacs and typing C-h t. With it, you learn XEmacs by using
XEmacs on a specially designed file which describes commands, tells you when to try them,
and then explains the results you see. Using the tutorial gives a more vivid introduction
than the printed manual. Also consider reading the XEmacs New User’s Guide, which is
intended specifically as an introductory manual rather than as a reference guide.

On first reading, just skim chapters one and two, which describe the notational conven-
tions of the manual and the general appearance of the XEmacs display frame. Note which
questions are answered in these chapters, so you can refer back later. After reading chapter
four you should practice the commands there. The next few chapters describe fundamental
techniques and concepts that are used constantly. You need to understand them thoroughly,
experimenting with them if necessary.

To find the documentation on a particular command, look in the index. Keys (character
commands) and command names have separate indexes. There is also a glossary, with a
cross reference for each term.

This manual comes in two forms: the published form and the Info form. The Info form
is for on-line perusal with the INFO program; it is distributed along with XEmacs. Both
forms contain substantially the same text and are generated from a common source file,
which is also distributed along with XEmacs.

XEmacs is a member of the Emacs editor family. There are many Emacs editors, all
sharing common principles of organization. For information on the underlying philosophy
of Emacs and the lessons learned from its development, write for a copy of AI memo 519a,
“Emacs, the Extensible, Customizable Self-Documenting Display Editor”, to Publications
Department, Artificial Intelligence Lab, 545 Tech Square, Cambridge, MA 02139, USA.
At last report they charge $2.25 per copy. Another useful publication is LCS TM-165,
“A Cookbook for an Emacs”, by Craig Finseth, available from Publications Department,
Laboratory for Computer Science, 545 Tech Square, Cambridge, MA 02139, USA. The price
today is $3.

This manual is for XEmacs installed on UNIX systems. XEmacs also exists on Microsoft
Windows and Windows NT as Win-Emacs (which is actually based on Lucid Emacs 19.6,
an older incarnation of XEmacs).

2 XEmacs User’s Manual

GNU GENERAL PUBLIC LICENSE 3

GNU GENERAL PUBLIC LICENSE

Version 1, February 1989
Copyright c© 1989 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The license agreements of most software companies try to keep users at the mercy of
those companies. By contrast, our General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
The General Public License applies to the Free Software Foundation’s software and to any
other program whose authors commit to using it. You can use it for your programs, too.

When we speak of free software, we are referring to freedom, not price. Specifically, the
General Public License is designed to make sure that you have the freedom to give away or
sell copies of free software, that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of a such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

1. This License Agreement applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The “Program”, below, refers to any such program or work,
and a “work based on the Program” means either the Program or any work containing
the Program or a portion of it, either verbatim or with modifications. Each licensee is
addressed as “you”.

4 XEmacs User’s Manual

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this General Public License and to the absence of any warranty;
and give any other recipients of the Program a copy of this General Public License along
with the Program. You may charge a fee for the physical act of transferring a copy.

3. You may modify your copy or copies of the Program or any portion of it, and copy and
distribute such modifications under the terms of Paragraph 1 above, provided that you
also do the following:
• cause the modified files to carry prominent notices stating that you changed the

files and the date of any change; and
• cause the whole of any work that you distribute or publish, that in whole or in part

contains the Program or any part thereof, either with or without modifications, to
be licensed at no charge to all third parties under the terms of this General Public
License (except that you may choose to grant warranty protection to some or all
third parties, at your option).

• If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the simplest and
most usual way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this General Public License.

• You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

Mere aggregation of another independent work with the Program (or its derivative) on
a volume of a storage or distribution medium does not bring the other work under the
scope of these terms.

4. You may copy and distribute the Program (or a portion or derivative of it, under
Paragraph 2) in object code or executable form under the terms of Paragraphs 1 and
2 above provided that you also do one of the following:
• accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Paragraphs 1 and 2 above; or,
• accompany it with a written offer, valid for at least three years, to give any third

party free (except for a nominal charge for the cost of distribution) a complete
machine-readable copy of the corresponding source code, to be distributed under
the terms of Paragraphs 1 and 2 above; or,

• accompany it with the information you received as to where the corresponding
source code may be obtained. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
alone.)

Source code for a work means the preferred form of the work for making modifications
to it. For an executable file, complete source code means all the source code for all
modules it contains; but, as a special exception, it need not include source code for
modules which are standard libraries that accompany the operating system on which

GNU GENERAL PUBLIC LICENSE 5

the executable file runs, or for standard header files or definitions files that accompany
that operating system.

5. You may not copy, modify, sublicense, distribute or transfer the Program except as
expressly provided under this General Public License. Any attempt otherwise to copy,
modify, sublicense, distribute or transfer the Program is void, and will automatically
terminate your rights to use the Program under this License. However, parties who
have received copies, or rights to use copies, from you under this General Public License
will not have their licenses terminated so long as such parties remain in full compliance.

6. By copying, distributing or modifying the Program (or any work based on the Program)
you indicate your acceptance of this license to do so, and all its terms and conditions.

7. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein.

6 XEmacs User’s Manual

8. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a version
number of the license which applies to it and “any later version”, you have the option
of following the terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does not specify a version
number of the license, you may choose any version ever published by the Free Software
Foundation.

9. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

10. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

11. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 7

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to
humanity, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts
of the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

8 XEmacs User’s Manual

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
program ‘Gnomovision’ (a program to direct compilers to make passes
at assemblers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

That’s all there is to it!

Distribution 9

Distribution

XEmacs is free; this means that everyone is free to use it and free to redistribute it on a
free basis. XEmacs is not in the public domain; it is copyrighted and there are restrictions
on its distribution, but these restrictions are designed to permit everything that a good
cooperating citizen would want to do. What is not allowed is to try to prevent others from
further sharing any version of XEmacs that they might get from you. The precise conditions
are found in the GNU General Public License that comes with XEmacs and also appears
following this section.

The easiest way to get a copy of XEmacs is from someone else who has it. You need not
ask for permission to do so, or tell any one else; just copy it.

If you have access to the Internet, you can get the latest version of XEmacs from the
anonymous FTP server ‘ftp.xemacs.org’ in the directory ‘/pub/xemacs’. It can also be
found at numerous other archive sites around the world; check the file ‘etc/DISTRIB’ in an
XEmacs distribution for the latest known list.

Getting Other Versions of Emacs

The Free Software Foundation’s version of Emacs (called FSF Emacs in this manual and
often referred to as GNU Emacs) is available by anonymous FTP from ‘prep.ai.mit.edu’.

Win-Emacs, an older version of XEmacs that runs on Microsoft Windows and
Windows NT, is available by anonymous FTP from ‘ftp.netcom.com’ in the directory
‘/pub/pe/pearl’, or from ‘ftp.cica.indiana.edu’ as the files ‘wemdemo*.zip’ in the
directory ‘/pub/pc/win3/demo’.

10 XEmacs User’s Manual

Introduction 11

Introduction

You are reading about XEmacs, an incarnation of the advanced, self-documenting, cus-
tomizable, extensible real-time display editor Emacs. XEmacs provides many powerful
display and user-interface capabilities not found in other Emacsen and is mostly upwardly
compatible with GNU Emacs from the Free Software Foundation (referred to as FSF Emacs
in this manual). XEmacs also comes standard with a great number of useful packages.

We say that XEmacs is a display editor because normally the text being edited is visible
on the screen and is updated automatically as you type. See Chapter 1 [Frame], page 13.

We call XEmacs a real-time editor because the display is updated very frequently, usually
after each character or pair of characters you type. This minimizes the amount of informa-
tion you must keep in your head as you edit. See Chapter 4 [Basic Editing], page 41.

We call XEmacs advanced because it provides facilities that go beyond simple insertion
and deletion: filling of text; automatic indentation of programs; viewing two or more files
at once; and dealing in terms of characters, words, lines, sentences, paragraphs, and pages,
as well as expressions and comments in several different programming languages. It is much
easier to type one command meaning “go to the end of the paragraph” than to find that
spot with simple cursor keys.

Self-documenting means that at any time you can type a special character, Control-h,
to find out what your options are. You can also use C-h to find out what a command does,
or to find all the commands relevant to a topic. See Chapter 8 [Help], page 59.

Customizable means you can change the definitions of XEmacs commands. For example,
if you use a programming language in which comments start with ‘<**’ and end with
‘**>’, you can tell the XEmacs comment manipulation commands to use those strings (see
Section 22.6 [Comments], page 174). Another sort of customization is rearrangement of
the command set. For example, you can set up the four basic cursor motion commands
(up, down, left and right) on keys in a diamond pattern on the keyboard if you prefer. See
Chapter 29 [Customization], page 263.

Extensible means you can go beyond simple customization and write entirely new com-
mands, programs in the Lisp language to be run by XEmacs’s own Lisp interpreter. XEmacs
is an “on-line extensible” system: it is divided into many functions that call each other.
You can redefine any function in the middle of an editing session and replace any part of
XEmacs without making a separate copy of all of XEmacs. Most of the editing commands
of XEmacs are written in Lisp; the few exceptions could have been written in Lisp but are
written in C for efficiency. Only a programmer can write an extension to XEmacs, but
anybody can use it afterward.

12 XEmacs User’s Manual

Chapter 1: The XEmacs Frame 13

1 The XEmacs Frame

Frame In many environments, such as a tty terminal, an XEmacs frame literally takes
up the whole screen. If you are running XEmacs in a multi-window system
like the X Window System, the XEmacs frame takes up one X window. See
Section 1.4 [XEmacs under X], page 16, for more information.

Window No matter what environment you are running in, XEmacs allows you to look
at several buffers at the same time by having several windows be part of the
frame. Often, the whole frame is taken up by just one window, but you can
split the frame into two or more subwindows. If you are running XEmacs under
the X window system, that means you can have several XEmacs windows inside
the X window that contains the XEmacs frame. You can even have multiple
frames in different X windows, each with their own set of subwindows.

Each XEmacs frame displays a variety of information:

• The biggest area usually displays the text you are editing. It may consist of one window
or of two or more windows if you need to look at two buffers a the same time.

• Below each text window’s last line is a mode line (see Section 1.3 [Mode Line], page 15),
which describes what is going on in that window. The mode line is in inverse video if
the terminal supports that. If there are several XEmacs windows in one frame, each
window has its own mode line.

• At the bottom of each XEmacs frame is the echo area or minibuffer window(see Sec-
tion 1.2 [Echo Area], page 14). It is used by XEmacs to exchange information with the
user. There is only one echo area per XEmacs frame.

• If you are running XEmacs under the X Window System, a menu bar at the top of the
frame makes shortcuts to several of the commands available (see Section 2.4 [Pull-down
Menus], page 25).

You can subdivide the XEmacs frame into multiple text windows, and use each window
for a different file (see Chapter 17 [Windows], page 131). Multiple XEmacs windows are
tiled vertically on the XEmacs frame. The upper XEmacs window is separated from the
lower window by its mode line.

When there are multiple, tiled XEmacs windows on a single XEmacs frame, the XEmacs
window receiving input from the keyboard has the keyboard focus and is called the selected
window. The selected window contains the cursor, which indicates the insertion point. If
you are working in an environment that permits multiple XEmacs frames, and you move
the focus from one XEmacs frame into another, the selected window is the one that was
last selected in that frame.

The same text can be displayed simultaneously in several XEmacs windows, which can
be in different XEmacs frames. If you alter the text in an XEmacs buffer by editing it in
one XEmacs window, the changes are visible in all XEmacs windows containing that buffer.

14 XEmacs User’s Manual

1.1 Point

When XEmacs is running, the cursor shows the location at which editing commands will
take effect. This location is called point. You can use keystrokes or the mouse cursor to
move point through the text and edit the text at different places.

While the cursor appears to point at a character, you should think of point as between
two characters: it points before the character on which the cursor appears. The exception
is at the end of the line, where the cursor appears after the last character of the line. Where
the display is capable, the cursor at the end of the line will appear differently from a cursor
over whitespace at the end of the line. (In an X Windows frame, the end-of-line cursor is
half the width of a within-line cursor.) Sometimes people speak of “the cursor” when they
mean “point,” or speak of commands that move point as “cursor motion” commands.

Each XEmacs frame has only one cursor. When output is in progress, the cursor must
appear where the typing is being done. This does not mean that point is moving. It is only
that XEmacs has no way to show you the location of point except when the terminal is idle.

If you are editing several files in XEmacs, each file has its own point location. A file
that is not being displayed remembers where point is. Point becomes visible at the correct
location when you look at the file again.

When there are multiple text windows, each window has its own point location. The
cursor shows the location of point in the selected window. The visible cursor also shows
you which window is selected. If the same buffer appears in more than one window, point
can be moved in each window independently.

The term ‘point’ comes from the character ‘.’, which was the command in TECO (the
language in which the original Emacs was written) for accessing the value now called ‘point’.

1.2 The Echo Area

The line at the bottom of the frame (below the mode line) is the echo area. XEmacs
uses this area to communicate with the user:
• Echoing means printing out the characters that the user types. XEmacs never echoes

single-character commands. Multi-character commands are echoed only if you pause
while typing them: As soon as you pause for more than one second in the middle of
a command, all the characters of the command so far are echoed. This is intended
to prompt you for the rest of the command. Once echoing has started, the rest of
the command is echoed immediately as you type it. This behavior is designed to give
confident users fast response, while giving hesitant users maximum feedback. You can
change this behavior by setting a variable (see Section 12.4 [Display Vars], page 83).

• If you issue a command that cannot be executed, XEmacs may print an error message
in the echo area. Error messages are accompanied by a beep or by flashing the frame.
Any input you have typed ahead is thrown away when an error happens.

• Some commands print informative messages in the echo area. These messages look
similar to error messages, but are not announced with a beep and do not throw away
input. Sometimes a message tells you what the command has done, when this is

Chapter 1: The XEmacs Frame 15

not obvious from looking at the text being edited. Sometimes the sole purpose of
a command is to print a message giving you specific information. For example, the
command C-x = is used to print a message describing the character position of point
in the text and its current column in the window. Commands that take a long time
often display messages ending in ‘...’ while they are working, and add ‘done’ at the
end when they are finished.

• The echo area is also used to display the minibuffer, a window that is used for reading
arguments to commands, such as the name of a file to be edited. When the minibuffer
is in use, the echo area displays with a prompt string that usually ends with a colon.
The cursor appears after the prompt. You can always get out of the minibuffer by
typing C-g. See Chapter 6 [Minibuffer], page 51.

1.3 The Mode Line

Each text window’s last line is a mode line which describes what is going on in that
window. When there is only one text window, the mode line appears right above the echo
area. The mode line is in inverse video if the terminal supports that, starts and ends with
dashes, and contains text like ‘XEmacs: something ’.

If a mode line has something else in place of ‘XEmacs: something ’, the window above
it is in a special subsystem such as Dired. The mode line then indicates the status of the
subsystem.

Normally, the mode line has the following appearance:
--ch-XEmacs: buf (major minor)----pos------

This gives information about the buffer being displayed in the window: the buffer’s name,
what major and minor modes are in use, whether the buffer’s text has been changed, and
how far down the buffer you are currently looking.

ch contains two stars (‘**’) if the text in the buffer has been edited (the buffer is “mod-
ified”), or two dashes (‘--’) if the buffer has not been edited. Exception: for a read-only
buffer, it is ‘%%’.

buf is the name of the window’s chosen buffer. The chosen buffer in the selected window
(the window that the cursor is in) is also XEmacs’s selected buffer, the buffer in which
editing takes place. When we speak of what some command does to “the buffer”, we mean
the currently selected buffer. See Chapter 16 [Buffers], page 125.

pos tells you whether there is additional text above the top of the screen or below the
bottom. If your file is small and it is completely visible on the screen, pos is ‘All’. Otherwise,
pos is ‘Top’ if you are looking at the beginning of the file, ‘Bot’ if you are looking at the
end of the file, or ‘nn%’, where nn is the percentage of the file above the top of the screen.

major is the name of the major mode in effect in the buffer. At any time, each buffer is
in one and only one major mode. The available major modes include Fundamental mode
(the least specialized), Text mode, Lisp mode, and C mode. See Chapter 19 [Major Modes],
page 145, for details on how the modes differ and how you select one.

minor is a list of some of the minor modes that are turned on in the window’s chosen
buffer. For example, ‘Fill’ means that Auto Fill mode is on. Abbrev means that Word
Abbrev mode is on. Ovwrt means that Overwrite mode is on. See Section 29.1 [Minor

16 XEmacs User’s Manual

Modes], page 263, for more information. ‘Narrow’ means that the buffer being displayed
has editing restricted to only a portion of its text. This is not really a minor mode, but
is like one. See Section 28.3 [Narrowing], page 256. Def means that a keyboard macro is
being defined. See Section 29.3 [Keyboard Macros], page 273.

Some buffers display additional information after the minor modes. For example, Rmail
buffers display the current message number and the total number of messages. Compilation
buffers and Shell mode display the status of the subprocess.

If XEmacs is currently inside a recursive editing level, square brackets (‘[...]’) appear
around the parentheses that surround the modes. If XEmacs is in one recursive editing level
within another, double square brackets appear, and so on. Since information on recursive
editing applies to XEmacs in general and not to any one buffer, the square brackets appear
in every mode line on the screen or not in any of them. See Section 28.5 [Recursive Edit],
page 258.

XEmacs can optionally display the time and system load in all mode lines. To enable this
feature, type M-x display-time. The information added to the mode line usually appears
after the file name, before the mode names and their parentheses. It looks like this:

hh:mmpm l.ll [d]

(Some fields may be missing if your operating system cannot support them.) hh and mm
are the hour and minute, followed always by ‘am’ or ‘pm’. l.ll is the average number of
running processes in the whole system recently. d is an approximate index of the ratio of
disk activity to CPU activity for all users.

The word ‘Mail’ appears after the load level if there is mail for you that you have not
read yet.

Customization note: the variable mode-line-inverse-video controls whether the mode
line is displayed in inverse video (assuming the terminal supports it); nil means no inverse
video. The default is t. For X frames, simply set the foreground and background colors
appropriately.

1.4 Using XEmacs Under the X Window System

XEmacs can be used with the X Window System and a window manager like MWM or
TWM. In that case, the X window manager opens, closes, and resizes XEmacs frames. You
use the window manager’s mouse gestures to perform the operations. Consult your window
manager guide or reference manual for information on manipulating X windows.

When you are working under X, each X window (that is, each XEmacs frame) has a
menu bar for mouse-controlled operations (see Section 2.4 [Pull-down Menus], page 25).

XEmacs under X is also a multi-frame XEmacs. You can use the New Frame menu
item from the File menu to create a new XEmacs frame in a new X window from the same
process. The different frames will share the same buffer list, but you can look at different
buffers in the different frames.

The function find-file-other-frame is just like find-file, but creates a new frame
to display the buffer in first. This is normally bound to C-x 5 C-f, and is what the Open
File, New Frame menu item does.

Chapter 1: The XEmacs Frame 17

The function switch-to-buffer-other-frame is just like switch-to-buffer, but cre-
ates a new frame to display the buffer in first. This is normally bound to C-x 5 b.

You can specify a different default frame size other than the one provided. Use the
variable default-frame-alist, which is an alist of default values for frame creation other
than the first one. These may be set in your init file, like this:

(setq default-frame-alist ’((width . 80) (height . 55)))

For values specific to the first XEmacs frame, you must use X resources. The variable
x-frame-defaults takes an alist of default frame creation parameters for X window frames.
These override what is specified in ‘~/.Xdefaults’ but are overridden by the arguments to
the particular call to x-create-frame.

When you create a new frame, the variable create-frame-hook is called with one ar-
gument, the frame just created.

If you want to close one or more of the X windows you created using New Frame, use
the Delete Frame menu item from the File menu.

If you are working with multiple frames, some special information applies:
• Two variables, frame-title-format and frame-icon-title-format determine the

title of the frame and the title of the icon that results if you shrink the frame.
• The variables auto-lower-frame and auto-raise-frame position a frame. If true,

auto-lower-frame lowers a frame to the bottom when it is no longer selected. If
true, auto-raise-frame raises a frame to the top when it is selected. Under X, most
ICCCM-compliant window managers will have options to do this for you, but these
variables are provided in case you are using a broken window manager.

• There is a new frame/modeline format directive, %S, which expands to the name of the
current frame (a frame’s name is distinct from its title; the name is used for resource
lookup, among other things, and the title is simply what appears above the window.)

18 XEmacs User’s Manual

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 19

2 Keystrokes, Key Sequences, and Key Bindings

This chapter discusses the character set Emacs uses for input commands and inside files.
You have already learned that the more frequently used Emacs commands are bound to
keys. For example, Control-f is bound to forward-char. The following issues are covered:
• How keystrokes can be represented
• How you can create key sequences from keystrokes
• How you can add to the available modifier keys by customizing your keyboard: for

example, you could have the 〈Capslock〉 key be understood as the 〈Super〉 key by Emacs.
A 〈Super〉 key is used like 〈Control〉 or 〈Meta〉 in that you hold it while typing another key.

You will also learn how to customize existing key bindings and create new ones.

2.1 Keystrokes as Building Blocks of Key Sequences

Earlier versions of Emacs used only the ASCII character set, which defines 128 different
character codes. Some of these codes are assigned graphic symbols like ‘a’ and ‘=’; the rest
are control characters, such as Control-a (also called C-a). C-a means you hold down the
〈CTRL〉 key and then press a.

Keybindings in XEmacs are not restricted to the set of keystrokes that can be represented
in ASCII. XEmacs can tell the difference between, for example, Control-h, Control-

Shift-h, and Backspace.
A keystroke is like a piano chord: you get it by simultaneously striking several keys.

To be more precise, a keystroke consists of a possibly empty set of modifiers followed by a
single keysym. The set of modifiers is small; it consists of Control, Meta, Super, Hyper,
and Shift.

The rest of the keys on your keyboard, along with the mouse buttons, make up the set
of keysyms. A keysym is usually what is printed on the keys on your keyboard. Here is a
table of some of the symbolic names for keysyms:

a,b,c... alphabetic keys

f1,f2... function keys

button1 left mouse button

button2 middle mouse button

button3 right mouse button

button1up

upstroke on the left mouse button

button2up

upstroke on the middle mouse button

button3up

upstroke on the right mouse button

20 XEmacs User’s Manual

return Return key

Use the variable keyboard-translate-table only if you are on a dumb tty, as it cannot
handle input that cannot be represented as ASCII. The value of this variable is a string
used as a translate table for keyboard input or nil. Each character is looked up in this
string and the contents used instead. If the string is of length n, character codes N and up
are untranslated. If you are running Emacs under X, you should do the translations with
the xmodmap program instead.

2.1.1 Representing Keystrokes

XEmacs represents keystrokes as lists. Each list consists of an arbitrary combination of
modifiers followed by a single keysym at the end of the list. If the keysym corresponds to an
ASCII character, you can use its character code. (A keystroke may also be represented by
an event object, as returned by the read-key-sequence function; non-programmers need
not worry about this.)

The following table gives some examples of how to list representations for keystrokes.
Each list consists of sets of modifiers followed by keysyms:

(control a)

Pressing 〈CTRL〉 and a simultaneously.

(control ?a)

Another way of writing the keystroke C-a.

(control 65)

Yet another way of writing the keystroke C-a.

(break) Pressing the 〈BREAK〉 key.

(control meta button2up)

Release the middle mouse button, while pressing 〈CTRL〉 and 〈META〉.

Note: As you define keystrokes, you can use the shift key only as a modifier with
characters that do not have a second keysym on the same key, such as backspace and tab.
It is an error to define a keystroke using the 〈shift〉 modifier with keysyms such as a and =.
The correct forms are A and +.

2.1.2 Representing Key Sequences

A complete key sequence is a sequence of keystrokes that Emacs understands as a unit.
Key sequences are significant because you can bind them to commands. Note that not all
sequences of keystrokes are possible key sequences. In particular, the initial keystrokes in a
key sequence must make up a prefix key sequence.

Emacs represents a key sequence as a vector of keystrokes. Thus, the schematic repre-
sentation of a complete key sequence is as follows:

[(modifier .. modifer keysym) ... (modifier .. modifier keysym)]

Here are some examples of complete key sequences:

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 21

[(control c) (control a)]

Typing C-c followed by C-a

[(control c) (control 65)]

Typing C-c followed by C-a. (Using the ASCII code for the character ‘a’)

[(control c) (break)]

Typing C-c followed by the break character.

A prefix key sequence is the beginning of a series of longer sequences that are valid key
sequences; adding any single keystroke to the end of a prefix results in a valid key sequence.
For example, control-x is standardly defined as a prefix. Thus there is a two-character
key sequence starting with C-x for each valid keystroke, giving numerous possibilities. Here
are some samples:
• [(control x) (c)]

• [(control x) (control c)]

Adding one character to a prefix key does not have to form a complete key. It could make
another, longer prefix. For example, [(control x) (\4)] is itself a prefix that leads to any
number of different three-character keys, including [(control x) (\4) (f)], [(control x)

(\4) (b)] and so on. It would be possible to define one of those three-character sequences
as a prefix, creating a series of four-character keys, but we did not define any of them this
way.

By contrast, the two-character sequence [(control f) (control k)] is not a key, be-
cause the (control f) is a complete key sequence in itself. You cannot give [(control

f (control k)] an independent meaning as a command while (control f) is a complete
sequence, because Emacs would understand 〈C-f C-k〉 as two commands.

The predefined prefix key sequences in Emacs are (control c), (control x), (control
h), [(control x) (\4)], and escape. You can customize Emacs and could make new pre-
fix keys or eliminate the default key sequences. See Section 29.4 [Key Bindings], page 275.
For example, if you redefine (control f) as a prefix, [(control f) (control k)] auto-
matically becomes a valid key sequence (complete, unless you define it as a prefix as well).
Conversely, if you remove the prefix definition of [(control x) (\4)], [(control x) (\4)

(f)] (or [(control x) (\4) anything]) is no longer a valid key sequence.
Note that the above paragraphs uses \4 instead of simply 4, because \4 is the symbol

whose name is "4", and plain 4 is the integer 4, which would have been interpreted as the
ASCII value. Another way of representing the symbol whose name is "4" is to write ?4,
which would be interpreted as the number 52, which is the ASCII code for the character
"4". We could therefore actually have written 52 directly, but that is far less clear.

2.1.3 String Key Sequences

For backward compatibility, you may also represent a key sequence using strings. For
example, we have the following equivalent representations:

"\C-c\C-c"
[(control c) (control c)]

"\e\C-c" [(meta control c)]

22 XEmacs User’s Manual

2.1.4 Assignment of the 〈META〉 Key

Not all terminals have the complete set of modifiers. Terminals that have a 〈Meta〉 key
allow you to type Meta characters by just holding that key down. To type Meta-a, hold
down 〈META〉 and press a. On those terminals, the 〈META〉 key works like the 〈SHIFT〉 key.
Such a key is not always labeled 〈META〉, however, as this function is often a special option
for a key with some other primary purpose.

If there is no 〈META〉 key, you can still type Meta characters using two-character sequences
starting with 〈ESC〉. To enter M-a, you could type 〈ESC〉 a. To enter C-M-a, you would type
ESC C-a. 〈ESC〉 is allowed on terminals with Meta keys, too, in case you have formed a habit
of using it.

If you are running under X and do not have a 〈META〉 key, it is possible to reconfigure
some other key to be a 〈META〉 key. See Section 2.1.5 [Super and Hyper Keys], page 22.

Emacs believes the terminal has a 〈META〉 key if the variable meta-flag is non-nil.
Normally this is set automatically according to the termcap entry for your terminal type.
However, sometimes the termcap entry is wrong, and then it is useful to set this variable
yourself. See Section 29.2 [Variables], page 263, for how to do this.

Note: If you are running under the X window system, the setting of the meta-flag
variable is irrelevant.

2.1.5 Assignment of the 〈SUPER〉 and 〈HYPER〉 Keys

Most keyboards do not, by default, have 〈SUPER〉 or 〈HYPER〉 modifier keys. Under X, you
can simulate the 〈SUPER〉 or 〈HYPER〉 key if you want to bind keys to sequences using super

and hyper. You can use the xmodmap program to do this.
For example, to turn your 〈CAPS-LOCK〉 key into a 〈SUPER〉 key, do the following:
Create a file called ~/.xmodmap. In this file, place the lines

remove Lock = Caps_Lock
keysym Caps_Lock = Super_L
add Mod2 = Super_L

The first line says that the key that is currently called Caps_Lock should no longer behave
as a “lock” key. The second line says that this should now be called Super_L instead. The
third line says that the key called Super_L should be a modifier key, which produces the
Mod2 modifier.

To create a 〈META〉 or 〈HYPER〉 key instead of a 〈SUPER〉 key, replace the word Super above
with Meta or Hyper.

Just after you start up X, execute the command xmodmap /.xmodmap. You can add this
command to the appropriate initialization file to have the command executed automatically.

If you have problems, see the documentation for the xmodmap program. The X keyboard
model is quite complicated, and explaining it is beyond the scope of this manual. However,
we reprint the following description from the X Protocol document for your convenience:

A list of keysyms is associated with each keycode. If that list (ignoring trailing NoSymbol
entries) is a single keysym ‘K’, then the list is treated as if it were the list ‘‘K NoSymbol

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 23

K NoSymbol’’. If the list (ignoring trailing NoSymbol entries) is a pair of keysyms ‘K1 K2’,
then the list is treated as if it were the list ‘‘K1 K2 K1 K2’’. If the list (ignoring trailing
NoSymbol entries) is a triple of keysyms ‘K1 K2 K3’, then the list is treated as if it were the
list ‘‘K1 K2 K3 NoSymbol’’.

The first four elements of the list are split into two groups of keysyms. Group 1 contains
the first and second keysyms; Group 2 contains third and fourth keysyms. Within each
group, if the second element of the group is NoSymbol, then the group should be treated
as if the second element were the same as the first element, except when the first element
is an alphabetic keysym ‘K’ for which both lowercase and uppercase forms are defined. In
that case, the group should be treated as if the first element were the lowercase form of ‘K’
and the second element were the uppercase form of ‘K’.

The standard rules for obtaining a keysym from a KeyPress event make use of only the
Group 1 and Group 2 keysyms; no interpretation of other keysyms in the list is given here.
(That is, the last four keysyms are unused.)

Which group to use is determined by modifier state. Switching between groups is con-
trolled by the keysym named Mode_switch. Attach that keysym to some keycode and
attach that keycode to any one of the modifiers Mod1 through Mod5. This modifier is
called the group modifier. For any keycode, Group 1 is used when the group modifier is off,
and Group 2 is used when the group modifier is on.

Within a group, which keysym to use is also determined by modifier state. The first
keysym is used when the Shift and Lock modifiers are off. The second keysym is used
when the Shift modifier is on, or when the Lock modifier is on and the second keysym
is uppercase alphabetic, or when the Lock modifier is on and is interpreted as ShiftLock.
Otherwise, when the Lock modifier is on and is interpreted as CapsLock, the state of the
Shift modifier is applied first to select a keysym, but if that keysym is lower-case alphabetic,
then the corresponding upper-case keysym is used instead.

In addition to the above information on keysyms, we also provide the following descrip-
tion of modifier mapping from the InterClient Communications Conventions Manual:

X11 supports 8 modifier bits, of which 3 are pre-assigned to Shift, Lock, and Control.
Each modifier bit is controlled by the state of a set of keys, and these sets are specified in
a table accessed by GetModifierMapping() and SetModifierMapping().

A client needing to use one of the pre-assigned modifiers should assume that the modifier
table has been set up correctly to control these modifiers. The Lock modifier should be
interpreted as Caps Lock or Shift Lock according to whether the keycodes in its controlling
set include XK_Caps_Lock or XK_Shift_Lock.

Clients should determine the meaning of a modifier bit from the keysyms being used to
control it.

A client needing to use an extra modifier, for example Meta, should:

1. Scan the existing modifier mappings.

1. If it finds a modifier that contains a keycode whose set of keysyms includes XK_
Meta_L or XK_Meta_R, it should use that modifier bit.

2. If there is no existing modifier controlled by XK_Meta_L or XK_Meta_R, it should
select an unused modifier bit (one with an empty controlling set) and:

24 XEmacs User’s Manual

2. If there is a keycode with XL_Meta_L in its set of keysyms, add that keycode to the set
for the chosen modifier, and then:

1. If there is a keycode with XL_Meta_R in its set of keysyms, add that keycode to
the set for the chosen modifier, and then:

2. If the controlling set is still empty, interact with the user to select one or more
keys to be Meta.

3. If there are no unused modifier bits, ask the user to take corrective action.

This means that the Mod1 modifier does not necessarily mean Meta, although some
applications (such as twm and emacs 18) assume that. Any of the five unassigned modifier
bits could mean Meta; what matters is that a modifier bit is generated by a keycode which
is bound to the keysym Meta_L or Meta_R.

Therefore, if you want to make a 〈META〉 key, the right way is to make the keycode in
question generate both a Meta keysym and some previously-unassigned modifier bit.

2.2 Representation of Characters

This section briefly discusses how characters are represented in Emacs buffers. See
Section 2.1.2 [Key Sequences], page 20, for information on representing key sequences to
create key bindings.

ASCII graphic characters in Emacs buffers are displayed with their graphics. 〈LFD〉 is
the same as a newline character; it is displayed by starting a new line. 〈TAB〉 is displayed
by moving to the next tab stop column (usually every 8 spaces). Other control characters
are displayed as a caret (‘^’) followed by the non-control version of the character; thus,
C-a is displayed as ‘^A’. Non-ASCII characters 128 and up are displayed with octal escape
sequences; thus, character code 243 (octal), also called M-# when used as an input character,
is displayed as ‘\243’.

The variable ctl-arrow may be used to alter this behavior. See Section 12.4 [Display
Vars], page 83.

2.3 Keys and Commands

This manual is full of passages that tell you what particular keys do. But Emacs does
not assign meanings to keys directly. Instead, Emacs assigns meanings to functions, and
then gives keys their meanings by binding them to functions.

A function is a Lisp object that can be executed as a program. Usually it is a Lisp
symbol that has been given a function definition; every symbol has a name, usually made
of a few English words separated by dashes, such as next-line or forward-word. It also
has a definition, which is a Lisp program. Only some functions can be the bindings of
keys; these are functions whose definitions use interactive to specify how to call them
interactively. Such functions are called commands, and their names are command names.
More information on this subject will appear in the XEmacs Lisp Reference Manual.

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 25

The bindings between keys and functions are recorded in various tables called keymaps.
See Section 29.4 [Key Bindings], page 275, for more information on key sequences you can
bind commands to. See Section 29.4.1 [Keymaps], page 275, for information on creating
keymaps.

When we say “C-n moves down vertically one line” we are glossing over a distinction
that is irrelevant in ordinary use but is vital in understanding how to customize Emacs.
The function next-line is programmed to move down vertically. C-n has this effect because
it is bound to that function. If you rebind C-n to the function forward-word then C-n will
move forward by words instead. Rebinding keys is a common method of customization.

The rest of this manual usually ignores this subtlety to keep things simple. To give the
customizer the information needed, we often state the name of the command that really
does the work in parentheses after mentioning the key that runs it. For example, we will say
that “The command C-n (next-line) moves point vertically down,” meaning that next-
line is a command that moves vertically down and C-n is a key that is standardly bound
to it.

While we are on the subject of information for customization only, it’s a good time to
tell you about variables. Often the description of a command will say, “To change this, set
the variable mumble-foo.” A variable is a name used to remember a value. Most of the
variables documented in this manual exist just to facilitate customization: some command
or other part of Emacs uses the variable and behaves differently depending on its setting.
Until you are interested in customizing, you can ignore the information about variables.
When you are ready to be interested, read the basic information on variables, and then the
information on individual variables will make sense. See Section 29.2 [Variables], page 263.

2.4 XEmacs Pull-down Menus

If you are running XEmacs under X, a menu bar on top of the Emacs frame provides
access to pull-down menus of file, edit, and help-related commands. The menus provide
convenient shortcuts and an easy interface for novice users. They do not provide additions
to the functionality available via key commands; you can still invoke commands from the
keyboard as in previous versions of Emacs.

File Perform file and buffer-related operations, such as opening and closing files,
saving and printing buffers, as well as exiting Emacs.

Edit Perform standard editing operations, such as cutting, copying, pasting, and
killing selected text.

Apps Access to sub-applications implemented within XEmacs, such as the mail
reader, the World Wide Web browser, the spell-checker, and the calendar
program.

Options Control various options regarding the way XEmacs works, such as controlling
which elements of the frame are visible, selecting the fonts to be used for text,
specifying whether searches are case-sensitive, etc.

Buffers Present a menu of buffers for selection as well as the option to display a buffer
list.

26 XEmacs User’s Manual

Tools Perform various actions designed to automate software development and similar
technical work, such as searching through many files, compiling a program, and
comparing or merging two or three files.

Help Access to Emacs Info.

There are two ways of selecting an item from a pull-down menu:

• Select an item in the menu bar by moving the cursor over it and click the left mouse-
button. Then move the cursor over the menu item you want to choose and click left
again.

• Select an item in the menu bar by moving the cursor over it and click and hold the left
mouse-button. With the mouse-button depressed, move the cursor over the menu item
you want, then release it to make your selection.

If a command in the pull-down menu is not applicable in a given situation, the command
is disabled and its name appears faded. You cannot invoke items that are faded. For
example, many commands on the Edit menu appear faded until you select text on which
they are to operate; after you select a block of text, edit commands are enabled. See
Section 9.2 [Mouse Selection], page 66, for information on using the mouse to select text.
See Section 10.3 [Using X Selections], page 73, for related information.

There are also M-x equivalents for each menu item. To find the equivalent for any
left-button menu item, do the following:

1. Type C-h k to get the Describe Key prompt.
2. Select the menu item and click.

Emacs displays the function associated with the menu item in a separate window, usually
together with some documentation.

2.4.1 The File Menu

The File menu bar item contains the items New Frame, Open File..., Save Buffer, Save
Buffer As..., Revert Buffer, Print Buffer, Delete Frame, Kill Buffer and Exit Emacs on the
pull-down menu. If you select a menu item, Emacs executes the equivalent command.

Open File, New Frame...
Prompts you for a filename and loads that file into a new buffer in a new Emacs
frame, that is, a new X window running under the same Emacs process. You
can remove the frame using the Delete Frame menu item. When you remove
the last frame, you exit Emacs and are prompted for confirmation.

Open File...
Prompts you for a filename and loads that file into a new buffer. Open File...
is equivalent to the Emacs command find-file (C-x C-f).

Insert File...
Prompts you for a filename and inserts the contents of that file into the cur-
rent buffer. The file associated with the current buffer is not changed by this
command. This is equivalent to the Emacs command insert-file (C-x i).

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 27

Save Buffer
Writes and saves the current Emacs buffer as the latest version of the current
visited file. Save Buffer is equivalent to the Emacs command save-buffer (C-x
C-s).

Save Buffer As...
Writes and saves the current Emacs buffer to the filename you specify. Save
Buffer As... is equivalent to the Emacs command write-file (C-x C-w).

Revert Buffer
Restores the last saved version of the file to the current buffer. When you edit
a buffer containing a text file, you must save the buffer before your changes
become effective. Use Revert Buffer if you do not want to keep the changes
you have made in the buffer. Revert Buffer is equivalent to the Emacs command
revert-file (M-x revert-buffer).

Kill Buffer
Kills the current buffer, prompting you first if there are unsaved changes. This
is roughly equivalent to the Emacs command kill-buffer (C-x k), except that
kill-buffer prompts for the name of a buffer to kill.

Print Buffer
Prints a hardcopy of the current buffer. Equivalent to the Emacs command
print-buffer (M-x print-buffer).

New Frame
Creates a new Emacs frame displaying the *scratch* buffer. This is like the
Open File, New Frame... menu item, except that it does not prompt for or load
a file.

Delete Frame
Allows you to close all but one of the frames created by New Frame. If you
created several Emacs frames belonging to the same Emacs process, you can
close all but one of them. When you attempt to close the last frame, Emacs
informs you that you are attempting to delete the last frame. You have to
choose Exit Emacs for that.

Split Frame
Divides the current window on the current frame into two equal-sized windows,
both displaying the same buffer. Equivalent to the Emacs command split-
window-vertically (C-x 2).

Un-split (Keep This)
If the frame is divided into multiple windows, this removes all windows other
than the selected one. Equivalent to the Emacs command delete-other-
windows (C-x 1).

Un-split (Keep Others)
If the frame is divided into multiple windows, this removes the selected window
from the frame, giving the space back to one of the other windows. Equivalent
to the Emacs command delete-window (C-x 0).

28 XEmacs User’s Manual

Exit Emacs
Shuts down (kills) the Emacs process. Equivalent to the Emacs command save-
buffers-kill-emacs (C-x C-c). Before killing the Emacs process, the system
asks which unsaved buffers to save by going through the list of all buffers in
that Emacs process.

2.4.2 The Edit Menu

The Edit pull-down menu contains the Undo, Cut, Copy, Paste, and Clear menu items.
When you select a menu item, Emacs executes the equivalent command. Most commands on
the Edit menu work on a block of text, the X selection. They appear faded until you select
a block of text (activate a region) with the mouse. See Section 10.3 [Using X Selections],
page 73, see Section 10.1 [Killing], page 69, and see Section 10.2 [Yanking], page 71 for more
information.

Undo Undoes the previous command. Undo is equivalent to the Emacs command
undo (C-x u).

Cut Removes the selected text block from the current buffer, makes it the X clip-
board selection, and places it in the kill ring. Before executing this command,
you have to select a region using Emacs region selection commands or with the
mouse.

Copy Makes a selected text block the X clipboard selection, and places it in the kill
ring. You can select text using one of the Emacs region selection commands or
by selecting a text region with the mouse.

Paste Inserts the current value of the X clipboard selection in the current buffer. Note
that this is not necessarily the same as the Emacs yank command, because the
Emacs kill ring and the X clipboard selection are not the same thing. You
can paste in text you have placed in the clipboard using Copy or Cut. You
can also use Paste to insert text that was pasted into the clipboard from other
applications.

Clear Removes the selected text block from the current buffer but does not place it
in the kill ring or the X clipboard selection.

Start Macro Recording
After selecting this, Emacs will remember every keystroke you type until End
Macro Recording is selected. This is the same as the Emacs command start-
kbd-macro (C-x ().

End Macro Recording
Selecting this tells emacs to stop remembering your keystrokes. This is the
same as the Emacs command end-kbd-macro (C-x)).

Execute Last Macro
Selecting this item will cause emacs to re-interpret all of the keystrokes which
were saved between selections of the Start Macro Recording and End Macro
Recording menu items. This is the same as the Emacs command call-last-
kbd-macro (C-x e).

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 29

2.4.3 The Apps Menu

The Apps pull-down menu contains the Read Mail (VM)..., Read Mail (MH)..., Send
Mail..., Usenet News, Browse the Web, Gopher, Spell-Check Buffer and Emulate VI menu
items, and the Calendar and Games sub-menus. When you select a menu item, Emacs
executes the equivalent command. For some of the menu items, there are sub-menus which
you will need to select.

2.4.4 The Options Menu

The Options pull-down menu contains the Read Only, Case Sensitive Search, Overstrike,
Auto Delete Selection, Teach Extended Commands, Syntax Highlighting, Paren Highlight-
ing, Font, Size, Weight, Buffers Menu Length..., Buffers Sub-Menus and Save Options menu
items. When you select a menu item, Emacs executes the equivalent command. For some
of the menu items, there are sub-menus which you will need to select.

Read Only
Selecting this item will cause the buffer to visit the file in a read-only mode.
Changes to the file will not be allowed. This is equivalent to the Emacs com-
mand toggle-read-only (C-x C-q).

Case Sensitive Search
Selecting this item will cause searches to be case-sensitive. If its not selected
then searches will ignore case. This option is local to the buffer.

Overstrike After selecting this item, when you type letters they will replace existing text
on a one-to-one basis, rather than pushing it to the right. At the end of a line,
such characters extend the line. Before a tab, such characters insert until the
tab is filled in. This is the same as Emacs command quoted-insert (C-q).

Auto Delete Selection
Selecting this item will cause automatic deletion of the selected region. The
typed text will replace the selection if the selection is active (i.e. if its high-
lighted). If the option is not selected then the typed text is just inserted at the
point.

Teach Extended Commands
After you select this item, any time you execute a command with M-xwhich
has a shorter keybinding, you will be shown the alternate binding before the
command executes.

Syntax Highlighting
You can customize your .emacs file to include the font-lock mode so that when
you select this item, the comments will be displayed in one face, strings in
another, reserved words in another, and so on. When Fonts is selected, different
parts of the program will appear in different Fonts. When Colors is selected,
then the program will be displayed in different colors. Selecting None causes
the program to appear in just one Font and Color. Selecting Less resets the

30 XEmacs User’s Manual

Fonts and Colors to a fast, minimal set of decorations. Selecting More resets the
Fonts and Colors to a larger set of decorations. For example, if Less is selected
(which is the default setting) then you might have all comments in green color.
Whereas, if More is selected then a function name in the comments themselves
might appear in a different Color or Font.

Paren Highlighting
After selecting Blink from this item, if you place the cursor on a parenthesis,
the matching parenthesis will blink. If you select Highlight and place the cur-
sor on a parenthesis, the whole expression of the parenthesis under the cursor
will be highlighted. Selecting None will turn off the options (regarding Paren
Highlighting) which you had selected earlier.

Font You can select any Font for your program by choosing from one of the available
Fonts.

Size You can select any size ranging from 2 to 24 by selecting the appropriate option.

Weight You can choose either Bold or Medium for the weight.

Buffers Menu Length...
Prompts you for the number of buffers to display. Then it will display that
number of most recently selected buffers.

Buffers Sub-Menus
After selection of this item the Buffers menu will contain several commands,
as submenus of each buffer line. If this item is unselected, then there are no
submenus for each buffer line, the only command available will be selecting that
buffer.

Save Options
Selecting this item will save the current settings of your Options menu to your
.emacs file.

2.4.5 The Buffers Menu

The Buffers menu provides a selection of up to ten buffers and the item List All Buffers,
which provides a Buffer List. See Section 16.2 [List Buffers], page 126, for more information.

2.4.6 The Tools Menu

The Tools pull-down menu contains the Grep..., Compile..., Shell Command..., Shell
Command on Region..., Debug(GDB)... and Debug(DBX)... menu items, and the Com-
pare, Merge, Apply Patch and Tags sub-menus. When you select a menu item, Emacs
executes the equivalent command. For some of the menu items, there are sub-menus which
you will need to select.

Chapter 2: Keystrokes, Key Sequences, and Key Bindings 31

2.4.7 The Help Menu

The Help Menu gives you access to Emacs Info and provides a menu equivalent for each of
the choices you have when using C-h. See Chapter 8 [Help], page 59, for more information.

The Help menu also gives access to UNIX online manual pages via the UNIX Manual
Page option.

2.4.8 Customizing XEmacs Menus

You can customize any of the pull-down menus by adding or removing menu items and
disabling or enabling existing menu items.

The following functions are available:

add-menu: (menu-path menu-name menu-items &optional before)
Add a menu to the menu bar or one of its submenus.

add-menu-item: (menu-path item-name function enabled-p&optional before)
Add a menu item to a menu, creating the menu first if necessary.

delete-menu-item: (path)
Remove the menu item defined by path from the menu hierarchy.

disable-menu-item: (path)
Disable the specified menu item.

enable-menu-item: (path)
Enable the specified previously disabled menu item.

relabel-menu-item: (path new-name)
Change the string of the menu item specified by path to new-name.

Use the function add-menu to add a new menu or submenu. If a menu or submenu of
the given name exists already, it is changed.

menu-path identifies the menu under which the new menu should be inserted. It is a list
of strings; for example, ("File") names the top-level File menu. ("File" "Foo") names
a hypothetical submenu of File. If menu-path is nil, the menu is added to the menu bar
itself.

menu-name is the string naming the menu to be added.

menu-items is a list of menu item descriptions. Each menu item should be a vector of
three elements:

• A string, which is the name of the menu item
• A symbol naming a command, or a form to evaluate
• t or nil to indicate whether the item is selectable

The optional argument before is the name of the menu before which the new menu or
submenu should be added. If the menu is already present, it is not moved.

32 XEmacs User’s Manual

The function add-menu-item adds a menu item to the specified menu, creating the menu
first if necessary. If the named item already exists, the menu remains unchanged.

menu-path identifies the menu into which the new menu item should be inserted. It is
a list of strings; for example, ("File") names the top-level File menu. ("File" "Foo")
names a hypothetical submenu of File.

item-name is the string naming the menu item to add.
function is the command to invoke when this menu item is selected. If it is a symbol,

it is invoked with call-interactively, in the same way that functions bound to keys are
invoked. If it is a list, the list is simply evaluated.

enabled-p controls whether the item is selectable or not. It should be t, nil, or a form
to evaluate to decide. This form will be evaluated just before the menu is displayed, and
the menu item will be selectable if that form returns non-nil.

For example, to make the rename-file command available from the File menu, use the
following code:

(add-menu-item ’("File") "Rename File" ’rename-file t)

To add a submenu of file management commands using a File Management item, use
the following code:

(add-menu-item ’("File" "File Management") "Copy File" ’copy-file t)
(add-menu-item ’("File" "File Management") "Delete File" ’delete-file t)
(add-menu-item ’("File" "File Management") "Rename File" ’rename-file t)

The optional before argument is the name of a menu item before which the new item
should be added. If the item is already present, it is not moved.

To remove a specified menu item from the menu hierarchy, use delete-menu-item.
path is a list of strings that identify the position of the menu item in the menu hierarchy.

("File" "Save") means the menu item called Save under the top level File menu. ("Menu"
"Foo" "Item") means the menu item called Item under the Foo submenu of Menu.

To disable a menu item, use disable-menu-item. The disabled menu item is grayed
and can no longer be selected. To make the item selectable again, use enable-menu-item.
disable-menu-item and enable-menu-item both have the argument path.

To change the string of the specified menu item, use relabel-menu-item. This function
also takes the argument path.

new-name is the string to which the menu item will be changed.

Chapter 3: Entering and Exiting Emacs 33

3 Entering and Exiting Emacs

The usual way to invoke Emacs is to type emacs 〈RET〉 at the shell (for XEmacs, type
xemacs 〈RET〉). Emacs clears the screen and then displays an initial advisory message and
copyright notice. You can begin typing Emacs commands immediately afterward.

Some operating systems insist on discarding all type-ahead when Emacs starts up; they
give Emacs no way to prevent this. Therefore, it is wise to wait until Emacs clears the
screen before typing the first editing command.

Before Emacs reads the first command, you have not had a chance to give a command to
specify a file to edit. Since Emacs must always have a current buffer for editing, it presents
a buffer, by default, a buffer named ‘*scratch*’. The buffer is in Lisp Interaction mode;
you can use it to type Lisp expressions and evaluate them, or you can ignore that capability
and simply doodle. You can specify a different major mode for this buffer by setting the
variable initial-major-mode in your init file. See Section 29.6 [Init File], page 283.

It is possible to give Emacs arguments in the shell command line to specify files to visit,
Lisp files to load, and functions to call.

3.1 Exiting Emacs

There are two commands for exiting Emacs because there are two kinds of exiting:
suspending Emacs and killing Emacs. Suspending means stopping Emacs temporarily and
returning control to its superior (usually the shell), allowing you to resume editing later
in the same Emacs job, with the same files, same kill ring, same undo history, and so on.
This is the usual way to exit. Killing Emacs means destroying the Emacs job. You can
run Emacs again later, but you will get a fresh Emacs; there is no way to resume the same
editing session after it has been killed.

C-z Suspend Emacs (suspend-emacs). If used under the X window system, shrink
the X window containing the Emacs frame to an icon (see below).

C-x C-c Kill Emacs (save-buffers-kill-emacs).

If you use XEmacs under the X window system, C-z shrinks the X window containing
the Emacs frame to an icon. The Emacs process is stopped temporarily, and control is
returned to the window manager. If more than one frame is associated with the Emacs
process, only the frame from which you used C-z is retained. The X windows containing
the other Emacs frames are closed.

To activate the "suspended" Emacs, use the appropriate window manager mouse ges-
tures. Usually left-clicking on the icon reactivates and reopens the X window containing
the Emacs frame, but the window manager you use determines what exactly happens. To
actually kill the Emacs process, use C-x C-c or the Exit Emacs item on the File menu.

On systems that do not permit programs to be suspended, C-z runs an inferior shell
that communicates directly with the terminal, and Emacs waits until you exit the subshell.
On these systems, the only way to return to the shell from which Emacs was started (to log
out, for example) is to kill Emacs. C-d or exit are typical commands to exit a subshell.

34 XEmacs User’s Manual

To kill Emacs, type C-x C-c (save-buffers-kill-emacs). A two-character key is used
for this to make it harder to type. In XEmacs, selecting the Exit Emacs option of the File
menu is an alternate way of issuing the command.

Unless a numeric argument is used, this command first offers to save any modified buffers.
If you do not save all buffers, you are asked for reconfirmation with yes before killing Emacs,
since any changes not saved will be lost. If any subprocesses are still running, C-x C-c asks
you to confirm killing them, since killing Emacs kills the subprocesses simultaneously.

In most programs running on Unix, certain characters may instantly suspend or kill the
program. (In Berkeley Unix these characters are normally C-z and C-c.) This Unix feature
is turned off while you are in Emacs. The meanings of C-z and C-x C-c as keys in Emacs
were inspired by the standard Berkeley Unix meanings of C-z and C-c, but that is their only
relationship with Unix. You could customize these keys to do anything (see Section 29.4.1
[Keymaps], page 275).

3.2 Command Line Switches and Arguments

XEmacs supports command line arguments you can use to request various actions when
invoking Emacs. The commands are for compatibility with other editors and for sophisti-
cated activities. If you are using XEmacs under the X window system, you can also use a
number of standard Xt command line arguments. Command line arguments are not usually
needed for editing with Emacs; new users can skip this section.

Many editors are designed to be started afresh each time you want to edit. You start the
editor to edit one file; then exit the editor. The next time you want to edit either another
file or the same one, you start the editor again. Under these circumstances, it makes sense
to use a command line argument to say which file to edit.

The recommended way to use XEmacs is to start it only once, just after you log in, and
do all your editing in the same Emacs process. Each time you want to edit a file, you visit
it using the existing Emacs. Emacs creates a new buffer for each file, and (unless you kill
some of the buffers) Emacs eventually has many files in it ready for editing. Usually you
do not kill the Emacs process until you are about to log out. Since you usually read files
by typing commands to Emacs, command line arguments for specifying a file when Emacs
is started are seldom needed.

Emacs accepts command-line arguments that specify files to visit, functions to call, and
other activities and operating modes. If you are running XEmacs under the X window
system, a number of standard Xt command line arguments are available as well.

The following subsections list:
• Command line arguments that you can always use
• Command line arguments that have to appear at the beginning of the argument list
• Command line arguments that are only relevant if you are running XEmacs under X

3.2.1 Command Line Arguments for Any Position

Command line arguments are processed in the order they appear on the command line;
however, certain arguments (the ones in the second table) must be at the front of the list if
they are used.

Chapter 3: Entering and Exiting Emacs 35

Here are the arguments allowed:

‘file’ Visit file using find-file. See Section 15.2 [Visiting], page 102.

‘+linenum file’
Visit file using find-file, then go to line number linenum in it.

‘-load file’
‘-l file’ Load a file file of Lisp code with the function load. See Section 23.3 [Lisp

Libraries], page 193.

‘-funcall function’
‘-f function’

Call Lisp function function with no arguments.

‘-eval function’
Interpret the next argument as a Lisp expression, and evaluate it. You must be
very careful of the shell quoting here.

‘-insert file’
‘-i file’ Insert the contents of file into the current buffer. This is like what M-x insert-

buffer does; See Section 15.10 [Misc File Ops], page 123.

‘-kill’ Exit from Emacs without asking for confirmation.

‘-version’
‘-V’ Prints version information. This implies ‘-batch’.

% xemacs -version
XEmacs 19.13 of Mon Aug 21 1995 on willow (usg-unix-v) [formerly Lucid Emacs]

‘-help’ Prints a summary of command-line options and then exits.

3.2.2 Command Line Arguments (Beginning of Line Only)

The following arguments are recognized only at the beginning of the command line. If
more than one of them appears, they must appear in the order in which they appear in this
table.

‘-t file’ Use file instead of the terminal for input and output. This implies the ‘-nw’
option, documented below.

‘-batch’ Run Emacs in batch mode, which means that the text being edited is not
displayed and the standard Unix interrupt characters such as C-z and C-c

continue to have their normal effect. Emacs in batch mode outputs to stderr
only what would normally be printed in the echo area under program control.

Batch mode is used for running programs written in Emacs Lisp from shell
scripts, makefiles, and so on. Normally the ‘-l’ switch or ‘-f’ switch will be
used as well, to invoke a Lisp program to do the batch processing.

‘-batch’ implies ‘-q’ (do not load an init file). It also causes Emacs to kill itself
after all command switches have been processed. In addition, auto-saving is
not done except in buffers for which it has been explicitly requested.

36 XEmacs User’s Manual

‘-nw’ Start up XEmacs in TTY mode (using the TTY XEmacs was started from),
rather than trying to connect to an X display. Note that this happens auto-
matically if the ‘DISPLAY’ environment variable is not set.

‘-debug-init’
Enter the debugger if an error in the init file occurs.

‘-debug-paths’
Displays information on how XEmacs constructs the various paths into its hi-
erarchy on startup. (See also see Section 3.3 [Startup Paths], page 38.)

‘-unmapped’
Do not map the initial frame. This is useful if you want to start up XEmacs as
a server (e.g. for gnuserv screens or external client widgets).

‘-no-init-file’
‘-q’ Do not load your Emacs init file ‘~/.emacs’.

‘-no-site-file’
Do not load the site-specific init file ‘lisp/site-start.el’.

‘-no-autoloads’
Do not load global symbol files (‘auto-autoloads’) at startup. This implies
‘-vanilla’.

‘-no-early-packages’
Do not process early packages. (For more information on startup issues con-
cerning the package system, See Section 3.3 [Startup Paths], page 38.)

‘-vanilla’
This is equivalent to ‘-q -no-site-file -no-early-packages’.

‘-user user’
‘-u user’ Load user’s Emacs init file ‘~user/.emacs’ instead of your own.

Note that the init file can get access to the command line argument values as the elements
of a list in the variable command-line-args. (The arguments in the second table above
will already have been processed and will not be in the list.) The init file can override the
normal processing of the other arguments by setting this variable.

One way to use command switches is to visit many files automatically:
xemacs *.c

passes each .c file as a separate argument to Emacs, so that Emacs visits each file (see
Section 15.2 [Visiting], page 102).

Here is an advanced example that assumes you have a Lisp program file called
‘hack-c-program.el’ which, when loaded, performs some useful operation on the current
buffer, expected to be a C program.

xemacs -batch foo.c -l hack-c-program -f save-buffer -kill > log

Here Emacs is told to visit ‘foo.c’, load ‘hack-c-program.el’ (which makes changes in
the visited file), save ‘foo.c’ (note that save-buffer is the function that C-x C-s is bound
to), and then exit to the shell from which the command was executed. ‘-batch’ guarantees
there will be no problem redirecting output to ‘log’, because Emacs will not assume that
it has a display terminal to work with.

Chapter 3: Entering and Exiting Emacs 37

3.2.3 Command Line Arguments (for XEmacs Under X)

If you are running XEmacs under X, a number of options are available to control color,
border, and window title and icon name:

‘-title title’
‘-wn title’
‘-T title’ Use title as the window title. This sets the frame-title-format variable,

which controls the title of the X window corresponding to the selected frame.
This is the same format as mode-line-format.

‘-iconname title’
‘-in title’ Use title as the icon name. This sets the frame-icon-title-format variable,

which controls the title of the icon corresponding to the selected frame.

‘-mc color’
Use color as the mouse color.

‘-cr color’
Use color as the text-cursor foreground color.

‘-private’
Install a private colormap for XEmacs.

In addition, XEmacs allows you to use a number of standard Xt command line arguments.

‘-background color’
‘-bg color’

Use color as the background color.

‘-bordercolor color’
‘-bd color’

Use color as the border color.

‘-borderwidth width’
‘-bw width’

Use width as the border width.

‘-display display ’
‘-d display ’

When running under the X window system, create the window containing the
Emacs frame on the display named display.

‘-foreground color’
‘-fg color’

Use color as the foreground color.

‘-font name’
‘-fn name’

Use name as the default font.

‘-geometry spec’
‘-geom spec’
‘-g spec’ Use the geometry (window size and/or position) specified by spec.

38 XEmacs User’s Manual

‘-iconic’ Start up iconified.

‘-rv’ Bring up Emacs in reverse video.

‘-name name’
Use the resource manager resources specified by name. The default is to use
the name of the program (argv[0]) as the resource manager name.

‘-xrm’ Read something into the resource database for this invocation of Emacs only.

3.3 How XEmacs finds Directories and Files

XEmacs deals with a multitude of files during operation. These files are spread over many
directories, and XEmacs determines the location of most of these directories at startup and
organizes them into various paths. (A path, for the purposes of this section, is simply a list
of directories which XEmacs searches successively in order to locate a file.)

3.3.1 XEmacs Directory Hierarchies

Many of the files XEmacs looks for are located within the XEmacs installation itself.
However, there are several views of what actually constitutes the "XEmacs installation":
XEmacs may be run from the compilation directory, it may be installed into arbitrary
directories, spread over several directories unrelated to each other. Moreover, it may subse-
quently moved to a different place. (This last case is not as uncommon as it sounds. Binary
kits work this way.) Consequently, XEmacs has quite complex procedures in place to find
directories, no matter where they may be hidden.

XEmacs will always respect directory options passed to configure. However, if it cannot
locate a directory at the configured place, it will initiate a search for the directory in any
of a number of hierachies rooted under a directory which XEmacs assumes contain parts
of the XEmacs installation; it may locate several such hierarchies and search across them.
(Typically, there are just one or two hierarchies: the hierarchy where XEmacs was or will
be installed, and the one where it is being built.) Such a directory containing a hierarchy
is called a root. Whenever this section refers to a directory using the shorthand <root>, it
means that XEmacs searches for it under all hierarchies under all hierarchies XEmacs was
able to scrounge up. In a running XEmacs, the hierarchy roots are stored in the variable
emacs-roots.

3.3.2 Package Hierarchies

Many relevant directories and files XEmacs uses are actually not part of the core instal-
lation. They are part of any of the many packages usually installed on top of an XEmacs
installation. (See Section 23.8 [Packages], page 200.) Hence, they play a prominent role in
the various paths XEmacs sets up.

XEmacs locates packages in any of a number of package hierarchies. Package hierarchies
fall into three groups: early, late, and last, according to the relative location at which they
show up in the various XEmacs paths. Early package hierarchies are at the very front, late
ones somewhere in the middle, and last hierarchies are (you guessed it) last.

Chapter 3: Entering and Exiting Emacs 39

By default, XEmacs expects an early package hierarchy in the a subdirectory ‘.xemacs’
of the user’s home directory.

Moreover, XEmacs expects late hierarchies in the subdirectories ‘site-packages’,
‘mule-packages’, and ‘xemacs-packages’ (in that order) of the ‘<root>/lib/xemacs’
subdirectory of one of the installation hierarchies. (If you run in-place, these are direct
subdirectories of the build directory.) Furthermore, XEmacs will also search these
subdirectories in the ‘<root>/lib/xemacs-<VERSION>’ subdirectory and prefer directories
found there.

By default, XEmacs does not have a pre-configured last package hierarchy. Last hi-
erarchies are primarily for using package hierarchies of outdated versions of XEmacs as
a fallback option. For example, it is possible to run XEmacs 21.0 with the 20.4 package
hierarchy as a last hierarchy.

It is possible to specify at configure-time the location of the various package hierarchies
with the --package-path option to configure. The early, late, and last components of the
package path are separated by double instead of single colons. If three components are
present, they are locate the early, late, and last package hierarchies respectively. If two
components are present, they locate the early and late hierarchies. If only one component
is present, it locates the late hierarchy. At run time, the package path may also be specified
via the PACKAGEPATH environment variable.

An XEmacs package is laid out just like a normal installed XEmacs lisp directory. It may
have ‘lisp’, ‘etc’, ‘info’, and ‘lib-src’ subdirectories. XEmacs adds these at appropriate
places within the various system-wide paths.

There may be any number of package hierarchy directories.

3.3.3 Directories and Paths

Here is a list of the various directories and paths XEmacs tries to locate during startup.
XEmacs distinguishes between directories and paths specific to version, site, and architec-
ture when looking for them.

version-specific
directories are specific to the version of XEmacs they belong to and typically
reside under ‘<root>/lib/xemacs-<VERSION>’.

site-specific
directories are independent of the version of XEmacs they belong to and typi-
cally reside under ‘<root>/lib/xemacs’

architecture-specific
directories are specific both to the version of XEmacs and the architecture it
runs on and typically reside under ‘<root>/lib/xemacs-<VERSION>/<ARCHITECTURE>’.

During installation, all of these directories may also reside directly under ‘<root>’, be-
cause that is where they are in the XEmacs tarball.

If XEmacs runs with the -debug-paths option (see Section 3.2 [Command Switches],
page 34), it will print the values of these variables, hopefully aiding in debugging any
problems which come up.

40 XEmacs User’s Manual

lisp-directory
Contains the version-specific location of the Lisp files that come with the core
distribution of XEmacs. XEmacs will search it recursively to a depth of 1 when
setting up load-path.

load-path
Is where XEmacs searches for XEmacs Lisp files with commands like
load-library. It contains the package lisp directories (see further down)
and the version-specific core Lisp directories. If the environment variable
EMACSLOADPATH is set at startup, its directories are prepended to load-path.

Info-directory-list
Contains the location of info files. (See 〈undefined〉 [(info)], page 〈undefined〉.)
It contains the package info directories and the version-specific core documen-
tation. Moreover, XEmacs will add ‘/usr/info’, ‘/usr/local/info’ as well as
the directories of the environment variable INFOPATH to Info-directory-list.

lock-directory
superlock-file

Are the site-specific locations of the lock directory and the superlock file, re-
spectively. The lock-directory variable may also be initialized from the
EMACSLOCKDIR environment variable.

exec-directory
Is the directory of architecture-dependent files that come with XEmacs, espe-
cially executable programs intended for XEmacs to invoke.

exec-path
Is the path for executables which XEmacs may want to start. It contains the
package executable paths as well as exec-directory, and the directories of the
environment variables PATH and EMACSPATH.

doc-directory
Is the directory containing the architecture-specific ‘DOC’ file that contains doc-
umentation for XEmacs’ commands.

data-directory
Is the version-specific directory that contains core data files XEmacs uses. It
may be initialized from the EMACSDATA environment variable.

data-directory-list
Is the path where XEmacs looks for data files. It contains package data direc-
tories as well as data-directory.

Chapter 4: Basic Editing Commands 41

4 Basic Editing Commands

We now give the basics of how to enter text, make corrections, and save the text in a
file. If this material is new to you, you might learn it more easily by running the Emacs
learn-by-doing tutorial. To do this, type Control-h t (help-with-tutorial).

4.1 Inserting Text

To insert printing characters into the text you are editing, just type them. This inserts
the characters into the buffer at the cursor (that is, at point; see Section 1.1 [Point], page 14).
The cursor moves forward. Any characters after the cursor move forward too. If the text
in the buffer is ‘FOOBAR’, with the cursor before the ‘B’, and you type XX, the result is
‘FOOXXBAR’, with the cursor still before the ‘B’.

To delete text you have just inserted, use 〈DEL〉. 〈DEL〉 deletes the character before the
cursor (not the one that the cursor is on top of or under; that is the character after the
cursor). The cursor and all characters after it move backwards. Therefore, if you type a
printing character and then type 〈DEL〉, they cancel out.

To end a line and start typing a new one, type 〈RET〉. This inserts a newline character
in the buffer. If point is in the middle of a line, 〈RET〉 splits the line. Typing 〈DEL〉 when
the cursor is at the beginning of a line rubs out the newline before the line, thus joining the
line with the preceding line.

Emacs automatically splits lines when they become too long, if you turn on a special
mode called Auto Fill mode. See Section 21.6 [Filling], page 161, for information on using
Auto Fill mode.

Customization information: 〈DEL〉, in most modes, runs the command delete-
backward-char; 〈RET〉 runs the command newline, and self-inserting printing characters
run the command self-insert, which inserts whatever character was typed to invoke it.
Some major modes rebind 〈DEL〉 to other commands.

Direct insertion works for printing characters and 〈SPC〉, but other characters act as
editing commands and do not insert themselves. If you need to insert a control character
or a character whose code is above 200 octal, you must quote it by typing the character
control-q (quoted-insert) first. There are two ways to use C-q:

• Control-q followed by any non-graphic character (even C-g) inserts that character.

• Control-q followed by three octal digits inserts the character with the specified char-
acter code.

A numeric argument to C-q specifies how many copies of the quoted character should be
inserted (see Section 4.9 [Arguments], page 46).

If you prefer to have text characters replace (overwrite) existing text instead of moving
it to the right, you can enable Overwrite mode, a minor mode. See Section 29.1 [Minor
Modes], page 263.

42 XEmacs User’s Manual

4.2 Changing the Location of Point

To do more than insert characters, you have to know how to move point (see Section 1.1
[Point], page 14). Here are a few of the available commands.

NOTE: Many of the following commands have two versions, one that uses the function
keys (e.g. 〈LEFT〉 or 〈END〉) and one that doesn’t. The former versions may only be available
on X terminals (i.e. not on TTY’s), but the latter are available on all terminals.

C-a

HOME Move to the beginning of the line (beginning-of-line).

C-e

END Move to the end of the line (end-of-line).

C-f

RIGHT Move forward one character (forward-char).

C-b

LEFT Move backward one character (backward-char).

M-f

C-RIGHT Move forward one word (forward-word).

M-b

C-LEFT Move backward one word (backward-word).

C-n

DOWN Move down one line, vertically (next-line). This command attempts to keep
the horizontal position unchanged, so if you start in the middle of one line, you
end in the middle of the next. When on the last line of text, C-n creates a new
line and moves onto it.

C-p

UP Move up one line, vertically (previous-line).

C-v

PGDN Move down one page, vertically (scroll-up).

M-v

PGUP Move up one page, vertically (scroll-down).

C-l Clear the frame and reprint everything (recenter). Text moves on the frame
to bring point to the center of the window.

M-r Move point to left margin on the line halfway down the frame or window (move-
to-window-line). Text does not move on the frame. A numeric argument says
how many screen lines down from the top of the window (zero for the top). A
negative argument counts from the bottom (−1 for the bottom).

C-t Transpose two characters, the ones before and after the cursor
(transpose-chars).

M-<
C-HOME Move to the top of the buffer (beginning-of-buffer). With numeric argument

n, move to n/10 of the way from the top. See Section 4.9 [Arguments], page 46,
for more information on numeric arguments.

Chapter 4: Basic Editing Commands 43

M->
C-END Move to the end of the buffer (end-of-buffer).

M-x goto-char

Read a number n and move the cursor to character number n. Position 1 is the
beginning of the buffer.

M-g Read a number n and move cursor to line number n (goto-line). Line 1 is the
beginning of the buffer.

C-x C-n Use the current column of point as the semi-permanent goal column for C-n

and C-p (set-goal-column). Henceforth, those commands always move to this
column in each line moved into, or as close as possible given the contents of the
line. This goal column remains in effect until canceled.

C-u C-x C-n

Cancel the goal column. Henceforth, C-n and C-p once again try to avoid
changing the horizontal position, as usual.

If you set the variable track-eol to a non-nil value, C-n and C-p move to the end of
the line when at the end of the starting line. By default, track-eol is nil.

4.3 Erasing Text

〈DEL〉 Delete the character before the cursor (delete-backward-char).

C-d Delete the character after the cursor (delete-char).

C-k Kill to the end of the line (kill-line).

M-d Kill forward to the end of the next word (kill-word).

M-〈DEL〉 Kill back to the beginning of the previous word (backward-kill-word).

In contrast to the 〈DEL〉 key, which deletes the character before the cursor, Control-d
deletes the character after the cursor, causing the rest of the text on the line to shift left.
If Control-d is typed at the end of a line, that line and the next line are joined.

To erase a larger amount of text, use Control-k, which kills a line at a time. If you use
C-k at the beginning or in the middle of a line, it kills all the text up to the end of the line.
If you use C-k at the end of a line, it joins that line and the next line.

See Section 10.1 [Killing], page 69, for more flexible ways of killing text.

4.4 Files

The commands above are sufficient for creating and altering text in an Emacs buffer.
More advanced Emacs commands just make things easier. But to keep any text permanently
you must put it in a file. Files are named units of text which are stored by the operating
system and which you can retrieve by name. To look at or use the contents of a file in any
way, including editing the file with Emacs, you must specify the file name.

Consider a file named ‘/usr/rms/foo.c’. To begin editing this file from Emacs, type:

44 XEmacs User’s Manual

C-x C-f /usr/rms/foo.c 〈RET〉

The file name is given as an argument to the command C-x C-f (find-file). The command
uses the minibuffer to read the argument. You have to type 〈RET〉 to terminate the argument
(see Chapter 6 [Minibuffer], page 51).

You can also use the Open... menu item from the File menu, then type the name of the
file to the prompt.

Emacs obeys the command by visiting the file: it creates a buffer, copies the contents of
the file into the buffer, and then displays the buffer for you to edit. You can make changes in
the buffer, and then save the file by typing C-x C-s (save-buffer) or choosing Save Buffer
from the File menu. This makes the changes permanent by copying the altered contents of
the buffer back into the file ‘/usr/rms/foo.c’. Until then, the changes are only inside your
Emacs buffer, and the file ‘foo.c’ is not changed.

To create a file, visit the file with C-x C-f as if it already existed or choose Open... from
the File menu and provide the name for the new file in the minibuffer. Emacs will create an
empty buffer in which you can insert the text you want to put in the file. When you save
the buffer with C-x C-s, or by choosing Save Buffer from the File menu, the file is created.

To learn more about using files, see Chapter 15 [Files], page 101.

4.5 Help

If you forget what a key does, you can use the Help character (C-h) to find out: Type C-h
k followed by the key you want to know about. For example, C-h k C-n tells you what C-n
does. C-h is a prefix key; C-h k is just one of its subcommands (the command describe-
key). The other subcommands of C-h provide different kinds of help. Type C-h three times
to get a description of all the help facilities. See Chapter 8 [Help], page 59.

4.6 Blank Lines

Here are special commands and techniques for entering and removing blank lines.

C-o Insert one or more blank lines after the cursor (open-line).

C-x C-o Delete all but one of many consecutive blank lines (delete-blank-lines).

When you want to insert a new line of text before an existing line, you just type the new
line of text, followed by 〈RET〉. If you prefer to create a blank line first and then insert the
desired text, use the key C-o (open-line), which inserts a newline after point but leaves
point in front of the newline. Then type the text into the new line. C-o F O O has the same
effect as F O O 〈RET〉, except for the final location of point.

To create several blank lines, type C-o several times, or give C-o an argument indicating
how many blank lines to create. See Section 4.9 [Arguments], page 46, for more information.

If you have many blank lines in a row and want to get rid of them, use C-x C-o (delete-
blank-lines). If point is on a blank line which is adjacent to at least one other blank line,
C-x C-o deletes all but one of the blank lines. If point is on a blank line with no other
adjacent blank line, the sole blank line is deleted. If point is on a non-blank line, C-x C-o

deletes any blank lines following that non-blank line.

Chapter 4: Basic Editing Commands 45

4.7 Continuation Lines

If you add too many characters to one line without breaking with a 〈RET〉, the line grows
to occupy two (or more) screen lines, with a curved arrow at the extreme right margin of
all but the last line. The curved arrow indicates that the following screen line is not really
a distinct line in the text, but just the continuation of a line too long to fit the frame. You
can use Auto Fill mode (see Section 21.6 [Filling], page 161) to have Emacs insert newlines
automatically when a line gets too long.

Instead of continuation, long lines can be displayed by truncation. This means that all
the characters that do not fit in the width of the frame or window do not appear at all.
They remain in the buffer, temporarily invisible. Three diagonal dots in the last column
(instead of the curved arrow inform you that truncation is in effect.

To turn off continuation for a particular buffer, set the variable truncate-lines to non-
nil in that buffer. Truncation instead of continuation also happens whenever horizontal
scrolling is in use, and optionally whenever side-by-side windows are in use (see Chapter 17
[Windows], page 131). Altering the value of truncate-lines makes it local to the current
buffer; until that time, the default value is in effect. The default is initially nil. See
Section 29.2.4 [Locals], page 270.

4.8 Cursor Position Information

If you are accustomed to other display editors, you may be surprised that Emacs does
not always display the page number or line number of point in the mode line. In Emacs,
this information is only rarely needed, and a number of commands are available to compute
and print it. Since text is stored in a way that makes it difficult to compute the information,
it is not displayed all the time.

M-x what-page

Print page number of point, and line number within page.

M-x what-line

Print line number of point in the buffer.

M-= Print number of lines and characters in the current region (count-lines-
region).

C-x = Print character code of character after point, character position of point, and
column of point (what-cursor-position).

There are several commands for printing line numbers:

• M-x what-line counts lines from the beginning of the file and prints the line number
point is on. The first line of the file is line number 1. You can use these numbers as
arguments to M-x goto-line.

• M-x what-page counts pages from the beginning of the file, and counts lines within the
page, printing both of them. See Section 21.5 [Pages], page 161, for the command C-x

l, which counts the lines in the current page.

46 XEmacs User’s Manual

• M-= (count-lines-region) prints the number of lines in the region (see Chapter 9
[Mark], page 63).

The command C-x = (what-cursor-position) provides information about point and
about the column the cursor is in. It prints a line in the echo area that looks like this:

Char: x (0170) point=65986 of 563027(12%) column 44

(In fact, this is the output produced when point is before ‘column 44’ in the example.)

The two values after ‘Char:’ describe the character following point, first by showing it
and second by giving its octal character code.

‘point=’ is followed by the position of point expressed as a character count. The front
of the buffer counts as position 1, one character later as 2, and so on. The next, larger
number is the total number of characters in the buffer. Afterward in parentheses comes the
position expressed as a percentage of the total size.

‘column’ is followed by the horizontal position of point, in columns from the left edge of
the window.

If the buffer has been narrowed, making some of the text at the beginning and the end
temporarily invisible, C-x = prints additional text describing the current visible range. For
example, it might say:

Char: x (0170) point=65986 of 563025(12%) <65102 - 68533> column 44

where the two extra numbers give the smallest and largest character position that point is
allowed to assume. The characters between those two positions are the visible ones. See
Section 28.3 [Narrowing], page 256.

If point is at the end of the buffer (or the end of the visible part), C-x = omits any
description of the character after point. The output looks like

point=563026 of 563025(100%) column 0

4.9 Numeric Arguments

Any Emacs command can be given a numeric argument. Some commands interpret the
argument as a repetition count. For example, giving an argument of ten to the key C-f (the
command forward-char, move forward one character) moves forward ten characters. With
these commands, no argument is equivalent to an argument of one. Negative arguments are
allowed. Often they tell a command to move or act backwards.

If your keyboard has a 〈META〉 key (labelled with a diamond on Sun-type keyboards and
labelled ‘Alt’ on some other keyboards), the easiest way to specify a numeric argument is
to type digits and/or a minus sign while holding down the 〈META〉 key. For example,

M-5 C-n

moves down five lines. The characters Meta-1, Meta-2, and so on, as well as Meta--, do
this because they are keys bound to commands (digit-argument and negative-argument)
that are defined to contribute to an argument for the next command.

Another way of specifying an argument is to use the C-u (universal-argument) com-
mand followed by the digits of the argument. With C-u, you can type the argument digits

Chapter 4: Basic Editing Commands 47

without holding down shift keys. To type a negative argument, start with a minus sign.
Just a minus sign normally means −1. C-u works on all terminals.

C-u followed by a character which is neither a digit nor a minus sign has the special
meaning of “multiply by four”. It multiplies the argument for the next command by four.
C-u twice multiplies it by sixteen. Thus, C-u C-u C-f moves forward sixteen characters.
This is a good way to move forward “fast”, since it moves about 1/5 of a line in the usual
size frame. Other useful combinations are C-u C-n, C-u C-u C-n (move down a good fraction
of a frame), C-u C-u C-o (make “a lot” of blank lines), and C-u C-k (kill four lines).

Some commands care only about whether there is an argument and not about its value.
For example, the command M-q (fill-paragraph) with no argument fills text; with an
argument, it justifies the text as well. (See Section 21.6 [Filling], page 161, for more infor-
mation on M-q.) Just C-u is a handy way of providing an argument for such commands.

Some commands use the value of the argument as a repeat count, but do something
peculiar when there is no argument. For example, the command C-k (kill-line) with
argument n kills n lines, including their terminating newlines. But C-k with no argument
is special: it kills the text up to the next newline, or, if point is right at the end of the line,
it kills the newline itself. Thus, two C-k commands with no arguments can kill a non-blank
line, just like C-k with an argument of one. (See Section 10.1 [Killing], page 69, for more
information on C-k.)

A few commands treat a plain C-u differently from an ordinary argument. A few others
may treat an argument of just a minus sign differently from an argument of −1. These
unusual cases will be described when they come up; they are always to make the individual
command more convenient to use.

48 XEmacs User’s Manual

Chapter 5: Undoing Changes 49

5 Undoing Changes

Emacs allows you to undo all changes you make to the text of a buffer, up to a certain
amount of change (8000 characters). Each buffer records changes individually, and the
undo command always applies to the current buffer. Usually each editing command makes
a separate entry in the undo records, but some commands such as query-replace make
many entries, and very simple commands such as self-inserting characters are often grouped
to make undoing less tedious.

C-x u Undo one batch of changes (usually, one command’s worth) (undo).

C-_ The same.

The command C-x u or C-_ allows you to undo changes. The first time you give this
command, it undoes the last change. Point moves to the text affected by the undo, so you
can see what was undone.

Consecutive repetitions of the C-_ or C-x u commands undo earlier and earlier changes,
back to the limit of what has been recorded. If all recorded changes have already been
undone, the undo command prints an error message and does nothing.

Any command other than an undo command breaks the sequence of undo commands.
Starting at this moment, the previous undo commands are considered ordinary changes that
can themselves be undone. Thus, you can redo changes you have undone by typing C-f or
any other command that have no important effect, and then using more undo commands.

If you notice that a buffer has been modified accidentally, the easiest way to recover is
to type C-_ repeatedly until the stars disappear from the front of the mode line. When
that happens, all the modifications you made have been canceled. If you do not remember
whether you changed the buffer deliberately, type C-_ once. When you see Emacs undo
the last change you made, you probably remember why you made it. If the change was an
accident, leave it undone. If it was deliberate, redo the change as described in the preceding
paragraph.

Whenever an undo command makes the stars disappear from the mode line, the buffer
contents is the same as it was when the file was last read in or saved.

Not all buffers record undo information. Buffers whose names start with spaces don’t;
these buffers are used internally by Emacs and its extensions to hold text that users don’t
normally look at or edit. Minibuffers, help buffers, and documentation buffers also don’t
record undo information.

Emacs can remember at most 8000 or so characters of deleted or modified text in any
one buffer for reinsertion by the undo command. There is also a limit on the number of
individual insert, delete, or change actions that Emacs can remember.

There are two keys to run the undo command, C-x u and C-_, because on some key-
boards, it is not obvious how to type C-_. C-x u is an alternative you can type in the same
fashion on any terminal.

50 XEmacs User’s Manual

Chapter 6: The Minibuffer 51

6 The Minibuffer

Emacs commands use the minibuffer to read arguments more complicated than a single
number. Minibuffer arguments can be file names, buffer names, Lisp function names, Emacs
command names, Lisp expressions, and many other things, depending on the command
reading the argument. To edit the argument in the minibuffer, you can use Emacs editing
commands.

When the minibuffer is in use, it appears in the echo area, and the cursor moves there.
The beginning of the minibuffer line displays a prompt indicating what kind of input you
should supply and how it will be used. The prompt is often derived from the name of the
command the argument is for. The prompt normally ends with a colon.

Sometimes a default argument appears in parentheses after the colon; it, too, is part of
the prompt. The default is used as the argument value if you enter an empty argument
(e.g., by just typing 〈RET〉). For example, commands that read buffer names always show a
default, which is the name of the buffer that will be used if you type just 〈RET〉.

The simplest way to give a minibuffer argument is to type the text you want, terminated
by 〈RET〉 to exit the minibuffer. To get out of the minibuffer and cancel the command that
it was for, type C-g.

Since the minibuffer uses the screen space of the echo area, it can conflict with other
ways Emacs customarily uses the echo area. Here is how Emacs handles such conflicts:
• If a command gets an error while you are in the minibuffer, this does not cancel the

minibuffer. However, the echo area is needed for the error message and therefore the
minibuffer itself is hidden for a while. It comes back after a few seconds, or as soon as
you type anything.

• If you use a command in the minibuffer whose purpose is to print a message in the
echo area (for example C-x =) the message is displayed normally, and the minibuffer is
hidden for a while. It comes back after a few seconds, or as soon as you type anything.

• Echoing of keystrokes does not take place while the minibuffer is in use.

6.1 Minibuffers for File Names

Sometimes the minibuffer starts out with text in it. For example, when you are supposed
to give a file name, the minibuffer starts out containing the default directory, which ends
with a slash. This informs you in which directory the file will be looked for if you do not
specify a different one. For example, the minibuffer might start out with:

Find File: /u2/emacs/src/

where ‘Find File: ’ is the prompt. Typing buffer.c specifies the file
‘/u2/emacs/src/buffer.c’. To find files in nearby directories, use ‘..’; thus, if you type
../lisp/simple.el, the file that you visit will be the one named
‘/u2/emacs/lisp/simple.el’. Alternatively, you can use M-〈DEL〉 to kill directory names
you don’t want (see Section 21.2 [Words], page 158).

You can also type an absolute file name, one starting with a slash or a tilde, ignoring the
default directory. For example, to find the file ‘/etc/termcap’, just type the name, giving:

52 XEmacs User’s Manual

Find File: /u2/emacs/src//etc/termcap

Two slashes in a row are not normally meaningful in Unix file names, but they are allowed
in XEmacs. They mean, “ignore everything before the second slash in the pair.” Thus,
‘/u2/emacs/src/’ is ignored, and you get the file ‘/etc/termcap’.

If you set insert-default-directory to nil, the default directory is not inserted in the
minibuffer. This way, the minibuffer starts out empty. But the name you type, if relative,
is still interpreted with respect to the same default directory.

6.2 Editing in the Minibuffer

The minibuffer is an Emacs buffer (albeit a peculiar one), and the usual Emacs commands
are available for editing the text of an argument you are entering.

Since 〈RET〉 in the minibuffer is defined to exit the minibuffer, you must use C-o or C-q

〈LFD〉 to insert a newline into the minibuffer. (Recall that a newline is really the 〈LFD〉
character.)

The minibuffer has its own window, which always has space on the screen but acts as
if it were not there when the minibuffer is not in use. The minibuffer window is just like
the others; you can switch to another window with C-x o, edit text in other windows, and
perhaps even visit more files before returning to the minibuffer to submit the argument.
You can kill text in another window, return to the minibuffer window, and then yank the
text to use it in the argument. See Chapter 17 [Windows], page 131.

There are, however, some restrictions on the use of the minibuffer window. You cannot
switch buffers in it—the minibuffer and its window are permanently attached. You also
cannot split or kill the minibuffer window, but you can make it taller with C-x ^.

If you are in the minibuffer and issue a command that displays help text in another
window, that window will be scrolled if you type M-C-v while in the minibuffer until you
exit the minibuffer. This feature is helpful if a completing minibuffer gives you a long list
of possible completions.

If the variable minibuffer-confirm-incomplete is t, you are asked for confirmation
if there is no known completion for the text you typed. For example, if you attempted to
visit a non-existent file, the minibuffer might read:

Find File:chocolate_bar.c [no completions, confirm]

If you press Return again, that confirms the filename. Otherwise, you can continue
editing it.

Emacs supports recursive use of the minibuffer. However, it is easy to do this by accident
(because of autorepeating keyboards, for example) and get confused. Therefore, most Emacs
commands that use the minibuffer refuse to operate if the minibuffer window is selected.
If the minibuffer is active but you have switched to a different window, recursive use of
the minibuffer is allowed—if you know enough to try to do this, you probably will not get
confused.

If you set the variable enable-recursive-minibuffers to be non-nil, recursive use of
the minibuffer is always allowed.

Chapter 6: The Minibuffer 53

6.3 Completion

When appropriate, the minibuffer provides a completion facility. You type the beginning
of an argument and one of the completion keys, and Emacs visibly fills in the rest, depending
on what you have already typed.

When completion is available, certain keys—〈TAB〉, 〈RET〉, and 〈SPC〉—are redefined to
complete an abbreviation present in the minibuffer into a longer string that it stands for,
by matching it against a set of completion alternatives provided by the command reading
the argument. ? is defined to display a list of possible completions of what you have inserted.

For example, when the minibuffer is being used by Meta-x to read the name of a com-
mand, it is given a list of all available Emacs command names to complete against. The
completion keys match the text in the minibuffer against all the command names, find
any additional characters of the name that are implied by the ones already present in the
minibuffer, and add those characters to the ones you have given.

Case is normally significant in completion because it is significant in most of the names
that you can complete (buffer names, file names, and command names). Thus, ‘fo’ will not
complete to ‘Foo’. When you are completing a name in which case does not matter, case
may be ignored for completion’s sake if specified by program.

When a completion list is displayed, the completions will highlight as you move the
mouse over them. Clicking the middle mouse button on any highlighted completion will
“select” it just as if you had typed it in and hit 〈RET〉.

6.3.1 A Completion Example

Consider the following example. If you type Meta-x au 〈TAB〉, 〈TAB〉 looks for alternatives
(in this case, command names) that start with ‘au’. There are only two commands: auto-
fill-mode and auto-save-mode. They are the same as far as auto-, so the ‘au’ in the
minibuffer changes to ‘auto-’.

If you type 〈TAB〉 again immediately, there are multiple possibilities for the very next
character—it could be ‘s’ or ‘f’—so no more characters are added; but a list of all possible
completions is displayed in another window.

If you go on to type f 〈TAB〉, this 〈TAB〉 sees ‘auto-f’. The only command name starting
this way is auto-fill-mode, so completion inserts the rest of that command. You now
have ‘auto-fill-mode’ in the minibuffer after typing just au 〈TAB〉 f 〈TAB〉. Note that 〈TAB〉
has this effect because in the minibuffer it is bound to the function minibuffer-complete
when completion is supposed to be done.

6.3.2 Completion Commands

Here is a list of all the completion commands defined in the minibuffer when completion
is available.

〈TAB〉 Complete the text in the minibuffer as much as possible
(minibuffer-complete).

〈SPC〉 Complete the text in the minibuffer but don’t add or fill out more than one
word (minibuffer-complete-word).

54 XEmacs User’s Manual

〈RET〉 Submit the text in the minibuffer as the argument, possibly completing first as
described below (minibuffer-complete-and-exit).

? Print a list of all possible completions of the text in the minibuffer (minibuffer-
list-completions).

〈button2〉 Select the highlighted text under the mouse as a minibuffer response. When
the minibuffer is being used to prompt the user for a completion, any valid
completions which are visible on the screen will be highlighted when the mouse
moves over them. Clicking 〈button2〉 will select the highlighted completion and
exit the minibuffer. (minibuf-select-highlighted-completion).

〈SPC〉 completes in a way that is similar to 〈TAB〉, but it never goes beyond the next
hyphen or space. If you have ‘auto-f’ in the minibuffer and type 〈SPC〉, it finds that
the completion is ‘auto-fill-mode’, but it stops completing after ‘fill-’. The result is
‘auto-fill-’. Another 〈SPC〉 at this point completes all the way to ‘auto-fill-mode’.
〈SPC〉 in the minibuffer runs the function minibuffer-complete-word when completion is
available.

There are three different ways that 〈RET〉 can work in completing minibuffers, depending
on how the argument will be used.
• Strict completion is used when it is meaningless to give any argument except one of the

known alternatives. For example, when C-x k reads the name of a buffer to kill, it is
meaningless to give anything but the name of an existing buffer. In strict completion,
〈RET〉 refuses to exit if the text in the minibuffer does not complete to an exact match.

• Cautious completion is similar to strict completion, except that 〈RET〉 exits only if the
text was an exact match already, not needing completion. If the text is not an exact
match, 〈RET〉 does not exit, but it does complete the text. If it completes to an exact
match, a second 〈RET〉 will exit.
Cautious completion is used for reading file names for files that must already exist.

• Permissive completion is used when any string is meaningful, and the list of completion
alternatives is just a guide. For example, when C-x C-f reads the name of a file to visit,
any file name is allowed, in case you want to create a file. In permissive completion,
〈RET〉 takes the text in the minibuffer exactly as given, without completing it.

The completion commands display a list of all possible completions in a window whenever
there is more than one possibility for the very next character. Typing ? explicitly requests
such a list. The list of completions counts as help text, so C-M-v typed in the minibuffer
scrolls the list.

When completion is done on file names, certain file names are usually ignored. The
variable completion-ignored-extensions contains a list of strings; a file whose name
ends in any of those strings is ignored as a possible completion. The standard value of
this variable has several elements including ".o", ".elc", ".dvi" and "~". The effect is
that, for example, ‘foo’ completes to ‘foo.c’ even though ‘foo.o’ exists as well. If the only
possible completions are files that end in “ignored” strings, they are not ignored.

If a completion command finds the next character is undetermined, it automatically
displays a list of all possible completions. If the variable completion-auto-help is set to
nil, this does not happen, and you must type ? to display the possible completions.

Chapter 6: The Minibuffer 55

If the variable minibuffer-confirm-incomplete is set to t, then in contexts where
completing-read allows answers that are not valid completions, an extra 〈RET〉 must be
typed to confirm the response. This is helpful for catching typos.

6.4 Repeating Minibuffer Commands

Every command that uses the minibuffer at least once is recorded on a special history list,
together with the values of the minibuffer arguments, so that you can repeat the command
easily. In particular, every use of Meta-x is recorded, since M-x uses the minibuffer to read
the command name.

C-x 〈ESC〉 Re-execute a recent minibuffer command
(repeat-complex-command).

M-p Within C-x 〈ESC〉, move to previous recorded command (previous-history-
element).

M-n Within C-x 〈ESC〉, move to the next (more recent) recorded command (next-
history-element).

M-x list-command-history

Display the entire command history, showing all the commands C-x 〈ESC〉 can
repeat, most recent first.

C-x 〈ESC〉 is used to re-execute a recent command that used the minibuffer. With no
argument, it repeats the last command. A numeric argument specifies which command to
repeat; 1 means the last one, and larger numbers specify earlier commands.

C-x 〈ESC〉 works by turning the previous command into a Lisp expression and then en-
tering a minibuffer initialized with the text for that expression. If you type just 〈RET〉, the
command is repeated as before. You can also change the command by editing the Lisp
expression. The expression you finally submit will be executed. The repeated command
is added to the front of the command history unless it is identical to the most recently
executed command already there.

Even if you don’t understand Lisp syntax, it will probably be obvious which command
is displayed for repetition. If you do not change the text, you can be sure the command
will repeat exactly as before.

If you are in the minibuffer for C-x 〈ESC〉 and the command shown to you is not the one
you want to repeat, you can move around the list of previous commands using M-n and M-p.
M-p replaces the contents of the minibuffer with the next earlier recorded command, and
M-n replaces it with the next later command. After finding the desired previous command,
you can edit its expression and then resubmit it by typing 〈RET〉. Any editing you have done
on the command to be repeated is lost if you use M-n or M-p.

M-n and M-p are specially defined within C-x 〈ESC〉 to run the commands previous-
history-element and next-history-element.

The list of previous commands using the minibuffer is stored as a Lisp list in the vari-
able command-history. Each element of the list is a Lisp expression which describes one
command and its arguments. Lisp programs can reexecute a command by feeding the
corresponding command-history element to eval.

56 XEmacs User’s Manual

Chapter 7: Running Commands by Name 57

7 Running Commands by Name

The Emacs commands that are used often or that must be quick to type are bound to
keys—short sequences of characters—for convenient use. Other Emacs commands that are
used more rarely are not bound to keys; to run them, you must refer to them by name.

A command name consists, by convention, of one or more words, separated by hyphens:
for example, auto-fill-mode or manual-entry. The use of English words makes the
command name easier to remember than a key made up of obscure characters, even though
it results in more characters to type. You can run any command by name, even if it can be
run by keys as well.

To run a command by name, start with M-x, then type the command name, and finish
with 〈RET〉. M-x uses the minibuffer to read the command name. 〈RET〉 exits the minibuffer
and runs the command.

Emacs uses the minibuffer for reading input for many different purposes; on this occasion,
the string ‘M-x’ is displayed at the beginning of the minibuffer as a prompt to remind you
that your input should be the name of a command to be run. See Chapter 6 [Minibuffer],
page 51, for full information on the features of the minibuffer.

You can use completion to enter a command name. For example, to invoke the command
forward-char, type:

M-x forward-char 〈RET〉

or
M-x fo 〈TAB〉 c 〈RET〉

After you type in M-x fo TAB emacs will give you a possible list of completions from which
you can choose. Note that forward-char is the same command that you invoke with the
key C-f. You can call any command (interactively callable function) defined in Emacs by
its name using M-x regardless of whether or not any keys are bound to it.

If you type C-g while Emacs reads the command name, you cancel the M-x command
and get out of the minibuffer, ending up at top level.

To pass a numeric argument to a command you are invoking with M-x, specify the
numeric argument before the M-x. M-x passes the argument along to the function that it
calls. The argument value appears in the prompt while the command name is being read.

You can use the command M-x interactive to specify a way of parsing arguments for
interactive use of a function. For example, write:

(defun foo (arg) "Doc string" (interactive "p") ...use arg...)

to make arg be the prefix argument when foo is called as a command. The call to
interactive is actually a declaration rather than a function; it tells call-interactively
how to read arguments to pass to the function. When actually called, interactive returns
nil.

The argument of interactive is usually a string containing a code letter followed by a
prompt. Some code letters do not use I/O to get the argument and do not need prompts. To
prompt for multiple arguments, you must provide a code letter, its prompt, a newline, and
another code letter, and so forth. If the argument is not a string, it is evaluated to get a list

58 XEmacs User’s Manual

of arguments to pass to the function. If you do not provide an argument to interactive,
no arguments are passed when calling interactively.

Available code letters are:

a Function name: symbol with a function definition

b Name of existing buffer

B Name of buffer, possibly nonexistent

c Character

C Command name: symbol with interactive function definition

d Value of point as number (does not do I/O)

D Directory name

e Last mouse event

f Existing file name

F Possibly nonexistent file name

k Key sequence (string)

m Value of mark as number (does not do I/O)

n Number read using minibuffer

N Prefix arg converted to number, or if none, do like code n

p Prefix arg converted to number (does not do I/O)

P Prefix arg in raw form (does not do I/O)

r Region: point and mark as two numeric arguments, smallest first (does not do
I/O)

s Any string

S Any symbol

v Variable name: symbol that is user-variable-p

x Lisp expression read but not evaluated

X Lisp expression read and evaluated

In addition, if the string begins with ‘*’, an error is signaled if the buffer is read-only.
This happens before reading any arguments. If the string begins with ‘@’, the window the
mouse is over is selected before anything else is done. You may use both ‘@’ and ‘*’; they
are processed in the order that they appear.

Normally, when describing a command that is run by name, we omit the 〈RET〉 that is
needed to terminate the name. Thus we may refer to M-x auto-fill-mode rather than M-x

auto-fill-mode 〈RET〉. We mention the 〈RET〉 only when it is necessary to emphasize its
presence, for example, when describing a sequence of input that contains a command name
and arguments that follow it.

M-x is defined to run the command execute-extended-command, which is responsible
for reading the name of another command and invoking it.

Chapter 8: Help 59

8 Help

Emacs provides extensive help features which revolve around a single character, C-h.
C-h is a prefix key that is used only for documentation-printing commands. The characters
you can type after C-h are called help options. One help option is C-h; you use it to ask for
help about using C-h.

C-h C-h prints a list of the possible help options, and then asks you to type the desired
option. It prompts with the string:

A, B, C, F, I, K, L, M, N, S, T, V, W, C-c, C-d, C-n, C-w or C-h for more help:

You should type one of those characters.
Typing a third C-h displays a description of what the options mean; Emacs still waits

for you to type an option. To cancel, type C-g.
Here is a summary of the defined help commands.

C-h a string 〈RET〉
Display a list of commands whose names contain string (command-
apropos).

C-h b Display a table of all key bindings currently in effect, with local bindings of the
current major mode first, followed by all global bindings (describe-bindings).

C-h c key Print the name of the command that key runs (describe-key-
briefly). c is for ‘character’. For more extensive information on key, use C-h

k.

C-h f function 〈RET〉
Display documentation on the Lisp function named function (describe-
function). Note that commands are Lisp functions, so a command name may
be used.

C-h i Run Info, the program for browsing documentation files (info). The complete
Emacs manual is available online in Info.

C-h k key Display name and documentation of the command key runs (describe-key).

C-h l Display a description of the last 100 characters you typed (view-lossage).

C-h m Display documentation of the current major mode (describe-mode).

C-h n Display documentation of Emacs changes, most recent first (view-emacs-news).

C-h p Display a table of all mouse bindings currently in effect now, with local bindings
of the current major mode first, followed by all global bindings (describe-
pointer).

C-h s Display current contents of the syntax table, plus an explanation of what they
mean (describe-syntax).

C-h t Display the Emacs tutorial (help-with-tutorial).

C-h v var 〈RET〉
Display the documentation of the Lisp variable var (describe-
variable).

60 XEmacs User’s Manual

C-h w command 〈RET〉
Print which keys run the command named command (where-is).

M-x apropos regexp
Show all symbols whose names contain matches for regexp.

8.1 Documentation for a Key

The most basic C-h options are C-h c (describe-key-briefly) and C-h k

(describe-key). C-h c key prints the name of the command that key is bound to in
the echo area. For example, C-h c C-f prints ‘forward-char’. Since command names
are chosen to describe what the command does, using this option is a good way to get a
somewhat cryptic description of what key does.

C-h k key is similar to C-h c but gives more information. It displays the documentation
string of the function key is bound to as well as its name. key is a string or vector of events.
When called interactively, key may also be a menu selection. This information does not
usually fit into the echo area, so a window is used for the display.

8.2 Help by Command or Variable Name

C-h f (describe-function) reads the name of a Lisp function using the minibuffer,
then displays that function’s documentation string in a window. Since commands are Lisp
functions, you can use the argument function to get the documentation of a command that
you know by name. For example,

C-h f auto-fill-mode 〈RET〉

displays the documentation for auto-fill-mode. Using C-h f is the only way to see the
documentation of a command that is not bound to any key, that is, a command you would
normally call using M-x. If the variable describe-function-show-arglist is t, describe-
function shows its arglist if the function is not an autoload function.

C-h f is also useful for Lisp functions you are planning to use in a Lisp program. For
example, if you have just written the code (make-vector len) and want to make sure
you are using make-vector properly, type C-h f make-vector 〈RET〉. Because C-h f allows
all function names, not just command names, you may find that some of your favorite
abbreviations that work in M-x don’t work in C-h f. An abbreviation may be unique
among command names, yet fail to be unique when other function names are allowed.

If you type 〈RET〉, leaving the minibuffer empty, C-h f by default describes the func-
tion called by the innermost Lisp expression in the buffer around point, provided that
that is a valid, defined Lisp function name. For example, if point is located following the
text ‘(make-vector (car x)’, the innermost list containing point is the one starting with
‘(make-vector’, so the default is to describe the function make-vector.

C-h f is often useful just to verify that you have the right spelling for the function name.
If C-h f mentions a default in the prompt, you have typed the name of a defined Lisp
function. If that is what you wanted to know, just type C-g to cancel the C-h f command
and continue editing.

C-h w command 〈RET〉 (where-s) tells you what keys are bound to command. It prints a
list of the keys in the echo area. Alternatively, it informs you that a command is not bound
to any keys, which implies that you must use M-x to call the command.

Chapter 8: Help 61

C-h v (describe-variable) is like C-h f but describes Lisp variables instead of Lisp
functions. Its default is the Lisp symbol around or before point, if that is the name of a
known Lisp variable. See Section 29.2 [Variables], page 263.

8.3 Apropos

C-h a Show only symbols that are names of commands (command-apropos).

M-x apropos regexp
Show all symbols whose names comtain matches for regexp.

It is possible to ask a question like, “What are the commands for working with files?”
To do this, type C-h a file 〈RET〉, which displays a list of all command names that contain
‘file’, such as copy-file, find-file, and so on. With each command name a brief
description of its use and information on the keys you can use to invoke it is displayed. For
example, you would be informed that you can invoke find-file by typing C-x C-f. The a

in C-h a stands for ‘Apropos’; C-h a runs the Lisp function command-apropos.
Because C-h a looks only for functions whose names contain the string you specify, you

must use ingenuity in choosing the string. If you are looking for commands for killing
backwards and C-h a kill-backwards 〈RET〉 doesn’t reveal any commands, don’t give up.
Try just kill, or just backwards, or just back. Be persistent. Pretend you are playing
Adventure. Also note that you can use a regular expression as the argument (see Section 13.5
[Regexps], page 89).

Here is a set of arguments to give to C-h a that covers many classes of Emacs commands,
since there are strong conventions for naming standard Emacs commands. By giving you
a feeling for the naming conventions, this set of arguments can also help you develop a
technique for picking apropos strings.

char, line, word, sentence, paragraph, region, page, sexp, list, defun, buffer,
frame, window, file, dir, register, mode, beginning, end, forward, backward,
next, previous, up, down, search, goto, kill, delete, mark, insert, yank, fill,
indent, case, change, set, what, list, find, view, describe.

To list all Lisp symbols that contain a match for a regexp, not just the ones that are
defined as commands, use the command M-x apropos instead of C-h a.

8.4 Other Help Commands

C-h i (info) runs the Info program, which is used for browsing through structured
documentation files. The entire Emacs manual is available within Info. Eventually all the
documentation of the GNU system will be available. Type h after entering Info to run a
tutorial on using Info.

If something surprising happens, and you are not sure what commands you typed, use
C-h l (view-lossage). C-h l prints the last 100 command characters you typed. If you
see commands you don’t know, use C-h c to find out what they do.

Emacs has several major modes. Each mode redefines a few keys and makes a few other
changes in how editing works. C-h m (describe-mode) prints documentation on the current
major mode, which normally describes all the commands that are changed in this mode.

62 XEmacs User’s Manual

C-h b (describe-bindings) and C-h s (describe-syntax) present information about
the current Emacs mode that is not covered by C-h m. C-h b displays a list of all key bindings
currently in effect, with the local bindings of the current major mode first, followed by the
global bindings (see Section 29.4 [Key Bindings], page 275). C-h s displays the contents
of the syntax table with explanations of each character’s syntax (see Section 29.5 [Syntax],
page 280).

The other C-h options display various files of useful information. C-h C-w (describe-no-
warranty) displays details on the complete absence of warranty for XEmacs. C-h n (view-
emacs-news) displays the file ‘emacs/etc/NEWS’, which contains documentation on Emacs
changes arranged chronologically. C-h t (help-with-tutorial) displays the learn-by-doing
Emacs tutorial. C-h C-c (describe-copying) displays the file ‘emacs/etc/COPYING’, which
tells you the conditions you must obey in distributing copies of Emacs. C-h C-d (describe-
distribution) displays another file named ‘emacs/etc/DISTRIB’, which tells you how you
can order a copy of the latest version of Emacs.

Chapter 9: Selecting Text 63

9 Selecting Text

Many Emacs commands operate on an arbitrary contiguous part of the current buffer.
You can select text in two ways:
• You use special keys to select text by defining a region between point and the mark.
• If you are running XEmacs under X, you can also select text with the mouse.

9.1 The Mark and the Region

To specify the text for a command to operate on, set the mark at one end of it, and
move point to the other end. The text between point and the mark is called the region.
You can move point or the mark to adjust the boundaries of the region. It doesn’t matter
which one is set first chronologically, or which one comes earlier in the text.

Once the mark has been set, it remains until it is set again at another place. The mark
remains fixed with respect to the preceding character if text is inserted or deleted in a
buffer. Each Emacs buffer has its own mark; when you return to a buffer that had been
selected previously, it has the same mark it had before.

Many commands that insert text, such as C-y (yank) and M-x insert-buffer, position
the mark at one end of the inserted text—the opposite end from where point is positioned,
so that the region contains the text just inserted.

Aside from delimiting the region, the mark is useful for marking a spot that you may
want to go back to. To make this feature more useful, Emacs remembers 16 previous
locations of the mark in the mark ring.

9.1.1 Setting the Mark

Here are some commands for setting the mark:

C-〈SPC〉 Set the mark where point is (set-mark-command).

C-@ The same.

C-x C-x Interchange mark and point (exchange-point-and-mark).

C-< Pushes a mark at the beginning of the buffer.

C-> Pushes a mark at the end of the buffer.

For example, to convert part of the buffer to all upper-case, you can use the C-x C-

u (upcase-region) command, which operates on the text in the region. First go to the
beginning of the text you want to capitalize and type C-〈SPC〉 to put the mark there, then
move to the end, and then type C-x C-u to capitalize the selected region. You can also
set the mark at the end of the text, move to the beginning, and then type C-x C-u. Most
commands that operate on the text in the region have the word region in their names.

The most common way to set the mark is with the C-〈SPC〉 command (set-mark-
command). This command sets the mark where point is. You can then move point away,

64 XEmacs User’s Manual

leaving the mark behind. It is actually incorrect to speak of the character C-〈SPC〉; there is
no such character. When you type 〈SPC〉 while holding down 〈CTRL〉, you get the character
C-@ on most terminals. This character is actually bound to set-mark-command. But unless
you are unlucky enough to have a terminal where typing C-〈SPC〉 does not produce C-@, you
should think of this character as C-〈SPC〉.

Since terminals have only one cursor, Emacs cannot show you where the mark is located.
Most people use the mark soon after they set it, before they forget where it is. But you
can see where the mark is with the command C-x C-x (exchange-point-and-mark) which
puts the mark where point was and point where the mark was. The extent of the region is
unchanged, but the cursor and point are now at the previous location of the mark.

Another way to set the mark is to push the mark to the beginning of a buffer while
leaving point at its original location. If you supply an argument to C-< (mark-beginning-
of-buffer), the mark is pushed n/10 of the way from the true beginning of the buffer. You
can also set the mark at the end of a buffer with C-> (mark-end-of-buffer). It pushes the
mark to the end of the buffer, leaving point alone. Supplying an argument to the command
pushes the mark n/10 of the way from the true end of the buffer.

If you are using XEmacs under the X window system, you can set the variable zmacs-
regions to t. This makes the current region (defined by point and mark) highlight and
makes it available as the X clipboard selection, which means you can use the menu bar
items on it. See Section 10.3.4 [Active Regions], page 75, for more information.

C-x C-x is also useful when you are satisfied with the location of point but want to move
the mark; do C-x C-x to put point there and then you can move it. A second use of C-x
C-x, if necessary, puts the mark at the new location with point back at its original location.

9.1.2 Operating on the Region

Once you have created an active region, you can do many things to the text in it:

• Kill it with C-w (see Section 10.1 [Killing], page 69).

• Save it in a register with C-x r s (see Chapter 11 [Registers], page 79).

• Save it in a buffer or a file (see Section 10.4 [Accumulating Text], page 76).

• Convert case with C-x C-l or C-x C-u

(see Section 21.7 [Case], page 164).

• Evaluate it as Lisp code with M-x eval-region (see Section 23.4 [Lisp Eval], page 196).

• Fill it as text with M-q (see Section 21.6 [Filling], page 161).

• Print hardcopy with M-x print-region (see Section 28.4 [Hardcopy], page 257).

• Indent it with C-x 〈TAB〉 or C-M-\ (see Chapter 20 [Indentation], page 147).

9.1.3 Commands to Mark Textual Objects

There are commands for placing point and the mark around a textual object such as a
word, list, paragraph or page.

Chapter 9: Selecting Text 65

M-@ Set mark after end of next word (mark-word). This command and the following
one do not move point.

C-M-@ Set mark after end of next Lisp expression (mark-sexp).

M-h Put region around current paragraph (mark-paragraph).

C-M-h Put region around current Lisp defun (mark-defun).

C-x h Put region around entire buffer (mark-whole-buffer).

C-x C-p Put region around current page (mark-page).

M-@ (mark-word) puts the mark at the end of the next word, while C-M-@ (mark-sexp)
puts it at the end of the next Lisp expression. These characters sometimes save you some
typing.

A number of commands are available that set both point and mark and thus delimit an
object in the buffer. M-h (mark-paragraph) moves point to the beginning of the paragraph
that surrounds or follows point, and puts the mark at the end of that paragraph (see
Section 21.4 [Paragraphs], page 160). You can then indent, case-convert, or kill the whole
paragraph. In the same fashion, C-M-h (mark-defun) puts point before and the mark after
the current or following defun (see Section 22.3 [Defuns], page 168). C-x C-p (mark-page)
puts point before the current page (or the next or previous, depending on the argument), and
mark at the end (see Section 21.5 [Pages], page 161). The mark goes after the terminating
page delimiter (to include it), while point goes after the preceding page delimiter (to exclude
it). Finally, C-x h (mark-whole-buffer) sets up the entire buffer as the region by putting
point at the beginning and the mark at the end.

9.1.4 The Mark Ring

Aside from delimiting the region, the mark is also useful for marking a spot that you
may want to go back to. To make this feature more useful, Emacs remembers 16 previous
locations of the mark in the mark ring. Most commands that set the mark push the old
mark onto this ring. To return to a marked location, use C-u C-〈SPC〉 (or C-u C-@); this is
the command set-mark-command given a numeric argument. The command moves point
to where the mark was, and restores the mark from the ring of former marks. Repeated use
of this command moves point to all the old marks on the ring, one by one. The marks you
have seen go to the end of the ring, so no marks are lost.

Each buffer has its own mark ring. All editing commands use the current buffer’s mark
ring. In particular, C-u C-〈SPC〉 always stays in the same buffer.

Many commands that can move long distances, such as M-< (beginning-of-buffer),
start by setting the mark and saving the old mark on the mark ring. This makes it easier
for you to move back later. Searches set the mark, unless they do not actually move point.
When a command sets the mark, ‘Mark Set’ is printed in the echo area.

The variable mark-ring-max is the maximum number of entries to keep in the mark
ring. If that many entries exist and another entry is added, the last entry in the list is
discarded. Repeating C-u C-〈SPC〉 circulates through the entries that are currently in the
ring.

66 XEmacs User’s Manual

The variable mark-ring holds the mark ring itself, as a list of marker objects in the
order most recent first. This variable is local in every buffer.

9.2 Selecting Text with the Mouse

If you are using XEmacs under X, you can use the mouse pointer to select text. (The
normal mouse pointer is an I-beam, the same pointer that xterm uses.)

The glyph variable text-pointer-glyph controls the shape of the mouse pointer when
over text. You can also control the shape of the mouse pointer when over nontext using
nontext-pointer-glyph, and the shape of the mouse pointer when over the modeline using
modeline-pointer-glyph. (Remember, you should use set-glyph-image, not setq, to set
one of these variables.)

If you want to get fancy, you can set the foreground and background colors of the mouse
pointer by setting the pointer face.

There are two ways to select a region of text with the mouse:

To select a word in text, double-click with the left mouse button while the mouse cursor is
over the word. The word is highlighted when selected. On monochrome monitors, a stippled
background indicates that a region of text has been highlighted. On color monitors, a color
background indicates highlighted text. You can triple-click to select whole lines.

To select an arbitrary region of text:

1. Move the mouse cursor over the character at the beginning of the region of text you
want to select.

2. Press and hold the left mouse button.
3. While holding the left mouse button down, drag the cursor to the character at the end

of the region of text you want to select.
4. Release the left mouse button.

The selected region of text is highlighted.

Once a region of text is selected, it becomes the primary X selection (see Section 10.3
[Using X Selections], page 73) as well as the Emacs selected region. You can paste it into
other X applications and use the options from the Edit pull-down menu on it. Since it is
also the Emacs region, you can use Emacs region commands on it.

9.3 Additional Mouse Operations

XEmacs also provides the following mouse functions. Most of these are not bound to
mouse gestures by default, but they are provided for your customization pleasure. For
example, if you wanted shift-left (that is, holding down the 〈Shift〉 key and clicking the
left mouse button) to delete the character at which you are pointing, then you could do
this:

(global-set-key ’(shift button1) ’mouse-del-char)

Chapter 9: Selecting Text 67

mouse-del-char

Delete the character pointed to by the mouse.

mouse-delete-window

Delete the Emacs window that the mouse is on.

mouse-keep-one-window

Select the Emacs window that the mouse is on, then delete all other windows
on this frame.

mouse-kill-line

Kill the line pointed to by the mouse.

mouse-line-length

Print the length of the line indicated by the pointer.

mouse-scroll

Scroll point to the mouse position.

mouse-select

Select the Emacs window the mouse is on.

mouse-select-and-split

Select the Emacs window mouse is on, then split it vertically in half.

mouse-set-mark

Select the Emacs window the mouse is on and set the mark at the mouse
position. Display the cursor at that position for a second.

mouse-set-point

Select the Emacs window that the mouse is on and move point to the mouse
position.

mouse-track

Make a selection with the mouse. This is the default binding of the left mouse
button (〈button1〉).

mouse-track-adjust

Extend the existing selection. This is the default binding of 〈Shift-button1〉.

mouse-track-and-copy-to-cutbuffer

Make a selection like mouse-track, but also copy it to the cut buffer.

mouse-track-delete-and-insert

Make a selection with the mouse and insert it at point. This is the default
binding of 〈control-shift-button1〉.

mouse-track-insert

Make a selection with the mouse and insert it at point. This is the default
binding of 〈control-button1〉.

mouse-window-to-region

Narrow a window to the region between the cursor and the mouse pointer.

The M-x mouse-track command should be bound to a mouse button. If you click-and-
drag, the selection is set to the region between the point of the initial click and the point
at which you release the button. These positions do not need to be ordered.

68 XEmacs User’s Manual

If you click-and-release without moving the mouse, the point is moved, and the selection
is disowned (there will be no selection owner.) The mark will be set to the previous position
of point.

If you double-click, the selection will extend by symbols instead of by characters. If you
triple-click, the selection will extend by lines.

If you drag the mouse off the top or bottom of the window, you can select pieces of text
that are larger than the visible part of the buffer; the buffer will scroll as necessary.

The selected text becomes the current X selection, and is also copied to the top of the
kill ring. Point will be left at the position at which you released the button and the mark
will be left at the initial click position. Bind a mouse click to mouse-track-and-copy-

to-cutbuffer to copy selections to the cut buffer. (See also the mouse-track-adjust
command, on Shift-button1.)

The M-x mouse-track-adjust command should be bound to a mouse button. The
selection will be enlarged or shrunk so that the point of the mouse click is one of its
endpoints. This is only meaningful after the mouse-track command (〈button1〉) has been
executed.

The M-x mouse-track-delete-and-insert command is exactly the same as the mouse-
track command on 〈button1〉, except that point is not moved; the selected text is immediately
inserted after being selected; and the text of the selection is deleted.

The M-x mouse-track-insert command is exactly the same as the mouse-track com-
mand on 〈button1〉, except that point is not moved; the selected text is immediately inserted
after being selected; and the selection is immediately disowned afterwards.

Chapter 10: Killing and Moving Text 69

10 Killing and Moving Text

Killing means erasing text and copying it into the kill ring, from which it can be re-
trieved by yanking it. Some other systems that have recently become popular use the terms
“cutting” and “pasting” for these operations.

The most common way of moving or copying text with Emacs is to kill it and later yank
it in one or more places. This is safe because all the text killed recently is stored in the kill
ring, and it is versatile, because you can use the same commands for killing syntactic units
and for moving those units. There are other ways of copying text for special purposes.

Emacs has only one kill ring, so you can kill text in one buffer and yank it in another
buffer. If you are using XEmacs under X, you can also use the X selection mechanism to
copy text from one buffer to another, or between applications. See Section 10.3 [Using X
Selections], page 73.

10.1 Deletion and Killing

Most commands that erase text from the buffer save it. You can get the text back if you
change your mind, or you can move or copy it to other parts of the buffer. Commands which
erase text and save it in the kill ring are known as kill commands. Some other commands
erase text but do not save it; they are known as delete commands. (This distinction is
made only for erasing text in the buffer.)

The commands’ names and individual descriptions use the words ‘kill’ and ‘delete’ to
indicate what they do. If you perform a kill or delete command by mistake, use the C-x u

(undo) command to undo it (see Chapter 5 [Undo], page 49). The delete commands include
C-d (delete-char) and 〈DEL〉 (delete-backward-char), which delete only one character
at a time, and those commands that delete only spaces or newlines. Commands that can
destroy significant amounts of nontrivial data usually kill.

10.1.1 Deletion

C-d Delete next character (delete-char).

〈DEL〉 Delete previous character (delete-backward-char).

M-\ Delete spaces and tabs around point (delete-horizontal-space).

M-〈SPC〉 Delete spaces and tabs around point, leaving one space (just-one-space).

C-x C-o Delete blank lines around the current line (delete-blank-lines).

M-^ Join two lines by deleting the intervening newline, and any indentation following
it (delete-indentation).

The most basic delete commands are C-d (delete-char) and 〈DEL〉 (delete-backward-
char). C-d deletes the character after point, the one the cursor is “on top of”. Point
doesn’t move. 〈DEL〉 deletes the character before the cursor, and moves point back. You can
delete newlines like any other characters in the buffer; deleting a newline joins two lines.

70 XEmacs User’s Manual

Actually, C-d and 〈DEL〉 aren’t always delete commands; if you give them an argument, they
kill instead, since they can erase more than one character this way.

The other delete commands delete only formatting characters: spaces, tabs and newlines.
M-\ (delete-horizontal-space) deletes all spaces and tab characters before and after
point. M-〈SPC〉 (just-one-space) does the same but leaves a single space after point,
regardless of the number of spaces that existed previously (even zero).

C-x C-o (delete-blank-lines) deletes all blank lines after the current line. If the
current line is blank, it deletes all blank lines preceding the current line as well as leaving
one blank line, the current line. M-^ (delete-indentation) joins the current line and the
previous line, or, if given an argument, joins the current line and the next line by deleting
a newline and all surrounding spaces, possibly leaving a single space. See Chapter 20
[Indentation], page 147.

10.1.2 Killing by Lines

C-k Kill rest of line or one or more lines (kill-line).

The simplest kill command is C-k. If given at the beginning of a line, it kills all the text
on the line, leaving the line blank. If given on a blank line, the blank line disappears. As
a consequence, a line disappears completely if you go to the front of a non-blank line and
type C-k twice.

More generally, C-k kills from point up to the end of the line, unless it is at the end of a
line. In that case, it kills the newline following the line, thus merging the next line into the
current one. Emacs ignores invisible spaces and tabs at the end of the line when deciding
which case applies: if point appears to be at the end of the line, you can be sure the newline
will be killed.

If you give C-k a positive argument, it kills that many lines and the newlines that
follow them (however, text on the current line before point is not killed). With a negative
argument, C-k kills back to a number of line beginnings. An argument of −2 means kill
back to the second line beginning. If point is at the beginning of a line, that line beginning
doesn’t count, so C-u - 2 C-k with point at the front of a line kills the two previous lines.

C-k with an argument of zero kills all the text before point on the current line.

10.1.3 Other Kill Commands

C-w Kill region (from point to the mark) (kill-region). See Section 21.2 [Words],
page 158.

M-d Kill word (kill-word).

M-〈DEL〉 Kill word backwards (backward-kill-word).

C-x 〈DEL〉 Kill back to beginning of sentence (backward-kill-sentence). See
Section 21.3 [Sentences], page 159.

M-k Kill to end of sentence (kill-sentence).

C-M-k Kill sexp (kill-sexp). See Section 22.2 [Lists], page 166.

M-z char Kill up to next occurrence of char (zap-to-char).

Chapter 10: Killing and Moving Text 71

C-w (kill-region) is a very general kill command; it kills everything between point and
the mark. You can use this command to kill any contiguous sequence of characters by first
setting the mark at one end of a sequence of characters, then going to the other end and
typing C-w.

A convenient way of killing is combined with searching: M-z (zap-to-char) reads a
character and kills from point up to (but not including) the next occurrence of that character
in the buffer. If there is no next occurrence, killing goes to the end of the buffer. A numeric
argument acts as a repeat count. A negative argument means to search backward and kill
text before point.

Other syntactic units can be killed: words, with M-〈DEL〉 and M-d (see Section 21.2
[Words], page 158); sexps, with C-M-k (see Section 22.2 [Lists], page 166); and sentences,
with C-x 〈DEL〉 and M-k (see Section 21.3 [Sentences], page 159).

10.2 Yanking

Yanking means getting back text which was killed. Some systems call this “pasting”.
The usual way to move or copy text is to kill it and then yank it one or more times.

C-y Yank last killed text (yank).

M-y Replace re-inserted killed text with the previously killed text (yank-pop).

M-w Save region as last killed text without actually killing it (copy-region-as-
kill).

C-M-w Append next kill to last batch of killed text (append-next-kill).

10.2.1 The Kill Ring

All killed text is recorded in the kill ring, a list of blocks of text that have been killed.
There is only one kill ring, used in all buffers, so you can kill text in one buffer and yank
it in another buffer. This is the usual way to move text from one file to another. (See
Section 10.4 [Accumulating Text], page 76, for some other ways.)

If you have two separate Emacs processes, you cannot use the kill ring to move text. If
you are using XEmacs under X, however, you can use the X selection mechanism to move
text from one to another.

If you are using XEmacs under X and have one Emacs process with multiple frames,
they do share the same kill ring. You can kill or copy text in one Emacs frame, then yank
it in the other frame belonging to the same process.

The command C-y (yank) reinserts the text of the most recent kill. It leaves the cursor
at the end of the text and sets the mark at the beginning of the text. See Chapter 9 [Mark],
page 63.

C-u C-y yanks the text, leaves the cursor in front of the text, and sets the mark after
it, if the argument is with just a C-u. Any other argument, including C-u and digits, has
different results, described below, under “Yanking Earlier Kills”.

72 XEmacs User’s Manual

To copy a block of text, you can also use M-w (copy-region-as-kill), which copies the
region into the kill ring without removing it from the buffer. M-w is similar to C-w followed
by C-y but does not mark the buffer as “modified” and does not actually cut anything.

10.2.2 Appending Kills

Normally, each kill command pushes a new block onto the kill ring. However, two or
more kill commands in a row combine their text into a single entry, so that a single C-y

yanks it all back. This means you don’t have to kill all the text you want to yank in one
command; you can kill line after line, or word after word, until you have killed what you
want, then get it all back at once using C-y. (Thus we join television in leading people to
kill thoughtlessly.)

Commands that kill forward from point add onto the end of the previous killed text.
Commands that kill backward from point add onto the beginning. This way, any sequence of
mixed forward and backward kill commands puts all the killed text into one entry without
rearrangement. Numeric arguments do not break the sequence of appending kills. For
example, suppose the buffer contains:

This is the first
line of sample text
and here is the third.

with point at the beginning of the second line. If you type C-k C-u 2 M-〈DEL〉 C-k, the first
C-k kills the text ‘line of sample text’, C-u 2 M-〈DEL〉 kills ‘the first’ with the newline
that followed it, and the second C-k kills the newline after the second line. The result is
that the buffer contains ‘This is and here is the third.’ and a single kill entry contains
‘the first〈RET〉line of sample text〈RET〉’—all the killed text, in its original order.

If a kill command is separated from the last kill command by other commands (not
just numeric arguments), it starts a new entry on the kill ring. To force a kill command
to append, first type the command C-M-w (append-next-kill). C-M-w tells the following
command, if it is a kill command, to append the text it kills to the last killed text, instead
of starting a new entry. With C-M-w, you can kill several separated pieces of text and
accumulate them to be yanked back in one place.

10.2.3 Yanking Earlier Kills

To recover killed text that is no longer the most recent kill, you need the Meta-y (yank-
pop) command. You can use M-y only after a C-y or another M-y. It takes the text previously
yanked and replaces it with the text from an earlier kill. To recover the text of the next-to-
the-last kill, first use C-y to recover the last kill, then M-y to replace it with the previous
kill.

You can think in terms of a “last yank” pointer which points at an item in the kill
ring. Each time you kill, the “last yank” pointer moves to the new item at the front of
the ring. C-y yanks the item which the “last yank” pointer points to. M-y moves the “last
yank” pointer to a different item, and the text in the buffer changes to match. Enough M-y

commands can move the pointer to any item in the ring, so you can get any item into the

Chapter 10: Killing and Moving Text 73

buffer. Eventually the pointer reaches the end of the ring; the next M-y moves it to the first
item again.

Yanking moves the “last yank” pointer around the ring, but does not change the order
of the entries in the ring, which always runs from the most recent kill at the front to the
oldest one still remembered.

Use M-y with a numeric argument to advance the “last yank” pointer by the specified
number of items. A negative argument moves the pointer toward the front of the ring; from
the front of the ring, it moves to the last entry and starts moving forward from there.

Once the text you are looking for is brought into the buffer, you can stop doing M-y

commands and the text will stay there. Since the text is just a copy of the kill ring item,
editing it in the buffer does not change what’s in the ring. As long you don’t kill additional
text, the “last yank” pointer remains at the same place in the kill ring: repeating C-y will
yank another copy of the same old kill.

If you know how many M-y commands it would take to find the text you want, you
can yank that text in one step using C-y with a numeric argument. C-y with an argument
greater than one restores the text the specified number of entries back in the kill ring. Thus,
C-u 2 C-y gets the next to the last block of killed text. It is equivalent to C-y M-y. C-y

with a numeric argument starts counting from the “last yank” pointer, and sets the “last
yank” pointer to the entry that it yanks.

The variable kill-ring-max controls the length of the kill ring; no more than that many
blocks of killed text are saved.

10.3 Using X Selections

In the X window system, mouse selections provide a simple mechanism for text transfer
between different applications. In a typical X application, you can select text by pressing
the left mouse button and dragging the cursor over the text you want to copy. The text
becomes the primary X selection and is highlighted. The highlighted region is also the
Emacs selected region.
• Since the region is the primary X selection, you can go to a different X application and

click the middle mouse button: the text that you selected in the previous application
is pasted into the current application.

• Since the region is the Emacs selected region, you can use all region commands (C-w,
M-w etc.) as well as the options of the Edit menu to manipulate the selected text.

10.3.1 The Clipboard Selection

There are other kinds of X selections besides the Primary selection; one common one
is the Clipboard selection. Some applications prefer to transfer data using this selection
in preference to the Primary. One can transfer text from the Primary selection to the
Clipboard selection with the Copy command under the Edit menu in the menubar.

Usually, the clipboard selection is not visible. However, if you run the ‘xclipboard’
application, the text most recently copied to the clipboard (with the Copy command) is

74 XEmacs User’s Manual

displayed in a window. Any time new text is thus copied, the ‘xclipboard’ application
makes a copy of it and displays it in its window. The value of the clipboard can survive the
lifetime of the running Emacs process. The xclipboard man page provides more details.

Warning: If you use the ‘xclipboard’ application, remember that it maintains a list of
all things that have been pasted to the clipboard (that is, copied with the Copy command).
If you don’t manually delete elements from this list by clicking on the Delete button in the
xclipboard window, the clipboard will eventually consume a lot of memory.

In summary, some X applications (such as ‘xterm’) allow one to paste text in them from
XEmacs in the following way:
• Drag out a region of text in Emacs with the left mouse button, making that text be

the Primary selection.
• Click the middle button in the other application, pasting the Primary selection.

With some other applications (notably, the OpenWindows and Motif tools) you must
use this method instead:
• Drag out a region of text in Emacs with the left mouse button, making that text be

the Primary selection.
• Copy the selected text to the Clipboard selection by selecting the Copy menu item

from the Edit menu, or by hitting the Copy key on your keyboard.
• Paste the text in the other application by selecting Paste from its menu, or by hitting

the Paste key on your keyboard.

10.3.2 Miscellaneous X Selection Commands

M-x x-copy-primary-selection

Copy the primary selection to both the kill ring and the Clipboard.

M-x x-insert-selection

Insert the current selection into the buffer at point.

M-x x-delete-primary-selection

Deletes the text in the primary selection without copying it to the kill ring or
the Clipboard.

M-x x-kill-primary-selection

Deletes the text in the primary selection and copies it to both the kill ring and
the Clipboard.

M-x x-mouse-kill

Kill the text between point and the mouse and copy it to the clipboard and to
the cut buffer.

M-x x-own-secondary-selection

Make a secondary X selection of the given argument.

M-x x-own-selection

Make a primary X selection of the given argument.

M-x x-set-point-and-insert-selection

Set point where clicked and insert the primary selection or the cut buffer.

Chapter 10: Killing and Moving Text 75

10.3.3 X Cut Buffers

X cut buffers are a different, older way of transferring text between applications. XEmacs
supports cut buffers for compatibility with older programs, even though selections are now
the preferred way of transferring text.

X has a concept of applications "owning" selections. When you select text by clicking
and dragging inside an application, the application tells the X server that it owns the
selection. When another application asks the X server for the value of the selection, the X
server requests the information from the owner. When you use selections, the selection data
is not actually transferred unless someone wants it; the act of making a selection doesn’t
transfer data. Cut buffers are different: when you "own" a cut buffer, the data is actually
transferred to the X server immediately, and survives the lifetime of the application.

Any time a region of text becomes the primary selection in Emacs, Emacs also copies
that text to the cut buffer. This makes it possible to copy text from an XEmacs buffer and
paste it into an older, non-selection-based application (such as Emacs 18).

Note: Older versions of Emacs could not access the X selections, only the X cut buffers.

10.3.4 Active Regions

By default, both the text you select in an Emacs buffer using the click-and-drag mecha-
nism and text you select by setting point and the mark is highlighted. You can use Emacs
region commands as well as the Cut and Copy commands on the highlighted region you
selected with the mouse.

If you prefer, you can make a distinction between text selected with the mouse and text
selected with point and the mark by setting the variable zmacs-regions to nil. In that
case:
• The text selected with the mouse becomes both the X selection and the Emacs selected

region. You can use menu-bar commands as well as Emacs region commands on it.
• The text selected with point and the mark is not highlighted. You can only use Emacs

region commands on it, not the menu-bar items.

Active regions originally come from Zmacs, the Lisp Machine editor. The idea behind
them is that commands can only operate on a region when the region is in an "active"
state. Put simply, you can only operate on a region that is highlighted.

The variable zmacs-regions checks whether LISPM-style active regions should be used.
This means that commands that operate on the region (the area between point and the
mark) only work while the region is in the active state, which is indicated by highlighting.
Most commands causes the region to not be in the active state; for example, C-w only works
immediately after activating the region.

More specifically:
• Commands that operate on the region only work if the region is active.
• Only a very small set of commands causes the region to become active— those com-

mands whose semantics are to mark an area, such as mark-defun.

76 XEmacs User’s Manual

• The region is deactivated after each command that is executed, except that motion
commands do not change whether the region is active or not.

set-mark-command (C-SPC) pushes a mark and activates the region. Moving the cursor
with normal motion commands (C-n, C-p, etc.) will cause the region between point and the
recently-pushed mark to be highlighted. It will remain highlighted until some non-motion
command is executed.

exchange-point-and-mark (C-x C-x) activates the region. So if you mark a region and
execute a command that operates on it, you can reactivate the same region with C-x C-x

(or perhaps C-x C-x C-x C-x) to operate on it again.
Generally, commands that push marks as a means of navigation, such as beginning-of-

buffer (M-<) and end-of-buffer (M->), do not activate the region. However, commands
that push marks as a means of marking an area of text, such as mark-defun (M-C-h),
mark-word (M-@), and mark-whole-buffer (C-x h), do activate the region.

When zmacs-regions is t, there is no distinction between the primary X selection and
the active region selected by point and the mark. To see this, set the mark (〈C-SPC〉) and
move the cursor with any cursor-motion command: the region between point and mark is
highlighted, and you can watch it grow and shrink as you move the cursor.

Any other commands besides cursor-motion commands (such as inserting or deleting
text) will cause the region to no longer be active; it will no longer be highlighted, and will
no longer be the primary selection. Region can be explicitly deactivated with C-g.

Commands that require a region (such as C-w) signal an error if the region is not active.
Certain commands cause the region to be in its active state. The most common ones are
push-mark (〈C-SPC〉) and exchange-point-and-mark (C-x C-x).

When zmacs-regions is t, programs can be non-intrusive on the state of the region
by setting the variable zmacs-region-stays to a non-nil value. If you are writing a new
Emacs command that is conceptually a “motion” command and should not interfere with
the current highlightedness of the region, then you may set this variable. It is reset to nil
after each user command is executed.

When zmacs-regions is t, programs can make the region between point and mark go
into the active (highlighted) state by using the function zmacs-activate-region. Only a
small number of commands should ever do this.

When zmacs-regions is t, programs can deactivate the region between point and the
mark by using zmacs-deactivate-region. Note: you should not have to call this function;
the command loop calls it when appropriate.

10.4 Accumulating Text

Usually you copy or move text by killing it and yanking it, but there are other ways
that are useful for copying one block of text in many places, or for copying many scattered
blocks of text into one place.

If you like, you can accumulate blocks of text from scattered locations either into a buffer
or into a file. The relevant commands are described here. You can also use Emacs registers
for storing and accumulating text. See Chapter 11 [Registers], page 79.

Chapter 10: Killing and Moving Text 77

M-x append-to-buffer

Append region to contents of specified buffer (append-to-buffer).

M-x prepend-to-buffer

Prepend region to contents of specified buffer.

M-x copy-to-buffer

Copy region into specified buffer, deleting that buffer’s old contents.

M-x insert-buffer

Insert contents of specified buffer into current buffer at point.

M-x append-to-file

Append region to the end of the contents of specified file.

To accumulate text into a buffer, use the command M-x append-to-buffer, which in-
serts a copy of the region into the buffer buffername, at the location of point in that buffer.
If there is no buffer with the given name, one is created.

If you append text to a buffer that has been used for editing, the copied text goes to the
place where point is. Point in that buffer is left at the end of the copied text, so successive
uses of append-to-buffer accumulate the text in the specified buffer in the same order
as they were copied. Strictly speaking, this command does not always append to the text
already in the buffer; but if this command is the only command used to alter a buffer, it
does always append to the existing text because point is always at the end.

M-x prepend-to-buffer is similar to append-to-buffer, but point in the other buffer
is left before the copied text, so successive prependings add text in reverse order. M-x

copy-to-buffer is similar, except that any existing text in the other buffer is deleted, so
the buffer is left containing just the text newly copied into it.

You can retrieve the accumulated text from that buffer with M-x insert-buffer, which
takes buffername as an argument. It inserts a copy of the text in buffer buffername into the
selected buffer. You could alternatively select the other buffer for editing, perhaps moving
text from it by killing or with append-to-buffer. See Chapter 16 [Buffers], page 125, for
background information on buffers.

Instead of accumulating text within Emacs in a buffer, you can append text directly into
a file with M-x append-to-file, which takes file-name as an argument. It adds the text
of the region to the end of the specified file. The file is changed immediately on disk. This
command is normally used with files that are not being visited in Emacs. Using it on a file
that Emacs is visiting can produce confusing results, because the file’s text inside Emacs
does not change while the file itself changes.

10.5 Rectangles

The rectangle commands affect rectangular areas of text: all characters between a certain
pair of columns, in a certain range of lines. Commands are provided to kill rectangles, yank
killed rectangles, clear them out, or delete them. Rectangle commands are useful with text
in multicolumnar formats, like code with comments at the right, or for changing text into
or out of such formats.

78 XEmacs User’s Manual

To specify the rectangle a command should work on, put the mark at one corner and point
at the opposite corner. The specified rectangle is called the region-rectangle because it is
controlled about the same way the region is controlled. Remember that a given combination
of point and mark values can be interpreted either as specifying a region or as specifying a
rectangle; it is up to the command that uses them to choose the interpretation.

M-x delete-rectangle

Delete the text of the region-rectangle, moving any following text on each line
leftward to the left edge of the region-rectangle.

M-x kill-rectangle

Similar, but also save the contents of the region-rectangle as the “last killed
rectangle”.

M-x yank-rectangle

Yank the last killed rectangle with its upper left corner at point.

M-x open-rectangle

Insert blank space to fill the space of the region-rectangle. The previous contents
of the region-rectangle are pushed rightward.

M-x clear-rectangle

Clear the region-rectangle by replacing its contents with spaces.

The rectangle operations fall into two classes: commands deleting and moving rectangles,
and commands for blank rectangles.

There are two ways to get rid of the text in a rectangle: you can discard the text (delete
it) or save it as the “last killed” rectangle. The commands for these two ways are M-x

delete-rectangle and M-x kill-rectangle. In either case, the portion of each line that
falls inside the rectangle’s boundaries is deleted, causing following text (if any) on the line
to move left.

Note that “killing” a rectangle is not killing in the usual sense; the rectangle is not stored
in the kill ring, but in a special place that only records the most recently killed rectangle
(that is, does not append to a killed rectangle). Different yank commands have to be used
and only one rectangle is stored, because yanking a rectangle is quite different from yanking
linear text and yank-popping commands are difficult to make sense of.

Inserting a rectangle is the opposite of deleting one. You specify where to put the
upper left corner by putting point there. The rectangle’s first line is inserted at point,
the rectangle’s second line is inserted at a point one line vertically down, and so on. The
number of lines affected is determined by the height of the saved rectangle.

To insert the last killed rectangle, type M-x yank-rectangle. This can be used to convert
single-column lists into double-column lists; kill the second half of the list as a rectangle
and then yank it beside the first line of the list.

There are two commands for working with blank rectangles: M-x clear-rectangle

erases existing text, and M-x open-rectangle inserts a blank rectangle. Clearing a rectangle
is equivalent to deleting it and then inserting a blank rectangle of the same size.

Rectangles can also be copied into and out of registers. See Section 11.3 [Rectangle
Registers], page 80.

Chapter 11: Registers 79

11 Registers

Emacs registers are places in which you can save text or positions for later use. Text
saved in a register can be copied into the buffer once or many times; a position saved in a
register is used by moving point to that position. Rectangles can also be copied into and
out of registers (see Section 10.5 [Rectangles], page 77).

Each register has a name, which is a single character. A register can store either a piece
of text, a position, or a rectangle, but only one thing at any given time. Whatever you
store in a register remains there until you store something else in that register.

M-x view-register 〈RET〉 r
Display a description of what register r contains.

M-x view-register reads a register name as an argument and then displays the contents
of the specified register.

11.1 Saving Positions in Registers

Saving a position records a spot in a buffer so you can move back there later. Moving
to a saved position re-selects the buffer and moves point to the spot.

C-x r SPC r
Save the location of point in register r (point-to-register).

C-x r j r Jump to the location saved in register r (register-to-point).

To save the current location of point in a register, choose a name r and type C-x r SPC r.
The register r retains the location thus saved until you store something else in that register.

The command C-x r j r moves point to the location recorded in register r. The register
is not affected; it continues to record the same location. You can jump to the same position
using the same register as often as you want.

11.2 Saving Text in Registers

When you want to insert a copy of the same piece of text many times, it can be imprac-
tical to use the kill ring, since each subsequent kill moves the piece of text further down on
the ring. It becomes hard to keep track of the argument needed to retrieve the same text
with C-y. An alternative is to store the text in a register with C-x r s (copy-to-register)
and then retrieve it with C-x r g (insert-register).

C-x r s r Copy region into register r (copy-to-register).

C-x r g r Insert text contents of register r (insert-register).

80 XEmacs User’s Manual

C-x r s r stores a copy of the text of the region into the register named r. Given a
numeric argument, C-x r s deletes the text from the buffer as well.

C-x r g r inserts the text from register r in the buffer. By default it leaves point before
the text and places the mark after it. With a numeric argument, it puts point after the
text and the mark before it.

11.3 Saving Rectangles in Registers

A register can contain a rectangle instead of lines of text. The rectangle is represented as
a list of strings. See Section 10.5 [Rectangles], page 77, for basic information on rectangles
and how to specify rectangles in a buffer.

C-x r r r Copy the region-rectangle into register r(copy-rectangle-to-register).
With a numeric argument, delete it as well.

C-x r g r Insert the rectangle stored in register r (if it contains a rectangle) (insert-
register).

The C-x r g command inserts linear text if the register contains that, or inserts a rect-
angle if the register contains one.

Chapter 12: Controlling the Display 81

12 Controlling the Display

Since only part of a large buffer fits in the window, XEmacs tries to show the part that
is likely to be interesting. The display control commands allow you to specify which part
of the text you want to see.

C-l Clear frame and redisplay, scrolling the selected window to center point verti-
cally within it (recenter).

C-v

pgdn

next Scroll forward (a windowful or a specified number of lines) (scroll-up). On
most X keyboards, you can get this functionality using the key labelled ‘Page
Down’, which generates either next or pgdn.

M-v

pgup

prior Scroll backward (scroll-down). On most X keyboards, you can get this func-
tionality using the key labelled ‘Page Up’, which generates either prior or pgup.

arg C-l Scroll so point is on line arg (recenter).

C-x <
C-pgdn

C-next Scroll text in current window to the left (scroll-left).

C-x >
C-pgup

C-prior Scroll to the right (scroll-right).

C-x $ Make deeply indented lines invisible (set-selective-display).

12.1 Scrolling

If a buffer contains text that is too large to fit entirely within the window that is display-
ing the buffer, XEmacs shows a contiguous section of the text. The section shown always
contains point.

Scrolling means moving text up or down in the window so that different parts of the
text are visible. Scrolling forward means that text moves up, and new text appears at the
bottom. Scrolling backward moves text down and new text appears at the top.

Scrolling happens automatically if you move point past the bottom or top of the window.
You can also explicitly request scrolling with the commands in this section.

The most basic scrolling command is C-l (recenter) with no argument. It clears the
entire frame and redisplays all windows. In addition, it scrolls the selected window so that
point is halfway down from the top of the window.

The scrolling commands C-v and M-v let you move all the text in the window up or
down a few lines. C-v (scroll-up) with an argument shows you that many more lines at

82 XEmacs User’s Manual

the bottom of the window, moving the text and point up together as C-l might. C-v with a
negative argument shows you more lines at the top of the window. Meta-v (scroll-down)
is like C-v, but moves in the opposite direction.

To read the buffer a windowful at a time, use C-v with no argument. C-v takes the last
two lines at the bottom of the window and puts them at the top, followed by nearly a whole
windowful of lines not previously visible. Point moves to the new top of the window if it
was in the text scrolled off the top. M-v with no argument moves backward with similar
overlap. The number of lines of overlap across a C-v or M-v is controlled by the variable
next-screen-context-lines; by default, it is two.

Another way to scroll is using C-l with a numeric argument. C-l does not clear the frame
when given an argument; it only scrolls the selected window. With a positive argument
n, C-l repositions text to put point n lines down from the top. An argument of zero puts
point on the very top line. Point does not move with respect to the text; rather, the text
and point move rigidly on the frame. C-l with a negative argument puts point that many
lines from the bottom of the window. For example, C-u - 1 C-l puts point on the bottom
line, and C-u - 5 C-l puts it five lines from the bottom. Just C-u as argument, as in C-u

C-l, scrolls point to the center of the frame.
Scrolling happens automatically if point has moved out of the visible portion of the text

when it is time to display. Usually scrolling is done to put point vertically centered within
the window. However, if the variable scroll-step has a non-zero value, an attempt is
made to scroll the buffer by that many lines; if that is enough to bring point back into
visibility, that is what happens.

Scrolling happens automatically if point has moved out of the visible portion of the text
when it is time to display. Usually scrolling is done to put point vertically centered within
the window. However, if the variable scroll-step has a non-zero value, an attempt is
made to scroll the buffer by that many lines; if that is enough to bring point back into
visibility, that is what happens.

If you set scroll-step to a small value because you want to use arrow keys to scroll
the screen without recentering, the redisplay preemption will likely make XEmacs keep
recentering the screen when scrolling fast, regardless of scroll-step. To prevent this,
set scroll-conservatively to a small value, which will have the result of overriding the
redisplay preemption.

12.2 Horizontal Scrolling

The text in a window can also be scrolled horizontally. This means that each line of text
is shifted sideways in the window, and one or more characters at the beginning of each line
are not displayed at all. When a window has been scrolled horizontally in this way, text
lines are truncated rather than continued (see Section 4.7 [Continuation Lines], page 45),
with a ‘$’ appearing in the first column when there is text truncated to the left, and in the
last column when there is text truncated to the right.

The command C-x < (scroll-left) scrolls the selected window to the left by n columns
with argument n. With no argument, it scrolls by almost the full width of the window
(two columns less, to be precise). C-x > (scroll-right) scrolls similarly to the right. The

Chapter 12: Controlling the Display 83

window cannot be scrolled any farther to the right once it is displaying normally (with each
line starting at the window’s left margin); attempting to do so has no effect.

12.3 Selective Display

XEmacs can hide lines indented more than a certain number of columns (you specify
how many columns). This allows you to get an overview of a part of a program.

To hide lines, type C-x $ (set-selective-display) with a numeric argument n. (See
Section 4.9 [Arguments], page 46, for information on giving the argument.) Lines with
at least n columns of indentation disappear from the screen. The only indication of their
presence are three dots (‘...’), which appear at the end of each visible line that is followed
by one or more invisible ones.

The invisible lines are still present in the buffer, and most editing commands see them
as usual, so it is very easy to put point in the middle of invisible text. When this happens,
the cursor appears at the end of the previous line, after the three dots. If point is at the
end of the visible line, before the newline that ends it, the cursor appears before the three
dots.

The commands C-n and C-p move across the invisible lines as if they were not there.
To make everything visible again, type C-x $ with no argument.

12.4 Variables Controlling Display

This section contains information for customization only. Beginning users should skip
it.

When you reenter XEmacs after suspending, XEmacs normally clears the screen and
redraws the entire display. On some terminals with more than one page of memory, it
is possible to arrange the termcap entry so that the ‘ti’ and ‘te’ strings (output to the
terminal when XEmacs is entered and exited, respectively) switch between pages of memory
so as to use one page for XEmacs and another page for other output. In that case, you
might want to set the variable no-redraw-on-reenter to non-nil so that XEmacs will
assume, when resumed, that the screen page it is using still contains what XEmacs last
wrote there.

The variable echo-keystrokes controls the echoing of multi-character keys; its value is
the number of seconds of pause required to cause echoing to start, or zero, meaning don’t
echo at all. See Section 1.2 [Echo Area], page 14.

If the variable ctl-arrow is nil, control characters in the buffer are displayed with octal
escape sequences, all except newline and tab. If its value is t, then control characters will
be printed with an up-arrow, for example ^A.

If its value is not t and not nil, then characters whose code is greater than 160 (that
is, the space character (32) with its high bit set) will be assumed to be printable, and will
be displayed without alteration. This is the default when running under X Windows, since
XEmacs assumes an ISO/8859-1 character set (also known as “Latin1”). The ctl-arrow

84 XEmacs User’s Manual

variable may also be set to an integer, in which case all characters whose codes are greater
than or equal to that value will be assumed to be printable.

Altering the value of ctl-arrow makes it local to the current buffer; until that time, the
default value is in effect. See Section 29.2.4 [Locals], page 270.

Normally, a tab character in the buffer is displayed as whitespace which extends to
the next display tab stop position, and display tab stops come at intervals equal to eight
spaces. The number of spaces per tab is controlled by the variable tab-width, which is
made local by changing it, just like ctl-arrow. Note that how the tab character in the
buffer is displayed has nothing to do with the definition of 〈TAB〉 as a command.

If you set the variable selective-display-ellipses to nil, the three dots at the end
of a line that precedes invisible lines do not appear. There is no visible indication of the
invisible lines. This variable becomes local automatically when set.

Chapter 13: Searching and Replacement 85

13 Searching and Replacement

Like other editors, Emacs has commands for searching for occurrences of a string. The
principal search command is unusual in that it is incremental: it begins to search before you
have finished typing the search string. There are also non-incremental search commands
more like those of other editors.

Besides the usual replace-string command that finds all occurrences of one string
and replaces them with another, Emacs has a fancy replacement command called query-
replace which asks interactively which occurrences to replace.

13.1 Incremental Search

An incremental search begins searching as soon as you type the first character of the
search string. As you type in the search string, Emacs shows you where the string (as you
have typed it so far) is found. When you have typed enough characters to identify the place
you want, you can stop. Depending on what you do next, you may or may not need to
terminate the search explicitly with a 〈RET〉.

C-s Incremental search forward (isearch-forward).

C-r Incremental search backward (isearch-backward).

C-s starts an incremental search. C-s reads characters from the keyboard and positions
the cursor at the first occurrence of the characters that you have typed. If you type C-s

and then F, the cursor moves right after the first ‘F’. Type an O, and see the cursor move to
after the first ‘FO’. After another O, the cursor is after the first ‘FOO’ after the place where
you started the search. Meanwhile, the search string ‘FOO’ has been echoed in the echo area.

The echo area display ends with three dots when actual searching is going on. When
search is waiting for more input, the three dots are removed. (On slow terminals, the three
dots are not displayed.)

If you make a mistake in typing the search string, you can erase characters with 〈DEL〉.
Each 〈DEL〉 cancels the last character of the search string. This does not happen until
Emacs is ready to read another input character; first it must either find, or fail to find,
the character you want to erase. If you do not want to wait for this to happen, use C-g as
described below.

When you are satisfied with the place you have reached, you can type 〈RET〉 (or 〈C-m〉),
which stops searching, leaving the cursor where the search brought it. Any command not
specially meaningful in searches also stops the search and is then executed. Thus, typing
C-a exits the search and then moves to the beginning of the line. 〈RET〉 is necessary only if
the next command you want to type is a printing character, 〈DEL〉, 〈ESC〉, or another control
character that is special within searches (C-q, C-w, C-r, C-s, or C-y).

Sometimes you search for ‘FOO’ and find it, but were actually looking for a different
occurance of it. To move to the next occurrence of the search string, type another C-s. Do
this as often as necessary. If you overshoot, you can cancel some C-s characters with 〈DEL〉.

86 XEmacs User’s Manual

After you exit a search, you can search for the same string again by typing just C-s C-s:
the first C-s is the key that invokes incremental search, and the second C-s means “search
again”.

If the specified string is not found at all, the echo area displays the text ‘Failing
I-Search’. The cursor is after the place where Emacs found as much of your string as it
could. Thus, if you search for ‘FOOT’, and there is no ‘FOOT’, the cursor may be after the
‘FOO’ in ‘FOOL’. At this point there are several things you can do. If you mistyped the
search string, correct it. If you like the place you have found, you can type 〈RET〉 or some
other Emacs command to “accept what the search offered”. Or you can type C-g, which
removes from the search string the characters that could not be found (the ‘T’ in ‘FOOT’),
leaving those that were found (the ‘FOO’ in ‘FOOT’). A second C-g at that point cancels the
search entirely, returning point to where it was when the search started.

If a search is failing and you ask to repeat it by typing another C-s, it starts again from
the beginning of the buffer. Repeating a failing backward search with C-r starts again from
the end. This is called wrapping around. ‘Wrapped’ appears in the search prompt once this
has happened.

The C-g “quit” character does special things during searches; just what it does depends
on the status of the search. If the search has found what you specified and is waiting for
input, C-g cancels the entire search. The cursor moves back to where you started the search.
If C-g is typed when there are characters in the search string that have not been found—
because Emacs is still searching for them, or because it has failed to find them—then the
search string characters which have not been found are discarded from the search string.
The search is now successful and waiting for more input, so a second C-g cancels the entire
search.

To search for a control character such as C-s or 〈DEL〉 or 〈ESC〉, you must quote it by
typing C-q first. This function of C-q is analogous to its meaning as an Emacs command:
it causes the following character to be treated the way a graphic character would normally
be treated in the same context.

To search backwards, you can use C-r instead of C-s to start the search; C-r is the key
that runs the command (isearch-backward) to search backward. You can also use C-r

to change from searching forward to searching backwards. Do this if a search fails because
the place you started was too far down in the file. Repeated C-r keeps looking for more
occurrences backwards. C-s starts going forward again. You can cancel C-r in a search
with 〈DEL〉.

The characters C-y and C-w can be used in incremental search to grab text from the
buffer into the search string. This makes it convenient to search for another occurrence of
text at point. C-w copies the word after point as part of the search string, advancing point
over that word. Another C-s to repeat the search will then search for a string including
that word. C-y is similar to C-w but copies the rest of the current line into the search string.

The characters M-p and M-n can be used in an incremental search to recall things which
you have searched for in the past. A list of the last 16 things you have searched for is
retained, and M-p and M-n let you cycle through that ring.

The character M-〈TAB〉 does completion on the elements in the search history ring. For
example, if you know that you have recently searched for the string POTATOE, you could

Chapter 13: Searching and Replacement 87

type C-s P O M-〈TAB〉. If you had searched for other strings beginning with PO then you
would be shown a list of them, and would need to type more to select one.

You can change any of the special characters in incremental search via the normal key-
binding mechanism: simply add a binding to the isearch-mode-map. For example, to make
the character C-b mean “search backwards” while in isearch-mode, do this:

(define-key isearch-mode-map "\C-b" ’isearch-repeat-backward)

These are the default bindings of isearch-mode:

DEL Delete a character from the incremental search string (isearch-delete-char).

RET Exit incremental search (isearch-exit).

C-q Quote special characters for incremental search (isearch-quote-char).

C-s Repeat incremental search forward (isearch-repeat-forward).

C-r Repeat incremental search backward (isearch-repeat-backward).

C-y Pull rest of line from buffer into search string (isearch-yank-line).

C-w Pull next word from buffer into search string (isearch-yank-word).

C-g Cancels input back to what has been found successfully, or aborts the isearch
(isearch-abort).

M-p Recall the previous element in the isearch history ring (isearch-ring-
retreat).

M-n Recall the next element in the isearch history ring (isearch-ring-advance).

M-〈TAB〉 Do completion on the elements in the isearch history ring (isearch-complete).

Any other character which is normally inserted into a buffer when typed is automatically
added to the search string in isearch-mode.

13.1.1 Slow Terminal Incremental Search

Incremental search on a slow terminal uses a modified style of display that is designed
to take less time. Instead of redisplaying the buffer at each place the search gets to, it
creates a new single-line window and uses that to display the line the search has found.
The single-line window appears as soon as point gets outside of the text that is already on
the screen.

When the search is terminated, the single-line window is removed. Only at this time the
window in which the search was done is redisplayed to show its new value of point.

The three dots at the end of the search string, normally used to indicate that searching
is going on, are not displayed in slow style display.

The slow terminal style of display is used when the terminal baud rate is less than or
equal to the value of the variable search-slow-speed, initially 1200.

The number of lines to use in slow terminal search display is controlled by the variable
search-slow-window-lines. Its normal value is 1.

88 XEmacs User’s Manual

13.2 Non-Incremental Search

Emacs also has conventional non-incremental search commands, which require you type
the entire search string before searching begins.

C-s 〈RET〉 string 〈RET〉
Search for string.

C-r 〈RET〉 string 〈RET〉
Search backward for string.

To do a non-incremental search, first type C-s 〈RET〉 (or C-s C-m). This enters the
minibuffer to read the search string. Terminate the string with 〈RET〉 to start the search. If
the string is not found, the search command gets an error.

By default, C-s invokes incremental search, but if you give it an empty argument, which
would otherwise be useless, it invokes non-incremental search. Therefore, C-s 〈RET〉 invokes
non-incremental search. C-r 〈RET〉 also works this way.

Forward and backward non-incremental searches are implemented by the commands
search-forward and search-backward. You can bind these commands to keys. The
reason that incremental search is programmed to invoke them as well is that C-s 〈RET〉 is
the traditional sequence of characters used in Emacs to invoke non-incremental search.

Non-incremental searches performed using C-s 〈RET〉 do not call search-forward right
away. They first check if the next character is C-w, which requests a word search.

13.3 Word Search

Word search looks for a sequence of words without regard to how the words are separated.
More precisely, you type a string of many words, using single spaces to separate them, and
the string is found even if there are multiple spaces, newlines or other punctuation between
the words.

Word search is useful in editing documents formatted by text formatters. If you edit
while looking at the printed, formatted version, you can’t tell where the line breaks are in
the source file. Word search, allows you to search without having to know the line breaks.

C-s 〈RET〉 C-w words 〈RET〉
Search for words, ignoring differences in punctuation.

C-r 〈RET〉 C-w words 〈RET〉
Search backward for words, ignoring differences in punctuation.

Word search is a special case of non-incremental search. It is invoked with C-s 〈RET〉 C-w
followed by the search string, which must always be terminated with another 〈RET〉. Being
non-incremental, this search does not start until the argument is terminated. It works by
constructing a regular expression and searching for that. See Section 13.4 [Regexp Search],
page 89.

You can do a backward word search with C-r 〈RET〉 C-w.

Chapter 13: Searching and Replacement 89

Forward and backward word searches are implemented by the commands word-search-
forward and word-search-backward. You can bind these commands to keys. The reason
that incremental search is programmed to invoke them as well is that C-s 〈RET〉 C-w is the
traditional Emacs sequence of keys for word search.

13.4 Regular Expression Search

A regular expression (regexp, for short) is a pattern that denotes a set of strings, possibly
an infinite set. Searching for matches for a regexp is a powerful operation that editors on
Unix systems have traditionally offered. In XEmacs, you can search for the next match for
a regexp either incrementally or not.

Incremental search for a regexp is done by typing M-C-s (isearch-forward-regexp).
This command reads a search string incrementally just like C-s, but it treats the search
string as a regexp rather than looking for an exact match against the text in the buffer.
Each time you add text to the search string, you make the regexp longer, and the new
regexp is searched for. A reverse regexp search command isearch-backward-regexp also
exists, but no key runs it.

All of the control characters that do special things within an ordinary incremental search
have the same functionality in incremental regexp search. Typing C-s or C-r immediately
after starting a search retrieves the last incremental search regexp used: incremental regexp
and non-regexp searches have independent defaults.

Non-incremental search for a regexp is done by the functions re-search-forward and
re-search-backward. You can invoke them with M-x or bind them to keys. You can also
call re-search-forward by way of incremental regexp search with M-C-s 〈RET〉.

13.5 Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special constructs and
the rest are ordinary. An ordinary character is a simple regular expression which matches
that character and nothing else. The special characters are ‘$’, ‘^’, ‘.’, ‘*’, ‘+’, ‘?’, ‘[’,
‘]’ and ‘\’; no new special characters will be defined. Any other character appearing in a
regular expression is ordinary, unless a ‘\’ precedes it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular
expression that matches the string ‘f’ and no other string. (It does not match the string
‘ff’.) Likewise, ‘o’ is a regular expression that matches only ‘o’.

Any two regular expressions a and b can be concatenated. The result is a regular
expression which matches a string if a matches some amount of the beginning of that string
and b matches the rest of the string.

As a simple example, you can concatenate the regular expressions ‘f’ and ‘o’ to get the
regular expression ‘fo’, which matches only the string ‘fo’. To do something nontrivial, you
need to use one of the following special characters:

90 XEmacs User’s Manual

. (Period) is a special character that matches any single character except a newline. Using
concatenation, you can make regular expressions like ‘a.b’, which matches any
three-character string which begins with ‘a’ and ends with ‘b’.

* is not a construct by itself; it is a suffix, which means the preceding regular
expression is to be repeated as many times as possible. In ‘fo*’, the ‘*’ applies
to the ‘o’, so ‘fo*’ matches one ‘f’ followed by any number of ‘o’s. The case of
zero ‘o’s is allowed: ‘fo*’ does match ‘f’.

‘*’ always applies to the smallest possible preceding expression. Thus, ‘fo*’
has a repeating ‘o’, not a repeating ‘fo’.

The matcher processes a ‘*’ construct by immediately matching as many rep-
etitions as it can find. Then it continues with the rest of the pattern. If that
fails, backtracking occurs, discarding some of the matches of the ‘*’-modified
construct in case that makes it possible to match the rest of the pattern. For
example, matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’ first tries to
match all three ‘a’s; but the rest of the pattern is ‘ar’ and there is only ‘r’ left
to match, so this try fails. The next alternative is for ‘a*’ to match only two
‘a’s. With this choice, the rest of the regexp matches successfully.

+ is a suffix character similar to ‘*’ except that it requires that the preceding
expression be matched at least once. For example, ‘ca+r’ will match the strings
‘car’ and ‘caaaar’ but not the string ‘cr’, whereas ‘ca*r’ would match all three
strings.

? is a suffix character similar to ‘*’ except that it can match the preceding ex-
pression either once or not at all. For example, ‘ca?r’ will match ‘car’ or ‘cr’;
nothing else.

[...] ‘[’ begins a character set, which is terminated by a ‘]’. In the simplest case,
the characters between the two form the set. Thus, ‘[ad]’ matches either one
‘a’ or one ‘d’, and ‘[ad]*’ matches any string composed of just ‘a’s and ‘d’s
(including the empty string), from which it follows that ‘c[ad]*r’ matches ‘cr’,
‘car’, ‘cdr’, ‘caddaar’, etc.

You can include character ranges in a character set by writing two characters
with a ‘-’ between them. Thus, ‘[a-z]’ matches any lower-case letter. Ranges
may be intermixed freely with individual characters, as in ‘[a-z$%.]’, which
matches any lower-case letter or ‘$’, ‘%’, or period.

Note that inside a character set the usual special characters are not special any
more. A completely different set of special characters exists inside character
sets: ‘]’, ‘-’, and ‘^’.

To include a ‘]’ in a character set, you must make it the first character. For
example, ‘[]a]’ matches ‘]’ or ‘a’. To include a ‘-’, write ‘---’, which is a
range containing only ‘-’. To include ‘^’, make it other than the first character
in the set.

[^ ...] ‘[^’ begins a complement character set, which matches any character except
the ones specified. Thus, ‘[^a-z0-9A-Z]’ matches all characters except letters
and digits.

Chapter 13: Searching and Replacement 91

‘^’ is not special in a character set unless it is the first character. The character
following the ‘^’ is treated as if it were first (‘-’ and ‘]’ are not special there).
Note that a complement character set can match a newline, unless newline is
mentioned as one of the characters not to match.

^ is a special character that matches the empty string, but only if at the beginning
of a line in the text being matched. Otherwise, it fails to match anything. Thus,
‘^foo’ matches a ‘foo’ that occurs at the beginning of a line.

$ is similar to ‘^’ but matches only at the end of a line. Thus, ‘xx*$’ matches a
string of one ‘x’ or more at the end of a line.

\ does two things: it quotes the special characters (including ‘\’), and it intro-
duces additional special constructs.
Because ‘\’ quotes special characters, ‘\$’ is a regular expression that matches
only ‘$’, and ‘\[’ is a regular expression that matches only ‘[’, and so on.

Note: for historical compatibility, special characters are treated as ordinary ones if they
are in contexts where their special meanings make no sense. For example, ‘*foo’ treats
‘*’ as ordinary since there is no preceding expression on which the ‘*’ can act. It is poor
practice to depend on this behavior; better to quote the special character anyway, regardless
of where is appears.

Usually, ‘\’ followed by any character matches only that character. However, there are
several exceptions: characters which, when preceded by ‘\’, are special constructs. Such
characters are always ordinary when encountered on their own. Here is a table of ‘\’
constructs.

\| specifies an alternative. Two regular expressions a and b with ‘\|’ in between
form an expression that matches anything a or b matches.
Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.
‘\|’ applies to the largest possible surrounding expressions. Only a surrounding
‘\(... \)’ grouping can limit the grouping power of ‘\|’.
Full backtracking capability exists to handle multiple uses of ‘\|’.

\(... \) is a grouping construct that serves three purposes:
1. To enclose a set of ‘\|’ alternatives for other operations. Thus,

‘\(foo\|bar\)x’ matches either ‘foox’ or ‘barx’.
2. To enclose a complicated expression for the postfix ‘*’ to operate on. Thus,

‘ba\(na\)*’ matches ‘bananana’, etc., with any (zero or more) number of
‘na’ strings.

3. To mark a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping;
it is a separate feature which happens to be assigned as a second meaning to
the same ‘\(... \)’ construct because in practice there is no conflict between
the two meanings. Here is an explanation:

\digit after the end of a ‘\(... \)’ construct, the matcher remembers the beginning
and end of the text matched by that construct. Then, later on in the regular

92 XEmacs User’s Manual

expression, you can use ‘\’ followed by digit to mean “match the same text
matched the digit’th time by the ‘\(... \)’ construct.”
The strings matching the first nine ‘\(... \)’ constructs appearing in a regular
expression are assigned numbers 1 through 9 in order that the open-parentheses
appear in the regular expression. ‘\1’ through ‘\9’ may be used to refer to the
text matched by the corresponding ‘\(... \)’ construct.
For example, ‘\(.*\)\1’ matches any newline-free string that is composed of
two identical halves. The ‘\(.*\)’ matches the first half, which may be any-
thing, but the ‘\1’ that follows must match the same exact text.

\‘ matches the empty string, provided it is at the beginning of the buffer.

\’ matches the empty string, provided it is at the end of the buffer.

\b matches the empty string, provided it is at the beginning or end of a word. Thus,
‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bballs?\b’
matches ‘ball’ or ‘balls’ as a separate word.

\B matches the empty string, provided it is not at the beginning or end of a word.

\< matches the empty string, provided it is at the beginning of a word.

\> matches the empty string, provided it is at the end of a word.

\w matches any word-constituent character. The editor syntax table determines
which characters these are.

\W matches any character that is not a word-constituent.

\scode matches any character whose syntax is code. code is a character which repre-
sents a syntax code: thus, ‘w’ for word constituent, ‘-’ for whitespace, ‘(’ for
open-parenthesis, etc. See Section 29.5 [Syntax], page 280.

\Scode matches any character whose syntax is not code.

Here is a complicated regexp used by Emacs to recognize the end of a sentence together
with any whitespace that follows. It is given in Lisp syntax to enable you to distinguish the
spaces from the tab characters. In Lisp syntax, the string constant begins and ends with a
double-quote. ‘\"’ stands for a double-quote as part of the regexp, ‘\\’ for a backslash as
part of the regexp, ‘\t’ for a tab and ‘\n’ for a newline.

"[.?!][]\"’)]*\\($\\|\t\\| \\)[\t\n]*"

This regexp contains four parts: a character set matching period, ‘?’ or ‘!’; a character set
matching close-brackets, quotes or parentheses, repeated any number of times; an alterna-
tive in backslash-parentheses that matches end-of-line, a tab or two spaces; and a character
set matching whitespace characters, repeated any number of times.

13.6 Searching and Case

All searches in Emacs normally ignore the case of the text they are searching through; if
you specify searching for ‘FOO’, ‘Foo’ and ‘foo’ are also considered a match. Regexps, and
in particular character sets, are included: ‘[aB]’ matches ‘a’ or ‘A’ or ‘b’ or ‘B’.

Chapter 13: Searching and Replacement 93

If you want a case-sensitive search, set the variable case-fold-search to nil. Then
all letters must match exactly, including case. case-fold-search is a per-buffer variable;
altering it affects only the current buffer, but there is a default value which you can change
as well. See Section 29.2.4 [Locals], page 270. You can also use Case Sensitive Search from
the Options menu on your screen.

13.7 Replacement Commands

Global search-and-replace operations are not needed as often in Emacs as they are in
other editors, but they are available. In addition to the simple replace-string command
which is like that found in most editors, there is a query-replace command which asks
you, for each occurrence of a pattern, whether to replace it.

The replace commands all replace one string (or regexp) with one replacement string. It
is possible to perform several replacements in parallel using the command expand-region-
abbrevs. See Section 24.2 [Expanding Abbrevs], page 206.

13.7.1 Unconditional Replacement

M-x replace-string 〈RET〉 string 〈RET〉 newstring 〈RET〉
Replace every occurrence of string with newstring.

M-x replace-regexp 〈RET〉 regexp 〈RET〉 newstring 〈RET〉
Replace every match for regexp with newstring.

To replace every instance of ‘foo’ after point with ‘bar’, use the command M-x replace-

string with the two arguments ‘foo’ and ‘bar’. Replacement occurs only after point: if
you want to cover the whole buffer you must go to the beginning first. By default, all
occurrences up to the end of the buffer are replaced. To limit replacement to part of the
buffer, narrow to that part of the buffer before doing the replacement (see Section 28.3
[Narrowing], page 256).

When replace-string exits, point is left at the last occurrence replaced. The value
of point when the replace-string command was issued is remembered on the mark ring;
C-u C-〈SPC〉 moves back there.

A numeric argument restricts replacement to matches that are surrounded by word
boundaries.

13.7.2 Regexp Replacement

replace-string replaces exact matches for a single string. The similar command
replace-regexp replaces any match for a specified pattern.

In replace-regexp, the newstring need not be constant. It can refer to all or part of
what is matched by the regexp. ‘\&’ in newstring stands for the entire text being replaced.
‘\d’ in newstring, where d is a digit, stands for whatever matched the d’th parenthesized
grouping in regexp. For example,

94 XEmacs User’s Manual

M-x replace-regexp 〈RET〉 c[ad]+r 〈RET〉 \&-safe 〈RET〉

would replace (for example) ‘cadr’ with ‘cadr-safe’ and ‘cddr’ with ‘cddr-safe’.
M-x replace-regexp 〈RET〉 \(c[ad]+r\)-safe 〈RET〉 \1 〈RET〉

would perform exactly the opposite replacements. To include a ‘\’ in the text to replace
with, you must give ‘\\’.

13.7.3 Replace Commands and Case

If the arguments to a replace command are in lower case, the command preserves case
when it makes a replacement. Thus, the following command:

M-x replace-string 〈RET〉 foo 〈RET〉 bar 〈RET〉

replaces a lower-case ‘foo’ with a lower case ‘bar’, ‘FOO’ with ‘BAR’, and ‘Foo’ with ‘Bar’.
If upper-case letters are used in the second argument, they remain upper-case every time
that argument is inserted. If upper-case letters are used in the first argument, the second
argument is always substituted exactly as given, with no case conversion. Likewise, if the
variable case-replace is set to nil, replacement is done without case conversion. If case-
fold-search is set to nil, case is significant in matching occurrences of ‘foo’ to replace;
also, case conversion of the replacement string is not done.

13.7.4 Query Replace

M-% string 〈RET〉 newstring 〈RET〉
M-x query-replace 〈RET〉 string 〈RET〉 newstring 〈RET〉

Replace some occurrences of string with newstring.

M-x query-replace-regexp 〈RET〉 regexp 〈RET〉 newstring 〈RET〉
Replace some matches for regexp with newstring.

If you want to change only some of the occurrences of ‘foo’ to ‘bar’, not all of them,
you can use query-replace instead of M-%. This command finds occurrences of ‘foo’ one
by one, displays each occurrence, and asks you whether to replace it. A numeric argument
to query-replace tells it to consider only occurrences that are bounded by word-delimiter
characters.

Aside from querying, query-replace works just like replace-string, and query-
replace-regexp works just like replace-regexp.

The things you can type when you are shown an occurrence of string or a match for
regexp are:

〈SPC〉 to replace the occurrence with newstring. This preserves case, just like
replace-string, provided case-replace is non-nil, as it normally is.

〈DEL〉 to skip to the next occurrence without replacing this one.

, (Comma)
to replace this occurrence and display the result. You are then prompted for
another input character. However, since the replacement has already been

Chapter 13: Searching and Replacement 95

made, 〈DEL〉 and 〈SPC〉 are equivalent. At this point, you can type C-r (see
below) to alter the replaced text. To undo the replacement, you can type C-x

u. This exits the query-replace. If you want to do further replacement you
must use C-x ESC to restart (see Section 6.4 [Repetition], page 55).

〈ESC〉 to exit without doing any more replacements.

. (Period) to replace this occurrence and then exit.

! to replace all remaining occurrences without asking again.

^ to go back to the location of the previous occurrence (or what used to be an
occurrence), in case you changed it by mistake. This works by popping the mark
ring. Only one ^ in a row is allowed, because only one previous replacement
location is kept during query-replace.

C-r to enter a recursive editing level, in case the occurrence needs to be edited rather
than just replaced with newstring. When you are done, exit the recursive editing
level with C-M-c and the next occurrence will be displayed. See Section 28.5
[Recursive Edit], page 258.

C-w to delete the occurrence, and then enter a recursive editing level as in C-r.
Use the recursive edit to insert text to replace the deleted occurrence of string.
When done, exit the recursive editing level with C-M-c and the next occurrence
will be displayed.

C-l to redisplay the screen and then give another answer.

C-h to display a message summarizing these options, then give another answer.

If you type any other character, Emacs exits the query-replace, and executes the
character as a command. To restart the query-replace, use C-x 〈ESC〉, which repeats
the query-replace because it used the minibuffer to read its arguments. See Section 6.4
[Repetition], page 55.

13.8 Other Search-and-Loop Commands

Here are some other commands that find matches for a regular expression. They all
operate from point to the end of the buffer.

M-x occur Print each line that follows point and contains a match for the specified regexp.
A numeric argument specifies the number of context lines to print before and
after each matching line; the default is none.
The buffer ‘*Occur*’ containing the output serves as a menu for finding oc-
currences in their original context. Find an occurrence as listed in ‘*Occur*’,
position point there, and type C-c C-c; this switches to the buffer that was
searched and moves point to the original of the same occurrence.

M-x list-matching-lines

Synonym for M-x occur.

M-x count-matches

Print the number of matches following point for the specified regexp.

96 XEmacs User’s Manual

M-x delete-non-matching-lines

Delete each line that follows point and does not contain a match for the specified
regexp.

M-x delete-matching-lines

Delete each line that follows point and contains a match for the specified regexp.

Chapter 14: Commands for Fixing Typos 97

14 Commands for Fixing Typos

This chapter describes commands that are especially useful when you catch a mistake
in your text just after you have made it, or when you change your mind while composing
text on line.

14.1 Killing Your Mistakes

〈DEL〉 Delete last character (delete-backward-char).

M-〈DEL〉 Kill last word (backward-kill-word).

C-x 〈DEL〉 Kill to beginning of sentence (backward-kill-sentence).

The 〈DEL〉 character (delete-backward-char) is the most important correction com-
mand. When used among graphic (self-inserting) characters, it can be thought of as can-
celing the last character typed.

When your mistake is longer than a couple of characters, it might be more convenient to
use M-〈DEL〉 or C-x 〈DEL〉. M-〈DEL〉 kills back to the start of the last word, and C-x 〈DEL〉 kills
back to the start of the last sentence. C-x 〈DEL〉 is particularly useful when you are thinking
of what to write as you type it, in case you change your mind about phrasing. M-〈DEL〉
and C-x 〈DEL〉 save the killed text for C-y and M-y to retrieve. See Section 10.2 [Yanking],
page 71.

M-〈DEL〉 is often useful even when you have typed only a few characters wrong, if you
know you are confused in your typing and aren’t sure exactly what you typed. At such a
time, you cannot correct with 〈DEL〉 except by looking at the screen to see what you did. It
requires less thought to kill the whole word and start over.

14.2 Transposing Text

C-t Transpose two characters (transpose-chars).

M-t Transpose two words (transpose-words).

C-M-t Transpose two balanced expressions (transpose-sexps).

C-x C-t Transpose two lines (transpose-lines).

The common error of transposing two adjacent characters can be fixed with the C-t

command (transpose-chars). Normally, C-t transposes the two characters on either side
of point. When given at the end of a line, C-t transposes the last two characters on the
line, rather than transposing the last character of the line with the newline, which would
be useless. If you catch a transposition error right away, you can fix it with just C-t. If
you catch the error later, move the cursor back to between the two transposed characters.
If you transposed a space with the last character of the word before it, the word motion

98 XEmacs User’s Manual

commands are a good way of getting there. Otherwise, a reverse search (C-r) is often the
best way. See Chapter 13 [Search], page 85.

Meta-t (transpose-words) transposes the word before point with the word after point.
It moves point forward over a word, dragging the word preceding or containing point for-
ward as well. The punctuation characters between the words do not move. For example,
‘FOO, BAR’ transposes into ‘BAR, FOO’ rather than ‘BAR FOO,’.

C-M-t (transpose-sexps) is a similar command for transposing two expressions (see
Section 22.2 [Lists], page 166), and C-x C-t (transpose-lines) exchanges lines. It works
like M-t but in determines the division of the text into syntactic units differently.

A numeric argument to a transpose command serves as a repeat count: it tells the
transpose command to move the character (word, sexp, line) before or containing point
across several other characters (words, sexps, lines). For example, C-u 3 C-t moves the
character before point forward across three other characters. This is equivalent to repeating
C-t three times. C-u - 4 M-t moves the word before point backward across four words. C-u
- C-M-t would cancel the effect of plain C-M-t.

A numeric argument of zero transposes the character (word, sexp, line) ending after
point with the one ending after the mark (otherwise a command with a repeat count of zero
would do nothing).

14.3 Case Conversion

M-- M-l Convert last word to lower case. Note that Meta-- is “Meta-minus.”

M-- M-u Convert last word to all upper case.

M-- M-c Convert last word to lower case with capital initial.

A common error is to type words in the wrong case. Because of this, the word case-
conversion commands M-l, M-u, and M-c do not move the cursor when used with a negative
argument. As soon as you see you have mistyped the last word, you can simply case-convert
it and continue typing. See Section 21.7 [Case], page 164.

14.4 Checking and Correcting Spelling

M-$ Check and correct spelling of word (spell-word).

M-x spell-buffer

Check and correct spelling of each word in the buffer.

M-x spell-region

Check and correct spelling of each word in the region.

M-x spell-string

Check spelling of specified word.

Chapter 14: Commands for Fixing Typos 99

To check the spelling of the word before point, and optionally correct it, use the command
M-$ (spell-word). This command runs an inferior process containing the spell program
to see whether the word is correct English. If it is not, it asks you to edit the word (in the
minibuffer) into a corrected spelling, and then performs a query-replace to substitute the
corrected spelling for the old one throughout the buffer.

If you exit the minibuffer without altering the original spelling, it means you do not
want to do anything to that word. In that case, the query-replace is not done.

M-x spell-buffer checks each word in the buffer the same way that spell-word does,
doing a query-replace for every incorrect word if appropriate.

M-x spell-region is similar to spell-buffer but operates only on the region, not the
entire buffer.

M-x spell-string reads a string as an argument and checks whether that is a correctly
spelled English word. It prints a message giving the answer in the echo area.

100 XEmacs User’s Manual

Chapter 15: File Handling 101

15 File Handling

The basic unit of stored data in Unix is the file. To edit a file, you must tell Emacs
to examine the file and prepare a buffer containing a copy of the file’s text. This is called
visiting the file. Editing commands apply directly to text in the buffer; that is, to the copy
inside Emacs. Your changes appear in the file itself only when you save the buffer back into
the file.

In addition to visiting and saving files, Emacs can delete, copy, rename, and append to
files, and operate on file directories.

15.1 File Names

Most Emacs commands that operate on a file require you to specify the file name. (Saving
and reverting are exceptions; the buffer knows which file name to use for them.) File names
are specified in the minibuffer (see Chapter 6 [Minibuffer], page 51). Completion is available,
to make it easier to specify long file names. See Section 6.3 [Completion], page 53.

There is always a default file name which is used if you enter an empty argument by
typing just 〈RET〉. Normally the default file name is the name of the file visited in the current
buffer; this makes it easy to operate on that file with any of the Emacs file commands.

Each buffer has a default directory, normally the same as the directory of the file visited
in that buffer. When Emacs reads a file name, the default directory is used if you do not
specify a directory. If you specify a directory in a relative fashion, with a name that does
not start with a slash, it is interpreted with respect to the default directory. The default
directory of the current buffer is kept in the variable default-directory, which has a
separate value in every buffer. The value of the variable should end with a slash.

For example, if the default file name is ‘/u/rms/gnu/gnu.tasks’ then the default direc-
tory is ‘/u/rms/gnu/’. If you type just ‘foo’, which does not specify a directory, it is short
for ‘/u/rms/gnu/foo’. ‘../.login’ would stand for ‘/u/rms/.login’. ‘new/foo’ would
stand for the filename ‘/u/rms/gnu/new/foo’.

The variable default-directory-alist takes an alist of major modes and their opinions
on default-directory as a Lisp expression to evaluate. A resulting value of nil is ignored
in favor of default-directory.

You can create a new directory with the function make-directory, which takes as an
argument a file name string. The current directory is displayed in the minibuffer when the
function is called; you can delete the old directory name and supply a new directory name.
For example, if the current directory is ‘/u/rms/gnu’, you can delete ‘gnu’ and type ‘oryx’
and 〈RET〉 to create ‘/u/rms/oryx’. Removing a directory is similar to creating one. To
remove a directory, use remove-directory; it takes one argument, a file name string.

The command M-x pwd prints the current buffer’s default directory, and the command
M-x cd sets it (to a value read using the minibuffer). A buffer’s default directory changes
only when the cd command is used. A file-visiting buffer’s default directory is initialized to
the directory of the file that is visited there. If a buffer is created with C-x b, its default
directory is copied from that of the buffer that was current at the time.

102 XEmacs User’s Manual

The default directory name actually appears in the minibuffer when the minibuffer be-
comes active to read a file name. This serves two purposes: it shows you what the default
is, so that you can type a relative file name and know with certainty what it will mean, and
it allows you to edit the default to specify a different directory. To inhibit the insertion of
the default directory, set the variable insert-default-directory to nil.

Note that it is legitimate to type an absolute file name after you enter the minibuffer,
ignoring the presence of the default directory name. The final minibuffer contents may look
invalid, but that is not so. See Section 6.1 [Minibuffer File], page 51.

‘$’ in a file name is used to substitute environment variables. For example, if you have
used the shell command ‘setenv FOO rms/hacks’ to set up an environment variable named
‘FOO’, then you can use ‘/u/$FOO/test.c’ or ‘/u/${FOO}/test.c’ as an abbreviation for
‘/u/rms/hacks/test.c’. The environment variable name consists of all the alphanumeric
characters after the ‘$’; alternatively, it may be enclosed in braces after the ‘$’. Note that
the ‘setenv’ command affects Emacs only if done before Emacs is started.

To access a file with ‘$’ in its name, type ‘$$’. This pair is converted to a single ‘$’ at the
same time variable substitution is performed for single ‘$’. The Lisp function that performs
the substitution is called substitute-in-file-name. The substitution is performed only
on filenames read as such using the minibuffer.

15.2 Visiting Files

C-x C-f Visit a file (find-file).

C-x C-v Visit a different file instead of the one visited last (find-alternate-file).

C-x 4 C-f Visit a file, in another window (find-file-other-window). Don’t change this
window.

C-x 5 C-f Visit a file, in another frame (find-file-other-frame). Don’t change this
window or frame.

Visiting a file means copying its contents into an Emacs buffer so you can edit it. Emacs
creates a new buffer for each file you visit. We say that the buffer is visiting the file
that it was created to hold. Emacs constructs the buffer name from the file name by
throwing away the directory and keeping just the file name. For example, a file named
‘/usr/rms/emacs.tex’ is displayed in a buffer named ‘emacs.tex’. If a buffer with that
name exists, a unique name is constructed by appending ‘<2>’, ‘<3>’,and so on, using the
lowest number that makes a name that is not already in use.

Each window’s mode line shows the name of the buffer that is being displayed in that
window, so you can always tell what buffer you are editing.

The changes you make with Emacs are made in the Emacs buffer. They do not take
effect in the file that you visit, or any other permanent place, until you save the buffer.
Saving the buffer means that Emacs writes the current contents of the buffer into its visited
file. See Section 15.3 [Saving], page 104.

If a buffer contains changes that have not been saved, the buffer is said to be modified.
This is important because it implies that some changes will be lost if the buffer is not saved.
The mode line displays two stars near the left margin if the buffer is modified.

Chapter 15: File Handling 103

To visit a file, use the command C-x C-f (find-file). Follow the command with the
name of the file you wish to visit, terminated by a 〈RET〉. If you are using XEmacs under
X, you can also use the Open... command from the File menu bar item.

The file name is read using the minibuffer (see Chapter 6 [Minibuffer], page 51), with
defaulting and completion in the standard manner (see Section 15.1 [File Names], page 101).
While in the minibuffer, you can abort C-x C-f by typing C-g.

C-x C-f has completed successfully when text appears on the screen and a new buffer
name appears in the mode line. If the specified file does not exist and could not be created
or cannot be read, an error results. The error message is printed in the echo area, and
includes the name of the file that Emacs was trying to visit.

If you visit a file that is already in Emacs, C-x C-f does not make another copy. It
selects the existing buffer containing that file. However, before doing so, it checks that the
file itself has not changed since you visited or saved it last. If the file has changed, Emacs
prints a warning message. See Section 15.3.2 [Simultaneous Editing], page 107.

You can switch to a specific file called out in the current buffer by calling the function
find-this-file. By providing a prefix argument, this function calls filename-at-point
and switches to a buffer visiting the file filename. It creates one if none already exists. You
can use this function to edit the file mentioned in the buffer you are working in or to test if
the file exists. You can do that by using the minibuffer completion after snatching the all
or part of the filename.

If the variable find-file-use-truenames’s value is non-nil, a buffer’s visited filename
will always be traced back to the real file. The filename will never be a symbolic link, and
there will never be a symbolic link anywhere in its directory path. In other words, the
buffer-file-name and buffer-file-truename will be equal.

If the variable find-file-compare-truenames value is non-nil, the find-file com-
mand will check the buffer-file-truename of all visited files when deciding whether a
given file is already in a buffer, instead of just buffer-file-name. If you attempt to visit
another file which is a hard-link or symbolic-link to a file that is already in a buffer, the
existing buffer will be found instead of a newly created one.

If you want to create a file, just visit it. Emacs prints ‘(New File)’ in the echo area,
but in other respects behaves as if you had visited an existing empty file. If you make any
changes and save them, the file is created.

If you visit a nonexistent file unintentionally (because you typed the wrong file name),
use the C-x C-v (find-alternate-file) command to visit the file you wanted. C-x C-v

is similar to C-x C-f, but it kills the current buffer (after first offering to save it if it is
modified). C-x C-v is allowed even if the current buffer is not visiting a file.

If the file you specify is actually a directory, Dired is called on that directory (see
Section 15.9 [Dired], page 120). To inhibit this, set the variable find-file-run-dired to
nil; then it is an error to try to visit a directory.

C-x 4 f (find-file-other-window) is like C-x C-f except that the buffer containing
the specified file is selected in another window. The window that was selected before C-x

4 f continues to show the same buffer it was already showing. If you use this command
when only one window is being displayed, that window is split in two, with one window
showing the same buffer as before, and the other one showing the newly requested file. See
Chapter 17 [Windows], page 131.

104 XEmacs User’s Manual

C-x 5 C-f (find-file-other-frame) is like C-x C-f except that it creates a new frame
in which the file is displayed.

Use the function find-this-file-other-window to edit a file mentioned in the buffer
you are editing or to test if that file exists. To do this, use the minibuffer completion after
snatching the part or all of the filename. By providing a prefix argument, the function
calls filename-at-point and switches you to a buffer visiting the file filename in another
window. The function creates a buffer if none already exists. This function is similar to
find-file-other-window.

There are two hook variables that allow extensions to modify the operation of visiting
files. Visiting a file that does not exist runs the functions in the list find-file-not-found-
hooks; the value of this variable is expected to be a list of functions which are called one
by one until one of them returns non-nil. Any visiting of a file, whether extant or not,
expects find-file-hooks to contain list of functions and calls them all, one by one. In
both cases the functions receive no arguments. Visiting a nonexistent file runs the find-
file-not-found-hooks first.

15.3 Saving Files

Saving a buffer in Emacs means writing its contents back into the file that was visited
in the buffer.

C-x C-s Save the current buffer in its visited file (save-buffer).

C-x s Save any or all buffers in their visited files (save-some-buffers).

M-~ Forget that the current buffer has been changed (not-modified).

C-x C-w Save the current buffer in a specified file, and record that file as the one visited
in the buffer (write-file).

M-x set-visited-file-name

Change file the name under which the current buffer will be saved.

To save a file and make your changes permanent, type C-x C-s (save-buffer). After
saving is finished, C-x C-s prints a message such as:

Wrote /u/rms/gnu/gnu.tasks

If the selected buffer is not modified (no changes have been made in it since the buffer was
created or last saved), Emacs does not save it because it would have no effect. Instead, C-x
C-s prints a message in the echo area saying:

(No changes need to be saved)

The command C-x s (save-some-buffers) can save any or all modified buffers. First it
asks, for each modified buffer, whether to save it. The questions should be answered with
y or n. C-x C-c, the key that kills Emacs, invokes save-some-buffers and therefore asks
the same questions.

If you have changed a buffer and do not want the changes to be saved, you should take
some action to prevent it. Otherwise, you are liable to save it by mistake each time you

Chapter 15: File Handling 105

use save-some-buffers or a related command. One thing you can do is type M-~ (not-
modified), which removes the indication that the buffer is modified. If you do this, none
of the save commands will believe that the buffer needs to be saved. (‘~’ is often used
as a mathematical symbol for ‘not’; thus Meta-~ is ‘not’, metafied.) You could also use
set-visited-file-name (see below) to mark the buffer as visiting a different file name,
not in use for anything important.

You can also undo all the changes made since the file was visited or saved, by reading
the text from the file again. This is called reverting. See Section 15.4 [Reverting], page 108.
Alternatively, you can undo all the changes by repeating the undo command C-x u; but this
only works if you have not made more changes than the undo mechanism can remember.

M-x set-visited-file-name alters the name of the file that the current buffer is visit-
ing. It prompts you for the new file name in the minibuffer. You can also use set-visited-
file-name on a buffer that is not visiting a file. The buffer’s name is changed to correspond
to the file it is now visiting unless the new name is already used by a different buffer; in that
case, the buffer name is not changed. set-visited-file-name does not save the buffer in
the newly visited file; it just alters the records inside Emacs so that it will save the buffer
in that file. It also marks the buffer as “modified” so that C-x C-s will save.

If you wish to mark a buffer as visiting a different file and save it right away, use C-x

C-w (write-file). It is precisely equivalent to set-visited-file-name followed by C-x

C-s. C-x C-s used on a buffer that is not visiting a file has the same effect as C-x C-w; that
is, it reads a file name, marks the buffer as visiting that file, and saves it there. The default
file name in a buffer that is not visiting a file is made by combining the buffer name with
the buffer’s default directory.

If Emacs is about to save a file and sees that the date of the latest version on disk
does not match what Emacs last read or wrote, Emacs notifies you of this fact, because it
probably indicates a problem caused by simultaneous editing and requires your immediate
attention. See Section 15.3.2 [Simultaneous Editing], page 107.

If the variable require-final-newline is non-nil, Emacs puts a newline at the end of
any file that doesn’t already end in one, every time a file is saved or written.

Use the hook variable write-file-hooks to implement other ways to write files, and
specify things to be done before files are written. The value of this variable should be a
list of Lisp functions. When a file is to be written, the functions in the list are called, one
by one, with no arguments. If one of them returns a non-nil value, Emacs takes this to
mean that the file has been written in some suitable fashion; the rest of the functions are
not called, and normal writing is not done. Use the hook variable after-save-hook to list
all the functions to be called after writing out a buffer to a file.

15.3.1 Backup Files

Because Unix does not provide version numbers in file names, rewriting a file in Unix
automatically destroys all record of what the file used to contain. Thus, saving a file from
Emacs throws away the old contents of the file—or it would, except that Emacs carefully
copies the old contents to another file, called the backup file, before actually saving. (Make
sure that the variable make-backup-files is non-nil. Backup files are not written if this
variable is nil).

106 XEmacs User’s Manual

At your option, Emacs can keep either a single backup file or a series of numbered backup
files for each file you edit.

Emacs makes a backup for a file only the first time a file is saved from one buffer. No
matter how many times you save a file, its backup file continues to contain the contents from
before the file was visited. Normally this means that the backup file contains the contents
from before the current editing session; however, if you kill the buffer and then visit the file
again, a new backup file is made by the next save.

15.3.1.1 Single or Numbered Backups

If you choose to have a single backup file (the default), the backup file’s name is con-
structed by appending ‘~’ to the file name being edited; thus, the backup file for ‘eval.c’
is ‘eval.c~’.

If you choose to have a series of numbered backup files, backup file names are made by
appending ‘.~’, the number, and another ‘~’ to the original file name. Thus, the backup
files of ‘eval.c’ would be called ‘eval.c.~1~’, ‘eval.c.~2~’, and so on, through names like
‘eval.c.~259~’ and beyond.

If protection stops you from writing backup files under the usual names, the backup file
is written as ‘%backup%~’ in your home directory. Only one such file can exist, so only the
most recently made backup is available.

The choice of single backup or numbered backups is controlled by the variable version-
control. Its possible values are:

t Make numbered backups.

nil Make numbered backups for files that have numbered backups already. Other-
wise, make single backups.

never Never make numbered backups; always make single backups.

version-control may be set locally in an individual buffer to control the making of backups
for that buffer’s file. For example, Rmail mode locally sets version-control to never to
make sure that there is only one backup for an Rmail file. See Section 29.2.4 [Locals],
page 270.

15.3.1.2 Automatic Deletion of Backups

To prevent unlimited consumption of disk space, Emacs can delete numbered backup
versions automatically. Generally Emacs keeps the first few backups and the latest few
backups, deleting any in between. This happens every time a new backup is made. The
two variables that control the deletion are kept-old-versions and kept-new-versions.
Their values are, respectively the number of oldest (lowest-numbered) backups to keep and
the number of newest (highest-numbered) ones to keep, each time a new backup is made.
The values are used just after a new backup version is made; that newly made backup is
included in the count in kept-new-versions. By default, both variables are 2.

Chapter 15: File Handling 107

If trim-versions-without-asking is non-nil, excess middle versions are deleted with-
out notification. If it is nil, the default, you are asked whether the excess middle versions
should really be deleted.

You can also use Dired’s . (Period) command to delete old versions. See Section 15.9
[Dired], page 120.

15.3.1.3 Copying vs. Renaming

You can make backup files by copying the old file or by renaming it. This makes a
difference when the old file has multiple names. If you rename the old file into the backup
file, the alternate names become names for the backup file. If you copy the old file instead,
the alternate names remain names for the file that you are editing, and the contents accessed
by those names will be the new contents.

How you make a backup file may also affect the file’s owner and group. If you use
copying, they do not change. If renaming is used, you become the file’s owner, and the
file’s group becomes the default (different operating systems have different defaults for the
group).

Having the owner change is usually a good idea, because then the owner is always
the person who last edited the file. Occasionally there is a file whose owner should not
change. Since most files should change owners, it is a good idea to use local variable lists to
set backup-by-copying-when-mismatch for the special cases where the owner should not
change (see Section 29.2.5 [File Variables], page 271).

Three variables control the choice of renaming or copying. Normally, renaming is done.
If the variable backup-by-copying is non-nil, copying is used. Otherwise, if the variable
backup-by-copying-when-linked is non-nil, copying is done for files that have multiple
names, but renaming may still be done when the file being edited has only one name. If
the variable backup-by-copying-when-mismatch is non-nil, copying is done if renaming
would cause the file’s owner or group to change.

15.3.2 Protection Against Simultaneous Editing

Simultaneous editing occurs when two users visit the same file, both make changes, and
both save their changes. If no one was informed that this was happening, and you saved
first, you would later find that your changes were lost. On some systems, Emacs notices
immediately when the second user starts to change a file already being edited, and issues
a warning. When this is not possible, or if the second user has started to change the file
despite the warning, Emacs checks when the file is saved, and issues a second warning when
a user is about to overwrite a file containing another user’s changes. If you are the user
editing the file, you can take corrective action at this point and prevent actual loss of work.

When you make the first modification in an Emacs buffer that is visiting a file, Emacs
records that you have locked the file. (It does this by writing another file in a directory
reserved for this purpose.) The lock is removed when you save the changes. The idea is
that the file is locked whenever the buffer is modified. If you begin to modify the buffer
while the visited file is locked by someone else, this constitutes a collision, and Emacs asks

108 XEmacs User’s Manual

you what to do. It does this by calling the Lisp function ask-user-about-lock, which you
can redefine to customize what it does. The standard definition of this function asks you a
question and accepts three possible answers:

s Steal the lock. Whoever was already changing the file loses the lock, and you
get the lock.

p Proceed. Go ahead and edit the file despite its being locked by someone else.

q Quit. This causes an error (file-locked) and the modification you were trying
to make in the buffer does not actually take place.

Note that locking works on the basis of a file name; if a file has multiple names, Emacs
does not realize that the two names are the same file and cannot prevent two users from
editing it simultaneously under different names. However, basing locking on names means
that Emacs can interlock the editing of new files that do not really exist until they are
saved.

Some systems are not configured to allow Emacs to make locks. On these systems,
Emacs cannot detect trouble in advance, but it can still detect it in time to prevent you
from overwriting someone else’s changes.

Every time Emacs saves a buffer, it first checks the last-modification date of the existing
file on disk to see that it has not changed since the file was last visited or saved. If the date
does not match, it implies that changes were made in the file in some other way, and these
changes are about to be lost if Emacs actually does save. To prevent this, Emacs prints
a warning message and asks for confirmation before saving. Occasionally you will know
why the file was changed and know that it does not matter; then you can answer yes and
proceed. Otherwise, you should cancel the save with C-g and investigate the situation.

The first thing you should do when notified that simultaneous editing has already
taken place is to list the directory with C-u C-x C-d (see Section 15.7 [Directory Listing],
page 119). This will show the file’s current author. You should attempt to contact that
person and ask him not to continue editing. Often the next step is to save the contents of
your Emacs buffer under a different name, and use diff to compare the two files.

Simultaneous editing checks are also made when you visit a file that is already visited
with C-x C-f and when you start to modify a file. This is not strictly necessary, but it is
useful to find out about such a problem as early as possible, when corrective action takes
less work.

Another way to protect your file is to set the read, write, and executable permissions for
the file. Use the function set-default-file-modes to set the UNIX umask value to the
nmask argument. The umask value is the default protection mode for new files.

15.4 Reverting a Buffer

If you have made extensive changes to a file and then change your mind about them,
you can get rid of all changes by reading in the previous version of the file. To do this,
use M-x revert-buffer, which operates on the current buffer. Since reverting a buffer can
result in very extensive changes, you must confirm it with yes.

Chapter 15: File Handling 109

If the current buffer has been auto-saved more recently than it has been saved explicitly,
revert-buffer offers to read the auto save file instead of the visited file (see Section 15.5
[Auto Save], page 109). Emacs asks you about the auto-save file before the request for
confirmation of the revert-buffer operation, and demands y or n as an answer. If you
have started to type yes for confirmation without realizing that the auto-save question was
going to be asked, the y will answer that question, but the es will not be valid confirmation.
This gives you a chance to cancel the operation with C-g and try again with the answers
you really intend.

revert-buffer keeps point at the same distance (measured in characters) from the
beginning of the file. If the file was edited only slightly, you will be at approximately the
same piece of text after reverting as before. If you have made more extensive changes, the
value of point in the old file may bring you to a totally different piece of text than your last
editing point.

A buffer reverted from its visited file is marked “not modified” until you make a change.
Some kinds of buffers whose contents reflect data bases other than files, such as Dired

buffers, can also be reverted. For them, reverting means recalculating their contents from
the appropriate data. Buffers created randomly with C-x b cannot be reverted; revert-
buffer reports an error when asked to do so.

15.5 Auto-Saving: Protection Against Disasters

Emacs saves all the visited files from time to time (based on counting your keystrokes)
without being asked. This is called auto-saving. It prevents you from losing more than a
limited amount of work if the system crashes.

When Emacs determines it is time for auto-saving, each buffer is considered and is
auto-saved if auto-saving is turned on for it and it has changed since the last time it was
auto-saved. If any auto-saving is done, the message ‘Auto-saving...’ is displayed in the
echo area until auto-saving is finished. Errors occurring during auto-saving are caught so
that they do not interfere with the execution of commands you have been typing.

15.5.1 Auto-Save Files

Auto-saving does not normally write to the files you visited, because it can be undesirable
to save a program that is in an inconsistent state when you have made only half of a planned
change. Instead, auto-saving is done in a different file called the auto-save file, and the
visited file is changed only when you save explicitly, for example, with C-x C-s.

Normally, the name of the auto-save file is generated by appending ‘#’ to the front and
back of the visited file name. Thus, a buffer visiting file ‘foo.c’ would be auto-saved in
a file ‘#foo.c#’. Most buffers that are not visiting files are auto-saved only if you request
it explicitly; when they are auto-saved, the auto-save file name is generated by appending
‘#%’ to the front and ‘#’ to the back of buffer name. For example, the ‘*mail*’ buffer in
which you compose messages to be sent is auto-saved in a file named ‘#%*mail*#’. Names
of auto-save files are generated this way unless you customize the functions make-auto-
save-file-name and auto-save-file-name-p to do something different. The file name to

110 XEmacs User’s Manual

be used for auto-saving a buffer is calculated at the time auto-saving is turned on in that
buffer.

If you want auto-saving to be done in the visited file, set the variable auto-save-
visited-file-name to be non-nil. In this mode, there is really no difference between
auto-saving and explicit saving.

Emacs deletes a buffer’s auto-save file when you explicitly save the buffer. To inhibit the
deletion, set the variable delete-auto-save-files to nil. Changing the visited file name
with C-x C-w or set-visited-file-name renames any auto-save file to correspond to the
new visited name.

15.5.2 Controlling Auto-Saving

Each time you visit a file, auto-saving is turned on for that file’s buffer if the variable
auto-save-default is non-nil (but not in batch mode; see Chapter 3 [Entering Emacs],
page 33). The default for this variable is t, so Emacs auto-saves buffers that visit files by
default. You can use the command M-x auto-save-mode to turn auto-saving for a buffer on
or off. Like other minor mode commands, M-x auto-save-mode turns auto-saving on with
a positive argument, off with a zero or negative argument; with no argument, it toggles.

Emacs performs auto-saving periodically based on counting how many characters you
have typed since the last time auto-saving happened. The variable auto-save-interval
specifies the number of characters between auto-saves. By default, it is 300. Emacs also
auto-saves whenever you call the function do-auto-save.

Emacs also does auto-saving whenever it gets a fatal error. This includes killing the
Emacs job with a shell command such as kill -emacs, or disconnecting a phone line or
network connection.

You can set the number of seconds of idle time before an auto-save is done. Setting
the value of the variable auto-save-timeout to zero or nil will disable auto-saving due to
idleness.

The actual amount of idle time between auto-saves is logarithmically related to the size
of the current buffer. This variable is the number of seconds after which an auto-save will
happen when the current buffer is 50k or less; the timeout will be 2 1/4 times this in a 200k
buffer, 3 3/4 times this in a 1000k buffer, and 4 1/2 times this in a 2000k buffer.

For this variable to have any effect, you must do (require ’timer).

15.5.3 Recovering Data from Auto-Saves

If you want to use the contents of an auto-save file to recover from a loss of data, use
the command M-x recover-file 〈RET〉 file 〈RET〉. Emacs visits file and then (after your
confirmation) restores the contents from the auto-save file ‘#file#’. You can then save the
file with C-x C-s to put the recovered text into file itself. For example, to recover file
‘foo.c’ from its auto-save file ‘#foo.c#’, do:

M-x recover-file 〈RET〉 foo.c 〈RET〉
C-x C-s

Chapter 15: File Handling 111

Before asking for confirmation, M-x recover-file displays a directory listing describing
the specified file and the auto-save file, so you can compare their sizes and dates. If the
auto-save file is older, M-x recover-file does not offer to read it.

Auto-saving is disabled by M-x recover-file because using this command implies that
the auto-save file contains valuable data from a past session. If you save the data in the
visited file and then go on to make new changes, turn auto-saving back on with M-x auto-

save-mode.

15.6 Version Control

Version control systems are packages that can record multiple versions of a source file,
usually storing the unchanged parts of the file just once. Version control systems also
record history information such as the creation time of each version, who created it, and a
description of what was changed in that version.

The GNU project recommends the version control system known as RCS, which is free
software and available from the Free Software Foundation. Emacs supports use of either
RCS or SCCS (a proprietary, but widely used, version control system that is not quite
as powerful as RCS) through a facility called VC. The same Emacs commands work with
either RCS or SCCS, so you hardly have to know which one of them you are using.

15.6.1 Concepts of Version Control

When a file is under version control, we also say that it is registered in the version
control system. Each registered file has a corresponding master file which represents the
file’s present state plus its change history, so that you can reconstruct from it either the
current version or any specified earlier version. Usually the master file also records a log
entry for each version describing what was changed in that version.

The file that is maintained under version control is sometimes called the work file cor-
responding to its master file.

To examine a file, you check it out. This extracts a version of the source file (typically,
the most recent) from the master file. If you want to edit the file, you must check it out
locked. Only one user can do this at a time for any given source file. (This kind of locking
is completely unrelated to the locking that Emacs uses to detect simultaneous editing of a
file.)

When you are done with your editing, you must check in the new version. This records
the new version in the master file, and unlocks the source file so that other people can lock
it and thus modify it.

Checkin and checkout are the basic operations of version control. You can do both of
them with a single Emacs command: C-x C-q (vc-toggle-read-only).

A snapshot is a coherent collection of versions of the various files that make up a program.
See Section 15.6.9 [Snapshots], page 117.

112 XEmacs User’s Manual

15.6.2 Editing with Version Control

When you visit a file that is maintained using version control, the mode line displays
‘RCS’ or ‘SCCS’ to inform you that version control is in use, and also (in case you care) which
low-level system the file is actually stored in. Normally, such a source file is read-only, and
the mode line indicates this with ‘%%’. With RCS, the mode line also indicates the number
of the head version, which is normally also the version you are looking at.

These are the commands for editing a file maintained with version control:

C-x C-q Check the visited file in or out.

C-x v u Revert the buffer and the file to the last checked in version.

C-x v c Remove the last-entered change from the master for the visited file. This undoes
your last check-in.

C-x v i Register the visited file in version control.

(C-x v is the prefix key for version control commands; all of these commands except for C-x
C-q start with C-x v.)

When you want to modify a file maintained with version control, type C-x C-q (vc-
toggle-read-only). This checks out the file, and tells RCS or SCCS to lock the file. This
means making the file writable for you (but not for anyone else).

When you are finished editing the file, type C-x C-q again. When used on a file that
is checked out, this command checks the file in. But check-in does not start immediately;
first, you must enter the log entry—a description of the changes in the new version. C-x

C-q pops up a buffer for you to enter this in. When you are finished typing in the log entry,
type C-c C-c to terminate it; this is when actual check-in takes place.

Once you have checked in your changes, the file is unlocked, so that other users can lock
it and modify it.

Emacs does not save backup files for source files that are maintained with version control.
If you want to make backup files despite version control, set the variable vc-make-backup-
files to a non-nil value.

Normally the work file exists all the time, whether it is locked or not. If you set vc-
keep-workfiles to nil, then checking in a new version with C-x C-q deletes the work file;
but any attempt to visit the file with Emacs creates it again.

It is not impossible to lock a file that someone else has locked. If you try to check out a
file that is locked, C-x C-q asks you whether you want to “steal the lock.” If you say yes,
the file becomes locked by you, but a message is sent to the person who had formerly locked
the file, to inform him of what has happened. The mode line indicates that a file is locked
by someone else by displaying the login name of that person, before the version number.

If you want to discard your current set of changes and revert to the last version checked
in, use C-x v u (vc-revert-buffer). This cancels your last check-out, leaving the file
unlocked. If you want to make a different set of changes, you must first check the file out
again. C-x v u requires confirmation, unless it sees that you haven’t made any changes since
the last checked-in version.

C-x v u is also the command to use if you lock a file and then don’t actually change it.

Chapter 15: File Handling 113

You can cancel a change after checking it in, with C-x v c (vc-cancel-version). This
command discards all record of the most recent checked in version, so be careful about
using it. It requires confirmation with yes. By default, C-x v c reverts your workfile and
buffer to the previous version (the one that precedes the version that is deleted), but you
can prevent the reversion by giving the command a prefix argument. Then the buffer does
not change.

This command with a prefix argument is useful when you have checked in a change and
then discover a trivial error in it; you can cancel the erroneous check-in, fix the error, and
repeat the check-in.

Be careful when invoking C-x v c, as it is easy to throw away a lot of work with it. To
help you be careful, this command always requires confirmation with ‘yes’.

You can register the visited file for version control using C-x v i (vc-register). If the
variable vc-default-back-end is non-nil, it specifies which version control system to use;
otherwise, this uses RCS if it is installed on your system and SCCS if not. After C-x v i,
the file is unlocked and read-only. Type C-x C-q if you wish to edit it.

By default, the initial version number is 1.1. If you want to use a different number, give
C-x v i a prefix argument; then it reads the initial version number using the minibuffer.

If vc-initial-comment is non-nil, C-x v i reads an initial comment (much like a log
entry) to describe the purpose of this source file.

To specify the version number for a subsequent checkin, use the command C-u C-x v v.
C-x v v (vc-next-action) is the command that C-x C-q uses to do the “real work” when
the visited file uses version control. When used for checkin, and given a prefix argument, it
reads the version number with the minibuffer.

15.6.3 Variables Affecting Check-in and Check-out

If vc-suppress-confirm is non-nil, then C-x C-q and C-x v i can save the current
buffer without asking, and C-x v u also operates without asking for confirmation. (This
variable does not affect C-x v c; that is so drastic that it should always ask for confirmation.)

VC mode does much of its work by running the shell commands for RCS and SCCS. If
vc-command-messages is non-nil, VC displays messages to indicate which shell commands
it runs, and additional messages when the commands finish.

Normally, VC assumes that it can deduce the locked/unlocked state of files by looking at
the file permissions of the work file; this is fast. However, if the ‘RCS’ or ‘SCCS’ subdirectory
is actually a symbolic link, then VC does not trust the file permissions to reflect this status.

You can specify the criterion for whether to trust the file permissions by setting the vari-
able vc-mistrust-permissions. Its value may be t (always mistrust the file permissions
and check the master file), nil (always trust the file permissions), or a function of one argu-
ment which makes the decision. The argument is the directory name of the ‘RCS’ or ‘SCCS’
subdirectory. A non-nil value from the function says to mistrust the file permissions.

If you find that the file permissions of work files are changed erroneously, set vc-
mistrust-permissions to t. Then VC always checks the master file to determine the
file’s status.

114 XEmacs User’s Manual

You can specify additional directories to search for version control programs by setting
the variable vc-path. These directories are searched before the usual search path. The
proper result usually happens automatically.

15.6.4 Log Entries

When you’re editing an initial comment or log entry for inclusion in a master file, finish
your entry by typing C-c C-c.

C-c C-c Finish the comment edit normally (vc-finish-logentry). This finishes check-
in.

To abort check-in, just don’t type C-c C-c in that buffer. You can switch buffers and
do other editing. As long as you don’t try to check in another file, the entry you were
editing remains in its buffer, and you can go back to that buffer at any time to complete
the check-in.

If you change several source files for the same reason, it is often convenient to specify
the same log entry for many of the files. To do this, use the history of previous log entries.
The commands M-n, M-p, M-s and M-r for doing this work just like the minibuffer history
commands (except that these versions are used outside the minibuffer).

Each time you check in a file, the log entry buffer is put into VC Log mode, which
involves running two hooks: text-mode-hook and vc-log-mode-hook.

15.6.5 Change Logs and VC

If you use RCS for a program and also maintain a change log file for it (see Section 22.10
[Change Log], page 177), you can generate change log entries automatically from the version
control log entries:

C-x v a Visit the current directory’s change log file and create new entries for ver-
sions checked in since the most recent entry in the change log file (vc-update-
change-log).
This command works with RCS only; it does not work with SCCS.

For example, suppose the first line of ‘ChangeLog’ is dated 10 April 1992, and that the
only check-in since then was by Nathaniel Bowditch to ‘rcs2log’ on 8 May 1992 with log
text ‘Ignore log messages that start with ‘#’.’. Then C-x v a visits ‘ChangeLog’ and
inserts text like this:

Fri May 8 21:45:00 1992 Nathaniel Bowditch (nat@apn.org)

* rcs2log: Ignore log messages that start with ‘#’.

You can then edit the new change log entry further as you wish.
Normally, the log entry for file ‘foo’ is displayed as ‘* foo: text of log entry ’. The

‘:’ after ‘foo’ is omitted if the text of the log entry starts with ‘(functionname): ’. For
example, if the log entry for ‘vc.el’ is ‘(vc-do-command): Check call-process status.’,
then the text in ‘ChangeLog’ looks like this:

Chapter 15: File Handling 115

Wed May 6 10:53:00 1992 Nathaniel Bowditch (nat@apn.org)

* vc.el (vc-do-command): Check call-process status.

When C-x v a adds several change log entries at once, it groups related log entries
together if they all are checked in by the same author at nearly the same time. If the log
entries for several such files all have the same text, it coalesces them into a single entry. For
example, suppose the most recent checkins have the following log entries:
For ‘vc.texinfo’:

Fix expansion typos.
For ‘vc.el’:

Don’t call expand-file-name.
For ‘vc-hooks.el’:

Don’t call expand-file-name.

They appear like this in ‘ChangeLog’:
Wed Apr 1 08:57:59 1992 Nathaniel Bowditch (nat@apn.org)

* vc.texinfo: Fix expansion typos.

* vc.el, vc-hooks.el: Don’t call expand-file-name.

Normally, C-x v a separates log entries by a blank line, but you can mark several related
log entries to be clumped together (without an intervening blank line) by starting the text
of each related log entry with a label of the form ‘{clumpname} ’. The label itself is not
copied to ‘ChangeLog’. For example, suppose the log entries are:
For ‘vc.texinfo’:

{expand} Fix expansion typos.
For ‘vc.el’:

{expand} Don’t call expand-file-name.
For ‘vc-hooks.el’:

{expand} Don’t call expand-file-name.

Then the text in ‘ChangeLog’ looks like this:
Wed Apr 1 08:57:59 1992 Nathaniel Bowditch (nat@apn.org)

* vc.texinfo: Fix expansion typos.
* vc.el, vc-hooks.el: Don’t call expand-file-name.

A log entry whose text begins with ‘#’ is not copied to ‘ChangeLog’. For example, if you
merely fix some misspellings in comments, you can log the change with an entry beginning
with ‘#’ to avoid putting such trivia into ‘ChangeLog’.

15.6.6 Examining And Comparing Old Versions

C-x v ~ version 〈RET〉
Examine version version of the visited file, in a buffer of its own (vc-version-
other-window).

C-x v = Compare the current buffer contents with the latest checked-in version of the
file.

116 XEmacs User’s Manual

C-u C-x v = file 〈RET〉 oldvers 〈RET〉 newvers 〈RET〉
Compare the specified two versions of file.

You can examine any version of a file by first visiting it, and then using C-x v ~ version
〈RET〉 (vc-version-other-window). This puts the text of version version in a file named
‘filename.~version~’, then visits it in a separate window.

To compare two versions of a file, use the command C-x v = (vc-diff).

Plain C-x v = compares the current buffer contents (saving them in the file if necessary)
with the last checked-in version of the file. With a prefix argument, C-x v = reads a file
name and two version numbers, then compares those versions of the specified file.

If you supply a directory name instead of the name of a work file, this command compares
the two specified versions of all registered files in that directory and its subdirectories. You
can also specify a snapshot name (see Section 15.6.9 [Snapshots], page 117) instead of one
or both version numbers.

You can specify a checked-in version by its number; you can specify the most recent
checked-in version with an empty version number.

This command works by running the vcdiff utility, getting the options from the variable
diff-switches. It displays the output in a special buffer in another window. Unlike the M-
x diff command, C-x v = does not try to find the changes in the old and new versions. This
is because one or both versions normally do not exist as files. They exist only in the records
of the master file. See Section 15.8 [Comparing Files], page 120, for more information about
M-x diff.

15.6.7 VC Status Commands

To view the detailed version control status and history of a file, type C-x v l (vc-print-
log). It displays the history of changes to the current file, including the text of the log
entries. The output appears in a separate window.

When you are working on a large program, it’s often useful to find all the files that are
currently locked, or all the files maintained in version control at all. You can use C-x v

d (vc-directory) to show all the locked files in or beneath the current directory. This
includes all files that are locked by any user. C-u C-x v d lists all files in or beneath the
current directory that are maintained with version control.

The list of files is displayed as a buffer that uses an augmented Dired mode. The names
of the users locking various files are shown (in parentheses) in place of the owner and group.
All the normal Dired commands work in this buffer. Most interactive VC commands work
also, and apply to the file name on the current line.

The C-x v v command (vc-next-action), when used in the augmented Dired buffer,
operates on all the marked files (or the file on the current line). If it operates on more than
one file, it handles each file according to its current state; thus, it may check out one file
and check in another (because it is already checked out). If it has to check in any files, it
reads a single log entry, then uses that text for all the files being checked in. This can be
convenient for registering or checking in several files at once, as part of the same change.

Chapter 15: File Handling 117

15.6.8 Renaming VC Work Files and Master Files

When you rename a registered file, you must also rename its master file correspondingly
to get proper results. Use vc-rename-file to rename the source file as you specify, and
rename its master file accordingly. It also updates any snapshots (see Section 15.6.9 [Snap-
shots], page 117) that mention the file, so that they use the new name; despite this, the
snapshot thus modified may not completely work (see Section 15.6.9.2 [Snapshot Caveats],
page 117).

You cannot use vc-rename-file on a file that is locked by someone else.

15.6.9 Snapshots

A snapshot is a named set of file versions (one for each registered file) that you can treat
as a unit. One important kind of snapshot is a release, a (theoretically) stable version of
the system that is ready for distribution to users.

15.6.9.1 Making and Using Snapshots

There are two basic commands for snapshots; one makes a snapshot with a given name,
the other retrieves a named snapshot.

C-x v s name 〈RET〉
Define the last saved versions of every registered file in or under the current
directory as a snapshot named name (vc-create-snapshot).

C-x v r name 〈RET〉
Check out all registered files at or below the current directory level using what-
ever versions correspond to the snapshot name (vc-retrieve-snapshot).
This command reports an error if any files are locked at or below the cur-
rent directory, without changing anything; this is to avoid overwriting work in
progress.

A snapshot uses a very small amount of resources—just enough to record the list of file
names and which version belongs to the snapshot. Thus, you need not hesitate to create
snapshots whenever they are useful.

You can give a snapshot name as an argument to C-x v = or C-x v ~ (see Section 15.6.6
[Old Versions], page 115). Thus, you can use it to compare a snapshot against the current
files, or two snapshots against each other, or a snapshot against a named version.

15.6.9.2 Snapshot Caveats

VC’s snapshot facilities are modeled on RCS’s named-configuration support. They use
RCS’s native facilities for this, so under VC snapshots made using RCS are visible even
when you bypass VC.

118 XEmacs User’s Manual

For SCCS, VC implements snapshots itself. The files it uses contain name/file/version-
number triples. These snapshots are visible only through VC.

A snapshot is a set of checked-in versions. So make sure that all the files are checked in
and not locked when you make a snapshot.

File renaming and deletion can create some difficulties with snapshots. This is not a
VC-specific problem, but a general design issue in version control systems that no one has
solved very well yet.

If you rename a registered file, you need to rename its master along with it (the command
vc-rename-file does this automatically). If you are using SCCS, you must also update the
records of the snapshot, to mention the file by its new name (vc-rename-file does this,
too). An old snapshot that refers to a master file that no longer exists under the recorded
name is invalid; VC can no longer retrieve it. It would be beyond the scope of this manual
to explain enough about RCS and SCCS to explain how to update the snapshots by hand.

Using vc-rename-file makes the snapshot remain valid for retrieval, but it does not
solve all problems. For example, some of the files in the program probably refer to others
by name. At the very least, the makefile probably mentions the file that you renamed. If
you retrieve an old snapshot, the renamed file is retrieved under its new name, which is not
the name that the makefile expects. So the program won’t really work as retrieved.

15.6.10 Inserting Version Control Headers

Sometimes it is convenient to put version identification strings directly into working files.
Certain special strings called version headers are replaced in each successive version by the
number of that version.

You can use the C-x v h command (vc-insert-headers) to insert a suitable header
string.

C-x v h Insert headers in a file for use with your version-control system.

The default header string is ‘\$Id\$’ for RCS and ‘\%W\%’ for SCCS. (The actual strings
inserted do not have the backslashes in them. They were placed in the Info source file so
that the strings don’t get interpreted as version-control headers when the Info source files
are maintained under version control.) You can specify other headers to insert by setting
the variable vc-header-alist. Its value is a list of elements of the form (program . string)
where program is RCS or SCCS and string is the string to use.

Instead of a single string, you can specify a list of strings; then each string in the list is
inserted as a separate header on a line of its own.

It is often necessary to use “superfluous” backslashes when writing the strings that you
put in this variable. This is to prevent the string in the constant from being interpreted as
a header itself if the Emacs Lisp file containing it is maintained with version control.

Each header is inserted surrounded by tabs, inside comment delimiters, on a new line at
the start of the buffer. Normally the ordinary comment start and comment end strings of
the current mode are used, but for certain modes, there are special comment delimiters for
this purpose; the variable vc-comment-alist specifies them. Each element of this list has
the form (mode starter ender).

Chapter 15: File Handling 119

The variable vc-static-header-alist specifies further strings to add based on the
name of the buffer. Its value should be a list of elements of the form (regexp . format).
Whenever regexp matches the buffer name, format is inserted as part of the header. A
header line is inserted for each element that matches the buffer name, and for each string
specified by vc-header-alist. The header line is made by processing the string from
vc-header-alist with the format taken from the element. The default value for vc-
static-header-alist is:

(("\\.c$" .
"\n#ifndef lint\nstatic char vcid[] = \"\%s\";\n\

#endif /* lint */\n"))

which specifies insertion of a string of this form:

#ifndef lint
static char vcid[] = "string";
#endif /* lint */

15.7 Listing a File Directory

Files are organized by Unix into directories. A directory listing is a list of all the files in
a directory. Emacs provides directory listings in brief format (file names only) and verbose
format (sizes, dates, and authors included).

C-x C-d dir-or-pattern
Print a brief directory listing (list-directory).

C-u C-x C-d dir-or-pattern
Print a verbose directory listing.

To print a directory listing, use C-x C-d (list-directory). This command prompts in
the minibuffer for a file name which is either a directory to be listed or pattern containing
wildcards for the files to be listed. For example,

C-x C-d /u2/emacs/etc 〈RET〉

lists all the files in directory ‘/u2/emacs/etc’. An example of specifying a file name pattern
is:

C-x C-d /u2/emacs/src/*.c 〈RET〉

Normally, C-x C-d prints a brief directory listing containing just file names. A numeric
argument (regardless of value) tells it to print a verbose listing (like ls -l).

Emacs obtains the text of a directory listing by running ls in an inferior process. Two
Emacs variables control the switches passed to ls: list-directory-brief-switches is
a string giving the switches to use in brief listings ("-CF" by default). list-directory-
verbose-switches is a string giving the switches to use in a verbose listing ("-l" by
default).

The variable directory-abbrev-alist is an alist of abbreviations for file directories.
The list consists of elements of the form (FROM . TO), each meaning to replace FROM with TO
when it appears in a directory name. This replacement is done when setting up the default
directory of a newly visited file. Every FROM string should start with “^’’.

120 XEmacs User’s Manual

Use this feature when you have directories which you normally refer to via absolute
symbolic links. Make TO the name of the link, and FROM the name it is linked to.

15.8 Comparing Files

The command M-x diff compares two files, displaying the differences in an Emacs buffer
named ‘*Diff*’. It works by running the diff program, using options taken from the
variable diff-switches, whose value should be a string.

The buffer ‘*Diff*’ has Compilation mode as its major mode, so you can use C-x ‘ to
visit successive changed locations in the two source files. You can also move to a particular
hunk of changes and type C-c C-c to find the corresponding source location. You can also
use the other special commands of Compilation mode: 〈SPC〉 and 〈DEL〉 for scrolling, and M-p

and M-n for cursor motion. See Section 23.1 [Compilation], page 191.
The command M-x diff-backup compares a specified file with its most recent backup.

If you specify the name of a backup file, diff-backup compares it with the source file that
it is a backup of.

The command M-x compare-windows compares the text in the current window with that
in the next window. Comparison starts at point in each window. Point moves forward in
each window, a character at a time in each window, until the next characters in the two
windows are different. Then the command is finished. For more information about windows
in Emacs, Chapter 17 [Windows], page 131.

With a numeric argument, compare-windows ignores changes in whitespace. If the
variable compare-ignore-case is non-nil, it ignores differences in case as well.

15.9 Dired, the Directory Editor

Dired makes it easy to delete or visit many of the files in a single directory at once. It
creates an Emacs buffer containing a listing of the directory. You can use the normal Emacs
commands to move around in this buffer and special Dired commands to operate on the
files.

15.9.1 Entering Dired

To invoke dired, type C-x d or M-x dired. The command reads a directory name or
wildcard file name pattern as a minibuffer argument just like the list-directory com-
mand, C-x C-d. Where dired differs from list-directory is in naming the buffer after
the directory name or the wildcard pattern used for the listing, and putting the buffer
into Dired mode so that the special commands of Dired are available in it. The variable
dired-listing-switches is a string used as an argument to ls in making the directory;
this string must contain ‘-l’.

To display the Dired buffer in another window rather than in the selected window, use
C-x 4 d (dired-other-window) instead of C-x d.

Chapter 15: File Handling 121

15.9.2 Editing in Dired

Once the Dired buffer exists, you can switch freely between it and other Emacs buffers.
Whenever the Dired buffer is selected, certain special commands are provided that operate
on files that are listed. The Dired buffer is “read-only”, and inserting text in it is not
useful, so ordinary printing characters such as d and x are used for Dired commands. Most
Dired commands operate on the file described by the line that point is on. Some commands
perform operations immediately; others “flag” a file to be operated on later.

Most Dired commands that operate on the current line’s file also treat a numeric ar-
gument as a repeat count, meaning to act on the files of the next few lines. A negative
argument means to operate on the files of the preceding lines, and leave point on the first
of those lines.

All the usual Emacs cursor motion commands are available in Dired buffers. Some
special purpose commands are also provided. The keys C-n and C-p are redefined so that
they try to position the cursor at the beginning of the filename on the line, rather than at
the beginning of the line.

For extra convenience, 〈SPC〉 and n in Dired are equivalent to C-n. p is equivalent to C-p.
Moving by lines is done so often in Dired that it deserves to be easy to type. 〈DEL〉 (move
up and unflag) is often useful simply for moving up.

The g command in Dired runs revert-buffer to reinitialize the buffer from the actual
disk directory and show any changes made in the directory by programs other than Dired.
All deletion flags in the Dired buffer are lost when this is done.

15.9.3 Deleting Files With Dired

The primary use of Dired is to flag files for deletion and then delete them.

d Flag this file for deletion.

u Remove deletion-flag on this line.

〈DEL〉 Remove deletion-flag on previous line, moving point to that line.

x Delete the files that are flagged for deletion.

Flag all auto-save files (files whose names start and end with ‘#’) for deletion
(see Section 15.5 [Auto Save], page 109).

~ Flag all backup files (files whose names end with ‘~’) for deletion (see Sec-
tion 15.3.1 [Backup], page 105).

. (Period) Flag excess numeric backup files for deletion. The oldest and newest few backup
files of any one file are exempt; the middle ones are flagged.

You can flag a file for deletion by moving to the line describing the file and typing d or
C-d. The deletion flag is visible as a ‘D’ at the beginning of the line. Point is moved to the
beginning of the next line, so that repeated d commands flag successive files.

The files are flagged for deletion rather than deleted immediately to avoid the danger of
deleting a file accidentally. Until you direct Dired to delete the flagged files, you can remove

122 XEmacs User’s Manual

deletion flags using the commands u and 〈DEL〉. u works just like d, but removes flags rather
than making flags. 〈DEL〉 moves upward, removing flags; it is like u with numeric argument
automatically negated.

To delete the flagged files, type x. This command first displays a list of all the file names
flagged for deletion, and requests confirmation with yes. Once you confirm, all the flagged
files are deleted, and their lines are deleted from the text of the Dired buffer. The shortened
Dired buffer remains selected. If you answer no or quit with C-g, you return immediately
to Dired, with the deletion flags still present and no files actually deleted.

The #, ~, and . commands flag many files for deletion, based on their names. These
commands are useful precisely because they do not actually delete any files; you can remove
the deletion flags from any flagged files that you really wish to keep.

flags for deletion all files that appear to have been made by auto-saving (that is, files
whose names begin and end with ‘#’). ~ flags for deletion all files that appear to have been
made as backups for files that were edited (that is, files whose names end with ‘~’).

. (Period) flags just some of the backup files for deletion: only numeric backups that are
not among the oldest few nor the newest few backups of any one file. Normally dired-kept-
versions (not kept-new-versions; that applies only when saving) specifies the number of
newest versions of each file to keep, and kept-old-versions specifies the number of oldest
versions to keep. Period with a positive numeric argument, as in C-u 3 ., specifies the
number of newest versions to keep, overriding dired-kept-versions. A negative numeric
argument overrides kept-old-versions, using minus the value of the argument to specify
the number of oldest versions of each file to keep.

15.9.4 Immediate File Operations in Dired

Some file operations in Dired take place immediately when they are requested.

C Copies the file described on the current line. You must supply a file name to
copy to, using the minibuffer.

f Visits the file described on the current line. It is just like typing C-x C-f and
supplying that file name. If the file on this line is a subdirectory, f actually
causes Dired to be invoked on that subdirectory. See Section 15.2 [Visiting],
page 102.

o Like f, but uses another window to display the file’s buffer. The Dired buffer
remains visible in the first window. This is like using C-x 4 C-f to visit the file.
See Chapter 17 [Windows], page 131.

R Renames the file described on the current line. You must supply a file name to
rename to, using the minibuffer.

v Views the file described on this line using M-x view-file. Viewing a file is like
visiting it, but is slanted toward moving around in the file conveniently and
does not allow changing the file. See Section 15.10 [Misc File Ops], page 123.
Viewing a file that is a directory runs Dired on that directory.

Chapter 15: File Handling 123

15.10 Miscellaneous File Operations

Emacs has commands for performing many other operations on files. All operate on one
file; they do not accept wildcard file names.

You can use the command M-x add-name-to-file to add a name to an existing file
without removing the old name. The new name must belong on the file system that the file
is on.

M-x append-to-file adds the text of the region to the end of the specified file.
M-x copy-file reads the file old and writes a new file named new with the same contents.

Confirmation is required if a file named new already exists, because copying overwrites the
old contents of the file new.

M-x delete-file deletes a specified file, like the rm command in the shell. If you are
deleting many files in one directory, it may be more convenient to use Dired (see Section 15.9
[Dired], page 120).

M-x insert-file inserts a copy of the contents of a specified file into the current buffer at
point, leaving point unchanged before the contents and the mark after them. See Chapter 9
[Mark], page 63.

M-x make-symbolic-link reads two file names old and linkname, and then creates a
symbolic link named linkname and pointing at old. Future attempts to open file linkname
will then refer to the file named old at the time the opening is done, or will result in an
error if the name old is not in use at that time. Confirmation is required if you create the
link while linkname is in use. Note that not all systems support symbolic links.

M-x rename-file reads two file names old and new using the minibuffer, then renames
file old as new. If a file named new already exists, you must confirm with yes or renaming
is not done; this is because renaming causes the previous meaning of the name new to be
lost. If old and new are on different file systems, the file old is copied and deleted.

M-x view-file allows you to scan or read a file by sequential screenfuls. It reads a file
name argument using the minibuffer. After reading the file into an Emacs buffer, view-file
reads and displays one windowful. You can then type 〈SPC〉 to scroll forward one window,
or 〈DEL〉 to scroll backward. Various other commands are provided for moving around in
the file, but none for changing it; type C-h while viewing a file for a list of them. Most
commands are the default Emacs cursor motion commands. To exit from viewing, type
C-c.

124 XEmacs User’s Manual

Chapter 16: Using Multiple Buffers 125

16 Using Multiple Buffers

Text you are editing in Emacs resides in an object called a buffer. Each time you visit
a file, Emacs creates a buffer to hold the file’s text. Each time you invoke Dired, Emacs
creates a buffer to hold the directory listing. If you send a message with C-x m, a buffer
named ‘*mail*’ is used to hold the text of the message. When you ask for a command’s
documentation, it appears in a buffer called ‘*Help*’.

At any time, one and only one buffer is selected. It is also called the current buffer.
Saying a command operates on “the buffer” really means that the command operates on
the selected buffer, as most commands do.

When Emacs creates multiple windows, each window has a chosen buffer which is dis-
played there, but at any time only one of the windows is selected and its chosen buffer is
the selected buffer. Each window’s mode line displays the name of the buffer the window
is displaying (see Chapter 17 [Windows], page 131).

Each buffer has a name which can be of any length but is case-sensitive. You can select a
buffer using its name. Most buffers are created when you visit files; their names are derived
from the files’ names. You can also create an empty buffer with any name you want. A
newly started Emacs has a buffer named ‘*scratch*’ which you can use for evaluating Lisp
expressions in Emacs.

Each buffer records what file it is visiting, whether it is modified, and what major mode
and minor modes are in effect in it (see Chapter 19 [Major Modes], page 145). Any Emacs
variable can be made local to a particular buffer, meaning its value in that buffer can be
different from the value in other buffers. See Section 29.2.4 [Locals], page 270.

16.1 Creating and Selecting Buffers

C-x b buffer 〈RET〉
Select or create a buffer named buffer (switch-to-buffer).

C-x 4 b buffer 〈RET〉
Similar, but select a buffer named buffer in another window (switch-to-
buffer-other-window).

M-x switch-to-other-buffer n
Switch to the previous buffer.

To select a buffer named bufname, type C-x b bufname 〈RET〉. This is the command
switch-to-buffer with argument bufname. You can use completion on an abbreviation
for the buffer name you want (see Section 6.3 [Completion], page 53). An empty argument
to C-x b specifies the most recently selected buffer that is not displayed in any window.

Most buffers are created when you visit files, or use Emacs commands that display text.
You can also create a buffer explicitly by typing C-x b bufname 〈RET〉, which creates a new,
empty buffer that is not visiting any file, and selects it for editing. The new buffer’s major
mode is determined by the value of default-major-mode (see Chapter 19 [Major Modes],

126 XEmacs User’s Manual

page 145). Buffers not visiting files are usually used for making notes to yourself. If you
try to save one, you are asked for the file name to use.

The function switch-to-buffer-other-frame is similar to switch-to-buffer except
that it creates a new frame in which to display the selected buffer.

Use M-x switch-to-other-buffer to visit the previous buffer. If you supply a positive
integer n, the nth most recent buffer is displayed. If you supply an argument of 0, the
current buffer is moved to the bottom of the buffer stack.

Note that you can also use C-x C-f and any other command for visiting a file to switch
buffers. See Section 15.2 [Visiting], page 102.

16.2 Listing Existing Buffers

C-x C-b List the existing buffers (list-buffers).

To print a list of all existing buffers, type C-x C-b. Each line in the list shows one buffer’s
name, major mode, and visited file. A ‘*’ at the beginning of a line indicates the buffer has
been “modified”. If several buffers are modified, it may be time to save some with C-x s

(see Section 15.3 [Saving], page 104). A ‘%’ indicates a read-only buffer. A ‘.’ marks the
selected buffer. Here is an example of a buffer list:

MR Buffer Size Mode File
-- ------ ---- ---- ----
.* emacs.tex 383402 Texinfo /u2/emacs/man/emacs.tex

Help 1287 Fundamental
files.el 23076 Emacs-Lisp /u2/emacs/lisp/files.el

% RMAIL 64042 RMAIL /u/rms/RMAIL
*% man 747 Dired /u2/emacs/man/

net.emacs 343885 Fundamental /u/rms/net.emacs
fileio.c 27691 C /u2/emacs/src/fileio.c
NEWS 67340 Text /u2/emacs/etc/NEWS
scratch 0 Lisp Interaction

Note that the buffer ‘*Help*’ was made by a help request; it is not visiting any file. The
buffer man was made by Dired on the directory ‘/u2/emacs/man/’.

As you move the mouse over the ‘*Buffer List*’ buffer, the lines are highlighted. This
visual cue indicates that clicking the right mouse button (button3) will pop up a menu
of commands on the buffer represented by this line. This menu duplicates most of those
commands which are bound to keys in the ‘*Buffer List*’ buffer.

16.3 Miscellaneous Buffer Operations

C-x C-q Toggle read-only status of buffer (toggle-read-only).

M-x rename-buffer

Change the name of the current buffer.

Chapter 16: Using Multiple Buffers 127

M-x view-buffer

Scroll through a buffer.

A buffer can be read-only, which means that commands to change its text are not
allowed. Normally, read-only buffers are created by subsystems such as Dired and Rmail
that have special commands to operate on the text. Emacs also creates a read-only buffer if
you visit a file that is protected. To make changes in a read-only buffer, use the command
C-x C-q (toggle-read-only). It makes a read-only buffer writable, and makes a writable
buffer read-only. This works by setting the variable buffer-read-only, which has a local
value in each buffer and makes a buffer read-only if its value is non-nil.

M-x rename-buffer changes the name of the current buffer, prompting for the new name
in the minibuffer. There is no default. If you specify a name that is used by a different
buffer, an error is signalled and renaming is not done.

M-x view-buffer is similar to M-x view-file (see Section 15.10 [Misc File Ops],
page 123), but it examines an already existing Emacs buffer. View mode provides
convenient commands for scrolling through the buffer but not for changing it. When you
exit View mode, the resulting value of point remains in effect.

To copy text from one buffer to another, use the commands M-x append-to-buffer and
M-x insert-buffer. See Section 10.4 [Accumulating Text], page 76.

16.4 Killing Buffers

After using Emacs for a while, you may accumulate a large number of buffers and may
want to eliminate the ones you no longer need. There are several commands for doing this.

C-x k Kill a buffer, specified by name (kill-buffer).

M-x kill-some-buffers

Offer to kill each buffer, one by one.

C-x k (kill-buffer) kills one buffer, whose name you specify in the minibuffer. If you
type just 〈RET〉 in the minibuffer, the default, killing the current buffer, is used. If the
current buffer is killed, the buffer that has been selected recently but does not appear in
any window now is selected. If the buffer being killed contains unsaved changes, you are
asked to confirm with yes before the buffer is killed.

The command M-x kill-some-buffers asks about each buffer, one by one. An answer
of y means to kill the buffer. Killing the current buffer or a buffer containing unsaved
changes selects a new buffer or asks for confirmation just like kill-buffer.

16.5 Operating on Several Buffers

The buffer-menu facility is like a “Dired for buffers”; it allows you to request operations
on various Emacs buffers by editing a buffer containing a list of them. You can save buffers,
kill them (here called deleting them, for consistency with Dired), or display them.

128 XEmacs User’s Manual

M-x buffer-menu

Begin editing a buffer listing all Emacs buffers.

The command buffer-menu writes a list of all Emacs buffers into the buffer ‘*Buffer
List*’, and selects that buffer in Buffer Menu mode. The buffer is read-only. You can only
change it using the special commands described in this section. Most of the commands are
graphic characters. You can use Emacs cursor motion commands in the ‘*Buffer List*’
buffer. If the cursor is on a line describing a buffer, the following special commands apply
to that buffer:

d Request to delete (kill) the buffer, then move down. A ‘D’ before the buffer
name on a line indicates a deletion request. Requested deletions actually take
place when you use the x command.

k Synonym for d.

C-d Like d but move up afterwards instead of down.

s Request to save the buffer. An ‘S’ befor the buffer name on a line indicates
the request. Requested saves actually take place when you use the x command.
You can request both saving and deletion for the same buffer.

~ Mark buffer “unmodified”. The command ~ does this immediately when typed.

x Perform previously requested deletions and saves.

u Remove any request made for the current line, and move down.

〈DEL〉 Move to previous line and remove any request made for that line.

All commands that add or remove flags to request later operations also move down a
line. They accept a numeric argument as a repeat count, unless otherwise specified.

There are also special commands to use the buffer list to select another buffer, and to
specify one or more other buffers for display in additional windows.

1 Select the buffer in a full-frame window. This command takes effect immedi-
ately.

2 Immediately set up two windows, with this buffer in one and the buffer selected
before ‘*Buffer List*’ in the other.

f Immediately select the buffer in place of the ‘*Buffer List*’ buffer.

o Immediately select the buffer in another window as if by C-x 4 b, leaving
‘*Buffer List*’ visible.

q Immediately select this buffer, and display any buffers previously flagged with
the m command in other windows. If there are no buffers flagged with m, this
command is equivalent to 1.

m Flag this buffer to be displayed in another window if the q command is used.
The request shows as a ‘>’ at the beginning of the line. The same buffer may
not have both a delete request and a display request.

Chapter 16: Using Multiple Buffers 129

Going back between a buffer-menu buffer and other Emacs buffers is easy. You can, for
example, switch from the ‘*Buffer List*’ buffer to another Emacs buffer, and edit there.
You can then reselect the buffer-menu buffer and perform operations already requested,
or you can kill that buffer or pay no further attention to it. All that buffer-menu does
directly is create and select a suitable buffer, and turn on Buffer Menu mode. All the other
capabilities of the buffer menu are implemented by special commands provided in Buffer
Menu mode.

The only difference between buffer-menu and list-buffers is that buffer-menu se-
lects the ‘*Buffer List*’ buffer and list-buffers does not. If you run list-buffers
(that is, type C-x C-b) and select the buffer list manually, you can use all the commands
described here.

130 XEmacs User’s Manual

Chapter 17: Multiple Windows 131

17 Multiple Windows

Emacs can split the frame into two or many windows, which can display parts of different
buffers or different parts of one buffer. If you are running XEmacs under X, that means
you can have the X window that contains the Emacs frame have multiple subwindows.

17.1 Concepts of Emacs Windows

When Emacs displays multiple windows, each window has one Emacs buffer designated
for display. The same buffer may appear in more than one window; if it does, any changes
in its text are displayed in all the windows that display it. Windows showing the same
buffer can show different parts of it, because each window has its own value of point.

At any time, one window is the selected window ; the buffer displayed by that window
is the current buffer. The cursor shows the location of point in that window. Each other
window has a location of point as well, but since the terminal has only one cursor, it cannot
show the location of point in the other windows.

Commands to move point affect the value of point for the selected Emacs window only.
They do not change the value of point in any other Emacs window, including those showing
the same buffer. The same is true for commands such as C-x b to change the selected
buffer in the selected window; they do not affect other windows at all. However, there
are other commands such as C-x 4 b that select a different window and switch buffers in
it. Also, all commands that display information in a window, including (for example) C-

h f (describe-function) and C-x C-b (list-buffers), work by switching buffers in a
non-selected window without affecting the selected window.

Each window has its own mode line, which displays the buffer name, modification status,
and major and minor modes of the buffer that is displayed in the window. See Section 1.3
[Mode Line], page 15, for details on the mode line.

17.2 Splitting Windows

C-x 2 Split the selected window into two windows, one above the other (split-
window-vertically).

C-x 3 Split the selected window into two windows positioned side by side (split-
window-horizontally).

C-x 6 Save the current window configuration in register reg (a letter).

C-x 7 Restore (make current) the window configuration in register reg (a letter). Use
with a register previously set with C-x 6.

The command C-x 2 (split-window-vertically) breaks the selected window into two
windows, one above the other. Both windows start out displaying the same buffer, with the

132 XEmacs User’s Manual

same value of point. By default each of the two windows gets half the height of the window
that was split. A numeric argument specifies how many lines to give to the top window.

C-x 3 (split-window-horizontally) breaks the selected window into two side-by-side
windows. A numeric argument specifies how many columns to give the one on the left. A
line of vertical bars separates the two windows. Windows that are not the full width of
the frame have truncated mode lines which do not always appear in inverse video, because
Emacs display routines cannot display a region of inverse video that is only part of a line
on the screen.

When a window is less than the full width, many text lines are too long to fit. Continuing
all those lines might be confusing. Set the variable truncate-partial-width-windows to
non-nil to force truncation in all windows less than the full width of the frame, independent
of the buffer and its value for truncate-lines. See Section 4.7 [Continuation Lines],
page 45.

Horizontal scrolling is often used in side-by-side windows. See Chapter 12 [Display],
page 81.

You can resize a window and store that configuration in a register by supplying a register
argument to window-configuration-to-register (C-x 6). To return to the window con-
figuration established with window-configuration-to-register, use jump-to-register
(C-x j).

17.3 Using Other Windows

C-x o Select another window (other-window). That is the letter ‘o’, not zero.

M-C-v Scroll the next window (scroll-other-window).

M-x compare-windows

Find the next place where the text in the selected window does not match the
text in the next window.

M-x other-window-any-frame n
Select the nth different window on any frame.

To select a different window, use C-x o (other-window). That is an ‘o’, for ‘other’,
not a zero. When there are more than two windows, the command moves through all the
windows in a cyclic order, generally top to bottom and left to right. From the rightmost and
bottommost window, it goes back to the one at the upper left corner. A numeric argument,
n, moves several steps in the cyclic order of windows. A negative numeric argument moves
around the cycle in the opposite order. If the optional second argument all-frames is non-
nil, the function cycles through all frames. When the minibuffer is active, the minibuffer
is the last window in the cycle; you can switch from the minibuffer window to one of the
other windows, and later switch back and finish supplying the minibuffer argument that is
requested. See Section 6.2 [Minibuffer Edit], page 52.

The command M-x other-window-any-frame also selects the window n steps away in
the cyclic order. However, unlike other-window, this command selects a window on the

Chapter 17: Multiple Windows 133

next or previous frame instead of wrapping around to the top or bottom of the current
frame, when there are no more windows.

The usual scrolling commands (see Chapter 12 [Display], page 81) apply to the selected
window only. M-C-v (scroll-other-window) scrolls the window that C-x o would select.
Like C-v, it takes positive and negative arguments.

The command M-x compare-windows compares the text in the current window with the
text in the next window. Comparison starts at point in each window. Point moves forward
in each window, a character at a time, until the next set of characters in the two windows
are different. Then the command is finished.

A prefix argument ignore-whitespace means ignore changes in whitespace. The variable
compare-windows-whitespace controls how whitespace is skipped.

If compare-ignore-case is non-nil, changes in case are also ignored.

17.4 Displaying in Another Window

C-x 4 is a prefix key for commands that select another window (splitting the window
if there is only one) and select a buffer in that window. Different C-x 4 commands have
different ways of finding the buffer to select.

C-x 4 b bufname 〈RET〉
Select buffer bufname in another window. This runs switch-to-buffer-
other-window.

C-x 4 f filename 〈RET〉
Visit file filename and select its buffer in another window. This runs find-
file-other-window. See Section 15.2 [Visiting], page 102.

C-x 4 d directory 〈RET〉
Select a Dired buffer for directory directory in another window. This runs
dired-other-window. See Section 15.9 [Dired], page 120.

C-x 4 m Start composing a mail message in another window. This runs mail-other-
window, and its same-window version is C-x m (see Chapter 26 [Sending Mail],
page 215).

C-x 4 . Find a tag in the current tag table in another window. This runs find-tag-
other-window, the multiple-window variant of M-. (see Section 22.11 [Tags],
page 178).

If the variable display-buffer-function is non-nil, its value is the function to call to
handle display-buffer. It receives two arguments, the buffer and a flag that if non-nil
means that the currently selected window is not acceptable. Commands such as switch-
to-buffer-other-window and find-file-other-window work using this function.

134 XEmacs User’s Manual

17.5 Deleting and Rearranging Windows

C-x 0 Get rid of the selected window (delete-window). That is a zero. If there is
more than one Emacs frame, deleting the sole remaining window on that frame
deletes the frame as well. If the current frame is the only frame, it is not deleted.

C-x 1 Get rid of all windows except the selected one (delete-other-windows).

C-x ^ Make the selected window taller, at the expense of the other(s)
(enlarge-window).

C-x } Make the selected window wider (enlarge-window-horizontally).

To delete a window, type C-x 0 (delete-window). (That is a zero.) The space occupied
by the deleted window is distributed among the other active windows (but not the minibuffer
window, even if that is active at the time). Once a window is deleted, its attributes are
forgotten; there is no automatic way to make another window of the same shape or showing
the same buffer. The buffer continues to exist, and you can select it in any window with
C-x b.

C-x 1 (delete-other-windows) is more powerful than C-x 0; it deletes all the windows
except the selected one (and the minibuffer). The selected window expands to use the whole
frame except for the echo area.

To readjust the division of space among existing windows, use C-x ^ (enlarge-window).
It makes the currently selected window longer by one line or as many lines as a numeric
argument specifies. With a negative argument, it makes the selected window smaller. C-x }
(enlarge-window-horizontally) makes the selected window wider by the specified number
of columns. The extra screen space given to a window comes from one of its neighbors, if
that is possible; otherwise, all the competing windows are shrunk in the same proportion.
If this makes some windows too small, those windows are deleted and their space is divided
up. Minimum window size is specified by the variables window-min-height and window-
min-width.

You can also resize windows within a frame by clicking the left mouse button on a
modeline, and dragging.

Clicking the right button on a mode line pops up a menu of common window manager
operations. This menu contains the following options:

Delete Window
Remove the window above this modeline from the frame.

Delete Other Windows
Delete all windows on the frame except for the one above this modeline.

Split Window
Split the window above the mode line in half, creating another window.

Split Window Horizontally
Split the window above the mode line in half horizontally, so that there will be
two windows side-by-side.

Chapter 17: Multiple Windows 135

Balance Windows
Readjust the sizes of all windows on the frame until all windows have roughly
the same number of lines.

136 XEmacs User’s Manual

Chapter 18: World Scripts Support 137

18 World Scripts Support

If you compile XEmacs with mule option, it supports a wide variety of world scripts,
including Latin script, as well as Arabic script, Simplified Chinese script (for mainland
of China), Traditional Chinese script (for Taiwan and Hong-Kong), Greek script, Hebrew
script, IPA symbols, Japanese scripts (Hiragana, Katakana and Kanji), Korean scripts
(Hangul and Hanja) and Cyrillic script (for Beylorussian, Bulgarian, Russian, Serbian and
Ukrainian). These features have been merged from the modified version of Emacs known
as MULE (for “MULti-lingual Enhancement to GNU Emacs”).

18.1 Introduction to world scripts

The users of these scripts have established many more-or-less standard coding systems for
storing files. XEmacs translates between the internal character encoding and various other
coding systems when reading and writing files, when exchanging data with subprocesses,
and (in some cases) in the C-q command (see below).

The command C-h h (view-hello-file) displays the file ‘etc/HELLO’, which shows how
to say “hello” in many languages. This illustrates various scripts.

Keyboards, even in the countries where these character sets are used, generally don’t
have keys for all the characters in them. So XEmacs supports various input methods,
typically one for each script or language, to make it convenient to type them.

The prefix key C-x 〈RET〉 is used for commands that pertain to world scripts, coding
systems, and input methods.

18.2 Language Environments

All supported character sets are supported in XEmacs buffers if it is compile with mule;
there is no need to select a particular language in order to display its characters in an
XEmacs buffer. However, it is important to select a language environment in order to set
various defaults. The language environment really represents a choice of preferred script
(more or less) rather that a choice of language.

The language environment controls which coding systems to recognize when reading
text (see Section 18.6 [Recognize Coding], page 141). This applies to files, incoming mail,
netnews, and any other text you read into XEmacs. It may also specify the default coding
system to use when you create a file. Each language environment also specifies a default
input method.

The command to select a language environment is M-x set-language-environment. It
makes no difference which buffer is current when you use this command, because the effects
apply globally to the XEmacs session. The supported language environments include:

Chinese-BIG5, Chinese-CNS, Chinese-GB, Cyrillic-ISO, English, Ethiopic,
Greek, Japanese, Korean, Latin-1, Latin-2, Latin-3, Latin-4, Latin-5.

138 XEmacs User’s Manual

Some operating systems let you specify the language you are using by setting locale
environment variables. XEmacs handles one common special case of this: if your locale
name for character types contains the string ‘8859-n’, XEmacs automatically selects the
corresponding language environment.

To display information about the effects of a certain language environment lang-env, use
the command C-h L lang-env 〈RET〉 (describe-language-environment). This tells you
which languages this language environment is useful for, and lists the character sets, coding
systems, and input methods that go with it. It also shows some sample text to illustrate
scripts used in this language environment. By default, this command describes the chosen
language environment.

18.3 Input Methods

An input method is a kind of character conversion designed specifically for interactive
input. In XEmacs, typically each language has its own input method; sometimes several
languages which use the same characters can share one input method. A few languages
support several input methods.

The simplest kind of input method works by mapping ASCII letters into another alpha-
bet. This is how the Greek and Russian input methods work.

A more powerful technique is composition: converting sequences of characters into one
letter. Many European input methods use composition to produce a single non-ASCII letter
from a sequence that consists of a letter followed by accent characters. For example, some
methods convert the sequence ’a into a single accented letter.

The input methods for syllabic scripts typically use mapping followed by composition.
The input methods for Thai and Korean work this way. First, letters are mapped into
symbols for particular sounds or tone marks; then, sequences of these which make up a
whole syllable are mapped into one syllable sign.

Chinese and Japanese require more complex methods. In Chinese input methods, first
you enter the phonetic spelling of a Chinese word (in input method chinese-py, among
others), or a sequence of portions of the character (input methods chinese-4corner and
chinese-sw, and others). Since one phonetic spelling typically corresponds to many dif-
ferent Chinese characters, you must select one of the alternatives using special XEmacs
commands. Keys such as C-f, C-b, C-n, C-p, and digits have special definitions in this
situation, used for selecting among the alternatives. 〈TAB〉 displays a buffer showing all the
possibilities.

In Japanese input methods, first you input a whole word using phonetic spelling; then,
after the word is in the buffer, XEmacs converts it into one or more characters using a large
dictionary. One phonetic spelling corresponds to many differently written Japanese words,
so you must select one of them; use C-n and C-p to cycle through the alternatives.

Sometimes it is useful to cut off input method processing so that the characters you have
just entered will not combine with subsequent characters. For example, in input method
latin-1-postfix, the sequence e ’ combines to form an ‘e’ with an accent. What if you
want to enter them as separate characters?

Chapter 18: World Scripts Support 139

One way is to type the accent twice; that is a special feature for entering the separate
letter and accent. For example, e ’ ’ gives you the two characters ‘e’’. Another way is to
type another letter after the e—something that won’t combine with that—and immediately
delete it. For example, you could type e e 〈DEL〉 ’ to get separate ‘e’ and ‘’’.

Another method, more general but not quite as easy to type, is to use C-\ C-\ between
two characters to stop them from combining. This is the command C-\ (toggle-input-
method) used twice.

C-\ C-\ is especially useful inside an incremental search, because stops waiting for more
characters to combine, and starts searching for what you have already entered.

The variables input-method-highlight-flag and input-method-verbose-flag con-
trol how input methods explain what is happening. If input-method-highlight-flag is
non-nil, the partial sequence is highlighted in the buffer. If input-method-verbose-flag
is non-nil, the list of possible characters to type next is displayed in the echo area (but not
when you are in the minibuffer).

18.4 Selecting an Input Method

C-\ Enable or disable use of the selected input method.

C-x 〈RET〉 C-\ method 〈RET〉
Select a new input method for the current buffer.

C-h I method 〈RET〉
C-h C-\ method 〈RET〉

Describe the input method method (describe-input-method). By default, it
describes the current input method (if any).

M-x list-input-methods

Display a list of all the supported input methods.

To choose an input method for the current buffer, use C-x 〈RET〉 C-\ (select-input-
method). This command reads the input method name with the minibuffer; the name
normally starts with the language environment that it is meant to be used with. The
variable current-input-method records which input method is selected.

Input methods use various sequences of ASCII characters to stand for non-ASCII char-
acters. Sometimes it is useful to turn off the input method temporarily. To do this, type
C-\ (toggle-input-method). To reenable the input method, type C-\ again.

If you type C-\ and you have not yet selected an input method, it prompts for you to
specify one. This has the same effect as using C-x 〈RET〉 C-\ to specify an input method.

Selecting a language environment specifies a default input method for use in various
buffers. When you have a default input method, you can select it in the current buffer by
typing C-\. The variable default-input-method specifies the default input method (nil
means there is none).

Some input methods for alphabetic scripts work by (in effect) remapping the keyboard
to emulate various keyboard layouts commonly used for those scripts. How to do this

140 XEmacs User’s Manual

remapping properly depends on your actual keyboard layout. To specify which layout your
keyboard has, use the command M-x quail-set-keyboard-layout.

To display a list of all the supported input methods, type M-x list-input-methods.
The list gives information about each input method, including the string that stands for it
in the mode line.

18.5 Coding Systems

Users of various languages have established many more-or-less standard coding systems
for representing them. XEmacs does not use these coding systems internally; instead, it
converts from various coding systems to its own system when reading data, and converts the
internal coding system to other coding systems when writing data. Conversion is possible
in reading or writing files, in sending or receiving from the terminal, and in exchanging data
with subprocesses.

XEmacs assigns a name to each coding system. Most coding systems are used for one
language, and the name of the coding system starts with the language name. Some coding
systems are used for several languages; their names usually start with ‘iso’. There are also
special coding systems binary and no-conversion which do not convert printing characters
at all.

In addition to converting various representations of non-ASCII characters, a coding
system can perform end-of-line conversion. XEmacs handles three different conventions for
how to separate lines in a file: newline, carriage-return linefeed, and just carriage-return.

C-h C coding 〈RET〉
Describe coding system coding.

C-h C 〈RET〉
Describe the coding systems currently in use.

M-x list-coding-systems

Display a list of all the supported coding systems.

The command C-h C (describe-coding-system) displays information about particular
coding systems. You can specify a coding system name as argument; alternatively, with an
empty argument, it describes the coding systems currently selected for various purposes,
both in the current buffer and as the defaults, and the priority list for recognizing coding
systems (see Section 18.6 [Recognize Coding], page 141).

To display a list of all the supported coding systems, type M-x list-coding-systems.
The list gives information about each coding system, including the letter that stands for it
in the mode line (see Section 1.3 [Mode Line], page 15).

Each of the coding systems that appear in this list—except for binary, which means
no conversion of any kind—specifies how and whether to convert printing characters, but
leaves the choice of end-of-line conversion to be decided based on the contents of each file.
For example, if the file appears to use carriage-return linefeed between lines, that end-of-line
conversion will be used.

Each of the listed coding systems has three variants which specify exactly what to do
for end-of-line conversion:

Chapter 18: World Scripts Support 141

...-unix Don’t do any end-of-line conversion; assume the file uses newline to separate
lines. (This is the convention normally used on Unix and GNU systems.)

...-dos Assume the file uses carriage-return linefeed to separate lines, and do the appro-
priate conversion. (This is the convention normally used on Microsoft systems.)

...-mac Assume the file uses carriage-return to separate lines, and do the appropriate
conversion. (This is the convention normally used on the Macintosh system.)

These variant coding systems are omitted from the list-coding-systems display for
brevity, since they are entirely predictable. For example, the coding system iso-8859-1
has variants iso-8859-1-unix, iso-8859-1-dos and iso-8859-1-mac.

In contrast, the coding system binary specifies no character code conversion at all—none
for non-Latin-1 byte values and none for end of line. This is useful for reading or writing
binary files, tar files, and other files that must be examined verbatim.

The easiest way to edit a file with no conversion of any kind is with the M-x find-file-

literally command. This uses binary, and also suppresses other XEmacs features that
might convert the file contents before you see them. See Section 15.2 [Visiting], page 102.

The coding system no-conversion means that the file contains non-Latin-1 characters
stored with the internal XEmacs encoding. It handles end-of-line conversion based on
the data encountered, and has the usual three variants to specify the kind of end-of-line
conversion.

18.6 Recognizing Coding Systems

Most of the time, XEmacs can recognize which coding system to use for any given
file–once you have specified your preferences.

Some coding systems can be recognized or distinguished by which byte sequences appear
in the data. However, there are coding systems that cannot be distinguished, not even
potentially. For example, there is no way to distinguish between Latin-1 and Latin-2; they
use the same byte values with different meanings.

XEmacs handles this situation by means of a priority list of coding systems. Whenever
XEmacs reads a file, if you do not specify the coding system to use, XEmacs checks the data
against each coding system, starting with the first in priority and working down the list,
until it finds a coding system that fits the data. Then it converts the file contents assuming
that they are represented in this coding system.

The priority list of coding systems depends on the selected language environment (see
Section 18.2 [Language Environments], page 137). For example, if you use French, you
probably want XEmacs to prefer Latin-1 to Latin-2; if you use Czech, you probably want
Latin-2 to be preferred. This is one of the reasons to specify a language environment.

However, you can alter the priority list in detail with the command M-x prefer-coding-

system. This command reads the name of a coding system from the minibuffer, and adds it
to the front of the priority list, so that it is preferred to all others. If you use this command
several times, each use adds one element to the front of the priority list.

Sometimes a file name indicates which coding system to use for the file. The vari-
able file-coding-system-alist specifies this correspondence. There is a special function

142 XEmacs User’s Manual

modify-coding-system-alist for adding elements to this list. For example, to read and
write all ‘.txt’ using the coding system china-iso-8bit, you can execute this Lisp expres-
sion:

(modify-coding-system-alist ’file "\\.txt\\’" ’china-iso-8bit)

The first argument should be file, the second argument should be a regular expression that
determines which files this applies to, and the third argument says which coding system to
use for these files.

You can specify the coding system for a particular file using the ‘-*-...-*-’ construct at
the beginning of a file, or a local variables list at the end (see Section 29.2.5 [File Variables],
page 271). You do this by defining a value for the “variable” named coding. XEmacs does
not really have a variable coding; instead of setting a variable, it uses the specified coding
system for the file. For example, ‘-*-mode: C; coding: iso-8859-1;-*-’ specifies use of
the iso-8859-1 coding system, as well as C mode.

Once XEmacs has chosen a coding system for a buffer, it stores that coding system in
buffer-file-coding-system and uses that coding system, by default, for operations that
write from this buffer into a file. This includes the commands save-buffer and write-
region. If you want to write files from this buffer using a different coding system, you can
specify a different coding system for the buffer using set-buffer-file-coding-system
(see Section 18.7 [Specify Coding], page 142).

18.7 Specifying a Coding System

In cases where XEmacs does not automatically choose the right coding system, you can
use these commands to specify one:

C-x 〈RET〉 f coding 〈RET〉
Use coding system coding for the visited file in the current buffer.

C-x 〈RET〉 c coding 〈RET〉
Specify coding system coding for the immediately following command.

C-x 〈RET〉 k coding 〈RET〉
Use coding system coding for keyboard input.

C-x 〈RET〉 t coding 〈RET〉
Use coding system coding for terminal output.

C-x 〈RET〉 p coding 〈RET〉
Use coding system coding for subprocess input and output in the current buffer.

The command C-x RET f (set-buffer-file-coding-system) specifies the file coding
system for the current buffer—in other words, which coding system to use when saving or
rereading the visited file. You specify which coding system using the minibuffer. Since this
command applies to a file you have already visited, it affects only the way the file is saved.

Another way to specify the coding system for a file is when you visit the file. First use
the command C-x 〈RET〉 c (universal-coding-system-argument); this command uses the
minibuffer to read a coding system name. After you exit the minibuffer, the specified coding
system is used for the immediately following command.

Chapter 18: World Scripts Support 143

So if the immediately following command is C-x C-f, for example, it reads the file using
that coding system (and records the coding system for when the file is saved). Or if the
immediately following command is C-x C-w, it writes the file using that coding system.
Other file commands affected by a specified coding system include C-x C-i and C-x C-v, as
well as the other-window variants of C-x C-f.

In addition, if you run some file input commands with the precedent C-u, you can specify
coding system to read from minibuffer. So if the immediately following command is C-x C-

f, for example, it reads the file using that coding system (and records the coding system for
when the file is saved). Other file commands affected by a specified coding system include
C-x C-i and C-x C-v, as well as the other-window variants of C-x C-f.

The variable default-buffer-file-coding-system specifies the choice of coding sys-
tem to use when you create a new file. It applies when you find a new file, and when you
create a buffer and then save it in a file. Selecting a language environment typically sets
this variable to a good choice of default coding system for that language environment.

The command C-x 〈RET〉 t (set-terminal-coding-system) specifies the coding system
for terminal output. If you specify a character code for terminal output, all characters
output to the terminal are translated into that coding system.

This feature is useful for certain character-only terminals built to support specific lan-
guages or character sets—for example, European terminals that support one of the ISO
Latin character sets.

By default, output to the terminal is not translated at all.
The command C-x 〈RET〉 k (set-keyboard-coding-system) specifies the coding system

for keyboard input. Character-code translation of keyboard input is useful for terminals
with keys that send non-ASCII graphic characters—for example, some terminals designed
for ISO Latin-1 or subsets of it.

By default, keyboard input is not translated at all.
There is a similarity between using a coding system translation for keyboard input, and

using an input method: both define sequences of keyboard input that translate into single
characters. However, input methods are designed to be convenient for interactive use by
humans, and the sequences that are translated are typically sequences of ASCII printing
characters. Coding systems typically translate sequences of non-graphic characters.

The command C-x 〈RET〉 p (set-buffer-process-coding-system) specifies the coding
system for input and output to a subprocess. This command applies to the current buffer;
normally, each subprocess has its own buffer, and thus you can use this command to specify
translation to and from a particular subprocess by giving the command in the corresponding
buffer.

By default, process input and output are not translated at all.
The variable file-name-coding-system specifies a coding system to use for encoding

file names. If you set the variable to a coding system name (as a Lisp symbol or a string),
XEmacs encodes file names using that coding system for all file operations. This makes
it possible to use non-Latin-1 characters in file names—or, at least, those non-Latin-1
characters which the specified coding system can encode. By default, this variable is nil,
which implies that you cannot use non-Latin-1 characters in file names.

144 XEmacs User’s Manual

Chapter 19: Major Modes 145

19 Major Modes

Emacs has many different major modes, each of which customizes Emacs for editing text
of a particular sort. The major modes are mutually exclusive; at any time, each buffer has
one major mode. The mode line normally contains the name of the current major mode in
parentheses. See Section 1.3 [Mode Line], page 15.

The least specialized major mode is called Fundamental mode. This mode has no mode-
specific redefinitions or variable settings. Each Emacs command behaves in its most general
manner, and each option is in its default state. For editing any specific type of text, such as
Lisp code or English text, you should switch to the appropriate major mode, such as Lisp
mode or Text mode.

Selecting a major mode changes the meanings of a few keys to become more specifically
adapted to the language being edited. 〈TAB〉, 〈DEL〉, and 〈LFD〉 are changed frequently. In
addition, commands which handle comments use the mode to determine how to delimit
comments. Many major modes redefine the syntactical properties of characters appearing
in the buffer. See Section 29.5 [Syntax], page 280.

The major modes fall into three major groups. Lisp mode (which has several variants),
C mode, and Muddle mode are for specific programming languages. Text mode, Nroff
mode, TEX mode, and Outline mode are for editing English text. The remaining major
modes are not intended for use on users’ files; they are used in buffers created by Emacs
for specific purposes and include Dired mode for buffers made by Dired (see Section 15.9
[Dired], page 120), Mail mode for buffers made by C-x m (see Chapter 26 [Sending Mail],
page 215), and Shell mode for buffers used for communicating with an inferior shell process
(see Section 28.2.2 [Interactive Shell], page 253).

Most programming language major modes specify that only blank lines separate para-
graphs. This is so that the paragraph commands remain useful. See Section 21.4 [Para-
graphs], page 160. They also cause Auto Fill mode to use the definition of 〈TAB〉 to indent
the new lines it creates. This is because most lines in a program are usually indented. See
Chapter 20 [Indentation], page 147.

19.1 Choosing Major Modes

You can select a major mode explicitly for the current buffer, but most of the time
Emacs determines which mode to use based on the file name or some text in the file.

Use a M-x command to explicitly select a new major mode. Add -mode to the name of
a major mode to get the name of a command to select that mode. For example, to enter
Lisp mode, execute M-x lisp-mode.

When you visit a file, Emacs usually chooses the right major mode based on the file’s
name. For example, files whose names end in .c are edited in C mode. The variable auto-
mode-alist controls the correspondence between file names and major mode. Its value is
a list in which each element has the form:

(regexp . mode-function)

146 XEmacs User’s Manual

For example, one element normally found in the list has the form ("\\.c$" . c-mode). It
is responsible for selecting C mode for files whose names end in ‘.c’. (Note that ‘\\’ is
needed in Lisp syntax to include a ‘\’ in the string, which is needed to suppress the special
meaning of ‘.’ in regexps.) The only practical way to change this variable is with Lisp code.

You can specify which major mode should be used for editing a certain file by a special
sort of text in the first non-blank line of the file. The mode name should appear in this
line both preceded and followed by ‘-*-’. Other text may appear on the line as well. For
example,

;-*-Lisp-*-

tells Emacs to use Lisp mode. Note how the semicolon is used to make Lisp treat this line
as a comment. Such an explicit specification overrides any default mode based on the file
name.

Another format of mode specification is:
-*-Mode: modename;-*-

which allows other things besides the major mode name to be specified. However, Emacs
does not look for anything except the mode name.

The major mode can also be specified in a local variables list. See Section 29.2.5 [File
Variables], page 271.

When you visit a file that does not specify a major mode to use, or when you create a new
buffer with C-x b, Emacs uses the major mode specified by the variable default-major-
mode. Normally this value is the symbol fundamental-mode, which specifies Fundamental
mode. If default-major-mode is nil, the major mode is taken from the previously selected
buffer.

Chapter 20: Indentation 147

20 Indentation

〈TAB〉 Indent current line “appropriately” in a mode-dependent fashion.

〈LFD〉 Perform 〈RET〉 followed by 〈TAB〉 (newline-and-indent).

M-^ Merge two lines (delete-indentation). This would cancel out the effect of
〈LFD〉.

C-M-o Split line at point; text on the line after point becomes a new line indented to
the same column that it now starts in (split-line).

M-m Move (forward or back) to the first non-blank character on the current line
(back-to-indentation).

C-M-\ Indent several lines to same column (indent-region).

C-x 〈TAB〉 Shift block of lines rigidly right or left (indent-rigidly).

M-i Indent from point to the next prespecified tab stop column (tab-to-tab-stop).

M-x indent-relative

Indent from point to under an indentation point in the previous line.

Most programming languages have some indentation convention. For Lisp code, lines
are indented according to their nesting in parentheses. The same general idea is used for C
code, though details differ.

Use the 〈TAB〉 command to indent a line whatever the language. Each major mode
defines this command to perform indentation appropriate for the particular language. In
Lisp mode, 〈TAB〉 aligns a line according to its depth in parentheses. No matter where in the
line you are when you type 〈TAB〉, it aligns the line as a whole. In C mode, 〈TAB〉 implements
a subtle and sophisticated indentation style that knows about many aspects of C syntax.

In Text mode, 〈TAB〉 runs the command tab-to-tab-stop, which indents to the next
tab stop column. You can set the tab stops with M-x edit-tab-stops.

20.1 Indentation Commands and Techniques

If you just want to insert a tab character in the buffer, you can type C-q 〈TAB〉.
To move over the indentation on a line, type Meta-m (back-to-indentation). This

command, given anywhere on a line, positions point at the first non-blank character on the
line.

To insert an indented line before the current line, type C-a C-o 〈TAB〉. To make an
indented line after the current line, use C-e 〈LFD〉.

C-M-o (split-line) moves the text from point to the end of the line vertically down, so
that the current line becomes two lines. C-M-o first moves point forward over any spaces and
tabs. Then it inserts after point a newline and enough indentation to reach the same column
point is on. Point remains before the inserted newline; in this regard, C-M-o resembles C-o.

148 XEmacs User’s Manual

To join two lines cleanly, use the Meta-^ (delete-indentation) command to delete the
indentation at the front of the current line, and the line boundary as well. Empty spaces
are replaced by a single space, or by no space if at the beginning of a line, before a close
parenthesis, or after an open parenthesis. To delete just the indentation of a line, go to the
beginning of the line and use Meta-\ (delete-horizontal-space), which deletes all spaces
and tabs around the cursor.

There are also commands for changing the indentation of several lines at once. Control-
Meta-\ (indent-region) gives each line which begins in the region the “usual” indentation
by invoking 〈TAB〉 at the beginning of the line. A numeric argument specifies the column
to indent to. Each line is shifted left or right so that its first non-blank character appears
in that column. C-x 〈TAB〉 (indent-rigidly) moves all the lines in the region right by its
argument (left, for negative arguments). The whole group of lines moves rigidly sideways,
which is how the command gets its name.

M-x indent-relative indents at point based on the previous line (actually, the last
non-empty line.) It inserts whitespace at point, moving point, until it is underneath an
indentation point in the previous line. An indentation point is the end of a sequence of
whitespace or the end of the line. If point is farther right than any indentation point in the
previous line, the whitespace before point is deleted and the first indentation point then
applicable is used. If no indentation point is applicable even then, tab-to-tab-stop is run
(see next section).

indent-relative is the definition of 〈TAB〉 in Indented Text mode. See Chapter 21
[Text], page 151.

20.2 Tab Stops

For typing in tables, you can use Text mode’s definition of 〈TAB〉, tab-to-tab-stop.
This command inserts indentation before point, enough to reach the next tab stop column.
Even if you are not in Text mode, this function is associated with M-i anyway.

You can arbitrarily set the tab stops used by M-i. They are stored as a list of column-
numbers in increasing order in the variable tab-stop-list.

The convenient way to set the tab stops is using M-x edit-tab-stops, which creates and
selects a buffer containing a description of the tab stop settings. You can edit this buffer to
specify different tab stops, and then type C-c C-c to make those new tab stops take effect.
In the tab stop buffer, C-c C-c runs the function edit-tab-stops-note-changes rather
than the default save-buffer. edit-tab-stops records which buffer was current when
you invoked it, and stores the tab stops in that buffer. Normally all buffers share the same
tab stops and changing them in one buffer affects all. If you make tab-stop-list local in
one buffer edit-tab-stops in that buffer edits only the local settings.

Below is the text representing ordinary tab stops every eight columns:

: : : : : :
0 1 2 3 4
0123456789012345678901234567890123456789012345678
To install changes, type C-c C-c

Chapter 20: Indentation 149

The first line contains a colon at each tab stop. The remaining lines help you see where
the colons are and tell you what to do.

Note that the tab stops that control tab-to-tab-stop have nothing to do with displaying
tab characters in the buffer. See Section 12.4 [Display Vars], page 83, for more information
on that.

20.3 Tabs vs. Spaces

Emacs normally uses both tabs and spaces to indent lines. If you prefer, all indentation
can be made from spaces only. To request this, set indent-tabs-mode to nil. This is
a per-buffer variable; altering the variable affects only the current buffer, but there is a
default value which you can change as well. See Section 29.2.4 [Locals], page 270.

There are also commands to convert tabs to spaces or vice versa, always preserving
the columns of all non-blank text. M-x tabify scans the region for sequences of spaces,
and converts sequences of at least three spaces to tabs if that is possible without changing
indentation. M-x untabify changes all tabs in the region to corresponding numbers of
spaces.

150 XEmacs User’s Manual

Chapter 21: Commands for Human Languages 151

21 Commands for Human Languages

The term text has two widespread meanings in our area of the computer field. One is
data that is a sequence of characters. In this sense of the word any file that you edit with
Emacs is text. The other meaning is more restrictive: a sequence of characters in a human
language for humans to read (possibly after processing by a text formatter), as opposed to
a program or commands for a program.

Human languages have syntactic and stylistic conventions that editor commands should
support or use to advantage: conventions involving words, sentences, paragraphs, and cap-
ital letters. This chapter describes Emacs commands for all these things. There are also
commands for filling, or rearranging paragraphs into lines of approximately equal length.
The commands for moving over and killing words, sentences, and paragraphs, while intended
primarily for editing text, are also often useful for editing programs.

Emacs has several major modes for editing human language text. If a file contains plain
text, use Text mode, which customizes Emacs in small ways for the syntactic conventions
of text. For text which contains embedded commands for text formatters, Emacs has other
major modes, each for a particular text formatter. Thus, for input to TEX, you can use
TEX mode; for input to nroff, Nroff mode.

21.1 Text Mode

You should use Text mode—rather than Fundamental or Lisp mode—to edit files of text
in a human language. Invoke M-x text-mode to enter Text mode. In Text mode, 〈TAB〉
runs the function tab-to-tab-stop, which allows you to use arbitrary tab stops set with
M-x edit-tab-stops (see Section 20.2 [Tab Stops], page 148). Features concerned with
comments in programs are turned off unless they are explicitly invoked. The syntax table
is changed so that periods are not considered part of a word, while apostrophes, backspaces
and underlines are.

A similar variant mode is Indented Text mode, intended for editing text in which most
lines are indented. This mode defines 〈TAB〉 to run indent-relative (see Chapter 20
[Indentation], page 147), and makes Auto Fill indent the lines it creates. As a result, a line
made by Auto Filling, or by 〈LFD〉, is normally indented just like the previous line. Use M-x

indented-text-mode to select this mode.

Entering Text mode or Indented Text mode calls the value of the variable text-mode-
hook with no arguments, if that value exists and is not nil. This value is also called when
modes related to Text mode are entered; this includes Nroff mode, TEX mode, Outline
mode, and Mail mode. Your hook can look at the value of major-mode to see which of
these modes is actually being entered.

Two modes similar to Text mode are of use for editing text that is to be passed through
a text formatter before achieving its final readable form.

21.1.1 Nroff Mode

152 XEmacs User’s Manual

Nroff mode is a mode like Text mode but modified to handle nroff commands present
in the text. Invoke M-x nroff-mode to enter this mode. Nroff mode differs from Text
mode in only a few ways. All nroff command lines are considered paragraph separators,
so that filling never garbles the nroff commands. Pages are separated by ‘.bp’ commands.
Comments start with backslash-doublequote. There are also three special commands that
are not available in Text mode:

M-n Move to the beginning of the next line that isn’t an nroff command (forward-
text-line). An argument is a repeat count.

M-p Like M-n but move up (backward-text-line).

M-? Prints in the echo area the number of text lines (lines that are not nroff com-
mands) in the region (count-text-lines).

The other feature of Nroff mode is Electric Nroff newline mode. This is a minor mode
that you can turn on or off with M-x electric-nroff-mode (see Section 29.1 [Minor Modes],
page 263). When the mode is on and you use 〈RET〉 to end a line containing an nroff command
that opens a kind of grouping, Emacs automatically inserts the matching nroff command to
close that grouping on the following line. For example, if you are at the beginning of a line
and type .(b 〈RET〉, the matching command ‘.)b’ will be inserted on a new line following
point.

Entering Nroff mode calls the value of the variable text-mode-hook with no arguments,
if that value exists and is not nil; then it does the same with the variable nroff-mode-hook.

21.1.2 TEX Mode

TEX is a powerful text formatter written by Donald Knuth; like GNU Emacs, it is free.
LaTEX is a simplified input format for TEX, implemented by TEX macros. It is part of TEX.

Emacs has a special TEX mode for editing TEX input files. It provides facilities for
checking the balance of delimiters and for invoking TEX on all or part of the file.

TEX mode has two variants, Plain TEX mode and LaTEX mode, which are two distinct
major modes that differ only slightly. These modes are designed for editing the two different
input formats. The command M-x tex-mode looks at the contents of a buffer to determine
whether it appears to be LaTEX input or not; it then selects the appropriate mode. If it
can’t tell which is right (e.g., the buffer is empty), the variable tex-default-mode controls
which mode is used.

The commands M-x plain-tex-mode and M-x latex-mode explicitly select one of the
variants of TEX mode. Use these commands when M-x tex-mode does not guess right.

TEX for Unix systems can be obtained from the University of Washington for a distri-
bution fee.

To order a full distribution, send $140.00 for a 1/2 inch 9-track tape, $165.00 for two
4-track 1/4 inch cartridge tapes (foreign sites $150.00, for 1/2 inch, $175.00 for 1/4 inch,
to cover the extra postage) payable to the University of Washington to:

Chapter 21: Commands for Human Languages 153

The Director
Northwest Computer Support Group, DW-10
University of Washington
Seattle, Washington 98195

Purchase orders are acceptable, but there is an extra charge of $10.00 to pay for processing
charges. (The total cost comes to $150 for domestic sites, $175 for foreign sites).

The normal distribution is a tar tape, blocked 20, 1600 bpi, on an industry standard 2400
foot half-inch reel. The physical format for the 1/4 inch streamer cartridges uses QIC-11,
8000 bpi, 4-track serpentine recording for the SUN. Also, SystemV tapes can be written in
cpio format, blocked 5120 bytes, ASCII headers.

21.1.2.1 TEX Editing Commands

Here are the special commands provided in TEX mode for editing the text of the file.

" Insert, according to context, either ‘‘‘’ or ‘"’ or ‘’’’ (TeX-insert-quote).

〈LFD〉 Insert a paragraph break (two newlines) and check the previous paragraph for
unbalanced braces or dollar signs (tex-terminate-
paragraph).

M-x validate-tex-buffer

Check each paragraph in the buffer for unbalanced braces or dollar signs.

C-c { Insert ‘{}’ and position point between them (tex-insert-braces).

C-c } Move forward past the next unmatched close brace (up-list).

C-c C-e Close a block for LaTEX (tex-close-latex-block).

In TEX, the character ‘"’ is not normally used; you use ‘‘‘’ to start a quotation and ‘’’’
to end one. TEX mode defines the key " to insert ‘‘‘’ after whitespace or an open brace,
‘"’ after a backslash, or ‘’’’ otherwise. This is done by the command tex-insert-quote.
If you need the character ‘"’ itself in unusual contexts, use C-q to insert it. Also, " with a
numeric argument always inserts that number of ‘"’ characters.

In TEX mode, ‘$’ has a special syntax code which attempts to understand the way TEX
math mode delimiters match. When you insert a ‘$’ that is meant to exit math mode,
the position of the matching ‘$’ that entered math mode is displayed for a second. This is
the same feature that displays the open brace that matches a close brace that is inserted.
However, there is no way to tell whether a ‘$’ enters math mode or leaves it; so when you
insert a ‘$’ that enters math mode, the previous ‘$’ position is shown as if it were a match,
even though they are actually unrelated.

If you prefer to keep braces balanced at all times, you can use C-c { (tex-insert-
braces) to insert a pair of braces. It leaves point between the two braces so you can insert
the text that belongs inside. Afterward, use the command C-c } (up-list) to move forward
past the close brace.

There are two commands for checking the matching of braces. 〈LFD〉 (tex-terminate-
paragraph) checks the paragraph before point, and inserts two newlines to start a new

154 XEmacs User’s Manual

paragraph. It prints a message in the echo area if any mismatch is found. M-x validate-

tex-buffer checks the entire buffer, paragraph by paragraph. When it finds a paragraph
that contains a mismatch, it displays point at the beginning of the paragraph for a few
seconds and pushes a mark at that spot. Scanning continues until the whole buffer has
been checked or until you type another key. The positions of the last several paragraphs
with mismatches can be found in the mark ring (see Section 9.1.4 [Mark Ring], page 65).

Note that square brackets and parentheses, not just braces, are matched in TEX mode.
This is wrong if you want to check TEX syntax. However, parentheses and square brackets
are likely to be used in text as matching delimiters and it is useful for the various motion
commands and automatic match display to work with them.

In LaTEX input, ‘\begin’ and ‘\end’ commands must balance. After you insert a
‘\begin’, use C-c C-f (tex-close-latex-block) to insert automatically a matching ‘\end’
(on a new line following the ‘\begin’). A blank line is inserted between the two, and point
is left there.

21.1.2.2 TEX Printing Commands

You can invoke TEX as an inferior of Emacs on either the entire contents of the buffer
or just a region at a time. Running TEX in this way on just one chapter is a good way to
see what your changes look like without taking the time to format the entire file.

C-c C-r Invoke TEX on the current region, plus the buffer’s header (tex-region).

C-c C-b Invoke TEX on the entire current buffer (tex-buffer).

C-c C-l Recenter the window showing output from the inferior TEX so that the last line
can be seen (tex-recenter-output-buffer).

C-c C-k Kill the inferior TEX (tex-kill-job).

C-c C-p Print the output from the last C-c C-r or C-c C-b command (tex-print).

C-c C-q Show the printer queue (tex-show-print-queue).

You can pass the current buffer through an inferior TEX using C-c C-b (tex-buffer).
The formatted output appears in a file in ‘/tmp’; to print it, type C-c C-p (tex-print). Af-
terward use C-c C-q (tex-show-print-queue) to view the progress of your output towards
being printed.

The console output from TEX, including any error messages, appears in a buffer called
‘*TeX-shell*’. If TEX gets an error, you can switch to this buffer and feed it input (this
works as in Shell mode; see Section 28.2.2 [Interactive Shell], page 253). Without switching
to this buffer, you can scroll it so that its last line is visible by typing C-c C-l.

Type C-c C-k (tex-kill-job) to kill the TEX process if you see that its output is no
longer useful. Using C-c C-b or C-c C-r also kills any TEX process still running.

You can pass an arbitrary region through an inferior TEX by typing C-c C-r (tex-
region). This is tricky, however, because most files of TEX input contain commands at the
beginning to set parameters and define macros. Without them, no later part of the file will
format correctly. To solve this problem, C-c C-r allows you to designate a part of the file

Chapter 21: Commands for Human Languages 155

as containing essential commands; it is included before the specified region as part of the
input to TEX. The designated part of the file is called the header.

To indicate the bounds of the header in Plain TEX mode, insert two special strings in the
file: ‘%**start of header’ before the header, and ‘%**end of header’ after it. Each string
must appear entirely on one line, but there may be other text on the line before or after.
The lines containing the two strings are included in the header. If ‘%**start of header’
does not appear within the first 100 lines of the buffer, C-c C-r assumes there is no header.

In LaTEX mode, the header begins with ‘\documentstyle’ and ends with
‘\begin{document}’. These are commands that LaTEX requires you to use, so you don’t
need to do anything special to identify the header.

When you enter either kind of TEX mode, Emacs calls with no arguments the value of
the variable text-mode-hook, if that value exists and is not nil. Emacs then calls the
variable TeX-mode-hook and either plain-TeX-mode-hook or LaTeX-mode-hook under the
same conditions.

21.1.3 Outline Mode

Outline mode is a major mode similar to Text mode but intended for editing outlines.
It allows you to make parts of the text temporarily invisible so that you can see just the
overall structure of the outline. Type M-x outline-mode to turn on Outline mode in the
current buffer.

When you enter Outline mode, Emacs calls with no arguments the value of the variable
text-mode-hook, if that value exists and is not nil; then it does the same with the variable
outline-mode-hook.

When a line is invisible in outline mode, it does not appear on the screen. The screen
appears exactly as if the invisible line were deleted, except that an ellipsis (three periods
in a row) appears at the end of the previous visible line (only one ellipsis no matter how
many invisible lines follow).

All editing commands treat the text of the invisible line as part of the previous visible line.
For example, C-n moves onto the next visible line. Killing an entire visible line, including its
terminating newline, really kills all the following invisible lines as well; yanking everything
back yanks the invisible lines and they remain invisible.

21.1.3.1 Format of Outlines

Outline mode assumes that the lines in the buffer are of two types: heading lines and
body lines. A heading line represents a topic in the outline. Heading lines start with one or
more stars; the number of stars determines the depth of the heading in the outline structure.
Thus, a heading line with one star is a major topic; all the heading lines with two stars
between it and the next one-star heading are its subtopics; and so on. Any line that is not
a heading line is a body line. Body lines belong to the preceding heading line. Here is an
example:

* Food

156 XEmacs User’s Manual

This is the body,
which says something about the topic of food.

** Delicious Food

This is the body of the second-level header.

** Distasteful Food

This could have
a body too, with
several lines.

*** Dormitory Food

* Shelter

A second first-level topic with its header line.

A heading line together with all following body lines is called collectively an entry. A
heading line together with all following deeper heading lines and their body lines is called
a subtree.

You can customize the criterion for distinguishing heading lines by setting the vari-
able outline-regexp. Any line whose beginning has a match for this regexp is con-
sidered a heading line. Matches that start within a line (not at the beginning) do not
count. The length of the matching text determines the level of the heading; longer matches
make a more deeply nested level. Thus, for example, if a text formatter has commands
‘@chapter’, ‘@section’ and ‘@subsection’ to divide the document into chapters and sec-
tions, you can make those lines count as heading lines by setting outline-regexp to
‘"@chap\\|@\\(sub\\)*section"’. Note the trick: the two words ‘chapter’ and ‘section’
are the same length, but by defining the regexp to match only ‘chap’ we ensure that the
length of the text matched on a chapter heading is shorter, so that Outline mode will know
that sections are contained in chapters. This works as long as no other command starts
with ‘@chap’.

Outline mode makes a line invisible by changing the newline before it into an ASCII
Control-M (code 015). Most editing commands that work on lines treat an invisible line as
part of the previous line because, strictly speaking, it is part of that line, since there is no
longer a newline in between. When you save the file in Outline mode, Control-M characters
are saved as newlines, so the invisible lines become ordinary lines in the file. Saving does
not change the visibility status of a line inside Emacs.

21.1.3.2 Outline Motion Commands

Some special commands in Outline mode move backward and forward to heading lines.

C-c C-n Move point to the next visible heading line (outline-next-visible-heading).

C-c C-p Move point to the previous visible heading line
(outline-previous-visible-heading).

Chapter 21: Commands for Human Languages 157

C-c C-f Move point to the next visible heading line at the same level as the one point
is on (outline-forward-same-level).

C-c C-b Move point to the previous visible heading line at the same level (outline-
backward-same-level).

C-c C-u Move point up to a lower-level (more inclusive) visible heading line (outline-
up-heading).

C-c C-n (next-visible-heading) moves down to the next heading line. C-c C-p

(previous-visible-heading) moves similarly backward. Both accept numeric arguments
as repeat counts. The names emphasize that invisible headings are skipped, but this is not
really a special feature. All editing commands that look for lines ignore the invisible lines
automatically.

More advanced motion commands understand the levels of headings. The commands
C-c C-f (outline-forward-same-level) and C-c C-b (outline-backward-same-level)
move from one heading line to another visible heading at the same depth in the outline. C-c
C-u (outline-up-heading) moves backward to another heading that is less deeply nested.

21.1.3.3 Outline Visibility Commands

The other special commands of outline mode are used to make lines visible or invisible.
Their names all start with hide or show. Most of them exist as pairs of opposites. They
are not undoable; instead, you can undo right past them. Making lines visible or invisible
is simply not recorded by the undo mechanism.

M-x hide-body

Make all body lines in the buffer invisible.

M-x show-all

Make all lines in the buffer visible.

C-c C-d Make everything under this heading invisible, not including this heading itself
(hide-subtree).

C-c C-s Make everything under this heading visible, including body, subheadings, and
their bodies (show-subtree).

M-x hide-leaves

Make the body of this heading line, and of all its subheadings, invisible.

M-x show-branches

Make all subheadings of this heading line, at all levels, visible.

C-c C-i Make immediate subheadings (one level down) of this heading line visible (show-
children).

M-x hide-entry

Make this heading line’s body invisible.

M-x show-entry

Make this heading line’s body visible.

158 XEmacs User’s Manual

Two commands that are exact opposites are M-x hide-entry and M-x show-entry.
They are used with point on a heading line, and apply only to the body lines of that
heading. The subtopics and their bodies are not affected.

Two more powerful opposites are C-c C-h (hide-subtree) and C-c C-s (show-subtree).
Both should be used when point is on a heading line, and both apply to all the lines of that
heading’s subtree: its body, all its subheadings, both direct and indirect, and all of their
bodies. In other words, the subtree contains everything following this heading line, up to
and not including the next heading of the same or higher rank.

Intermediate between a visible subtree and an invisible one is having all the subheadings
visible but none of the body. There are two commands for doing this, one that hides the
bodies and one that makes the subheadings visible. They are M-x hide-leaves and M-x

show-branches.
A little weaker than show-branches is C-c C-i (show-children). It makes just the

direct subheadings visible—those one level down. Deeper subheadings remain invisible.
Two commands have a blanket effect on the whole file. M-x hide-body makes all body

lines invisible, so that you see just the outline structure. M-x show-all makes all lines
visible. You can think of these commands as a pair of opposites even though M-x show-all

applies to more than just body lines.
You can turn off the use of ellipses at the ends of visible lines by setting selective-

display-ellipses to nil. The result is no visible indication of the presence of invisible
lines.

21.2 Words

Emacs has commands for moving over or operating on words. By convention, the keys
for them are all Meta- characters.

M-f Move forward over a word (forward-word).

M-b Move backward over a word (backward-word).

M-d Kill up to the end of a word (kill-word).

M-〈DEL〉 Kill back to the beginning of a word (backward-kill-word).

M-@ Mark the end of the next word (mark-word).

M-t Transpose two words; drag a word forward or backward across other words
(transpose-words).

Notice how these keys form a series that parallels the character-based C-f, C-b, C-d, C-t
and 〈DEL〉. M-@ is related to C-@, which is an alias for C-〈SPC〉.

The commands Meta-f (forward-word) and Meta-b (backward-word) move forward
and backward over words. They are analogous to Control-f and Control-b, which move
over single characters. Like their Control- analogues, Meta-f and Meta-b move several
words if given an argument. Meta-f with a negative argument moves backward, and Meta-

b with a negative argument moves forward. Forward motion stops after the last letter of
the word, while backward motion stops before the first letter.

Chapter 21: Commands for Human Languages 159

Meta-d (kill-word) kills the word after point. To be precise, it kills everything from
point to the place Meta-f would move to. Thus, if point is in the middle of a word, Meta-d
kills just the part after point. If some punctuation comes between point and the next word,
it is killed along with the word. (To kill only the next word but not the punctuation before
it, simply type Meta-f to get to the end and kill the word backwards with Meta-〈DEL〉.)
Meta-d takes arguments just like Meta-f.

Meta-〈DEL〉 (backward-kill-word) kills the word before point. It kills everything from
point back to where Meta-b would move to. If point is after the space in ‘FOO, BAR’, then
‘FOO, ’ is killed. To kill just ‘FOO’, type Meta-b Meta-d instead of Meta-〈DEL〉.

Meta-t (transpose-words) exchanges the word before or containing point with the fol-
lowing word. The delimiter characters between the words do not move. For example, trans-
posing ‘FOO, BAR’ results in ‘BAR, FOO’ rather than ‘BAR FOO,’. See Section 14.2 [Transpose],
page 97, for more on transposition and on arguments to transposition commands.

To operate on the next n words with an operation which applies between point and
mark, you can either set the mark at point and then move over the words, or you can use
the command Meta-@ (mark-word) which does not move point but sets the mark where
Meta-f would move to. It can be given arguments just like Meta-f.

The word commands’ understanding of syntax is completely controlled by the syntax
table. For example, any character can be declared to be a word delimiter. See Section 29.5
[Syntax], page 280.

21.3 Sentences

The Emacs commands for manipulating sentences and paragraphs are mostly on Meta-

keys, and therefore are like the word-handling commands.

M-a Move back to the beginning of the sentence (backward-sentence).

M-e Move forward to the end of the sentence (forward-sentence).

M-k Kill forward to the end of the sentence (kill-sentence).

C-x 〈DEL〉 Kill back to the beginning of the sentence
(backward-kill-sentence).

The commands Meta-a and Meta-e (backward-sentence and forward-sentence) move
to the beginning and end of the current sentence, respectively. They resemble Control-a

and Control-e, which move to the beginning and end of a line. Unlike their counterparts,
Meta-a and Meta-e move over successive sentences if repeated or given numeric arguments.
Emacs assumes the typist’s convention is followed, and thus considers a sentence to end
wherever there is a ‘.’, ‘?’, or ‘!’ followed by the end of a line or two spaces, with any
number of ‘)’, ‘]’, ‘’’, or ‘"’ characters allowed in between. A sentence also begins or ends
wherever a paragraph begins or ends.

Neither M-a nor M-e moves past the newline or spaces beyond the sentence edge at which
it is stopping.

M-a and M-e have a corresponding kill command, just like C-a and C-e have C-k. The
command is M-k (kill-sentence) which kills from point to the end of the sentence. With

160 XEmacs User’s Manual

minus one as an argument it kills back to the beginning of the sentence. Larger arguments
serve as repeat counts.

There is a special command, C-x 〈DEL〉 (backward-kill-sentence), for killing back to
the beginning of a sentence, which is useful when you change your mind in the middle of
composing text.

The variable sentence-end controls recognition of the end of a sentence. It is a regexp
that matches the last few characters of a sentence, together with the whitespace following
the sentence. Its normal value is:

"[.?!][]\"’)]*\\($\\|\t\\| \\)[\t\n]*"

This example is explained in the section on regexps. See Section 13.5 [Regexps], page 89.

21.4 Paragraphs

The Emacs commands for manipulating paragraphs are also Meta- keys.

M-[Move back to previous paragraph beginning
(backward-paragraph).

M-] Move forward to next paragraph end (forward-paragraph).

M-h Put point and mark around this or next paragraph (mark-paragraph).

Meta-[moves to the beginning of the current or previous paragraph, while Meta-] moves
to the end of the current or next paragraph. Blank lines and text formatter command lines
separate paragraphs and are not part of any paragraph. An indented line starts a new
paragraph.

In major modes for programs (as opposed to Text mode), paragraphs begin and end only
at blank lines. As a result, the paragraph commands continue to be useful even though
there are no paragraphs per se.

When there is a fill prefix, paragraphs are delimited by all lines which don’t start with
the fill prefix. See Section 21.6 [Filling], page 161.

To operate on a paragraph, you can use the command Meta-h (mark-paragraph) to set
the region around it. This command puts point at the beginning and mark at the end of
the paragraph point was in. If point is between paragraphs (in a run of blank lines or at
a boundary), the paragraph following point is surrounded by point and mark. If there are
blank lines preceding the first line of the paragraph, one of the blank lines is included in
the region. Thus, for example, M-h C-w kills the paragraph around or after point.

The precise definition of a paragraph boundary is controlled by the variables paragraph-
separate and paragraph-start. The value of paragraph-start is a regexp that matches
any line that either starts or separates paragraphs. The value of paragraph-separate
is another regexp that matches only lines that separate paragraphs without being part of
any paragraph. Lines that start a new paragraph and are contained in it must match
both regexps. For example, normally paragraph-start is "^[\t\n\f]" and paragraph-
separate is "^[\t\f]*$".

Normally it is desirable for page boundaries to separate paragraphs. The default values
of these variables recognize the usual separator for pages.

Chapter 21: Commands for Human Languages 161

21.5 Pages

Files are often thought of as divided into pages by the formfeed character (ASCII
Control-L, octal code 014). For example, if a file is printed on a line printer, each “page”
of the file starts on a new page of paper. Emacs treats a page-separator character just like
any other character. It can be inserted with C-q C-l or deleted with 〈DEL〉. You are free to
paginate your file or not. However, since pages are often meaningful divisions of the file,
commands are provided to move over them and operate on them.

C-x [Move point to previous page boundary (backward-page).

C-x] Move point to next page boundary (forward-page).

C-x C-p Put point and mark around this page (or another page) (mark-page).

C-x l Count the lines in this page (count-lines-page).

The C-x [(backward-page) command moves point to immediately after the previous
page delimiter. If point is already right after a page delimiter, the command skips that one
and stops at the previous one. A numeric argument serves as a repeat count. The C-x]

(forward-page) command moves forward past the next page delimiter.

The C-x C-p command (mark-page) puts point at the beginning of the current page and
the mark at the end. The page delimiter at the end is included (the mark follows it). The
page delimiter at the front is excluded (point follows it). You can follow this command by
C-w to kill a page you want to move elsewhere. If you insert the page after a page delimiter,
at a place where C-x] or C-x [would take you, the page will be properly delimited before
and after once again.

A numeric argument to C-x C-p is used to specify which page to go to, relative to the
current one. Zero means the current page. One means the next page, and −1 means the
previous one.

The C-x l command (count-lines-page) can help you decide where to break a page in
two. It prints the total number of lines in the current page in the echo area, then divides
the lines into those preceding the current line and those following it, for example

Page has 96 (72+25) lines

Notice that the sum is off by one; this is correct if point is not at the beginning of a line.

The variable page-delimiter should have as its value a regexp that matches the begin-
ning of a line that separates pages. This defines where pages begin. The normal value of
this variable is "^\f", which matches a formfeed character at the beginning of a line.

21.6 Filling Text

If you use Auto Fill mode, Emacs fills text (breaks it up into lines that fit in a specified
width) as you insert it. When you alter existing text it is often no longer be properly filled
afterwards and you can use explicit commands for filling.

162 XEmacs User’s Manual

21.6.1 Auto Fill Mode

Auto Fill mode is a minor mode in which lines are broken automatically when they
become too wide. Breaking happens only when you type a 〈SPC〉 or 〈RET〉.

M-x auto-fill-mode

Enable or disable Auto Fill mode.

〈SPC〉
〈RET〉 In Auto Fill mode, break lines when appropriate.

M-x auto-fill-mode turns Auto Fill mode on if it was off, or off if it was on. With
a positive numeric argument the command always turns Auto Fill mode on, and with a
negative argument it always turns it off. The presence of the word ‘Fill’ in the mode line,
inside the parentheses, indicates that Auto Fill mode is in effect. Auto Fill mode is a minor
mode; you can turn it on or off for each buffer individually. See Section 29.1 [Minor Modes],
page 263.

In Auto Fill mode, lines are broken automatically at spaces when they get longer than
desired. Line breaking and rearrangement takes place only when you type 〈SPC〉 or 〈RET〉.
To insert a space or newline without permitting line-breaking, type C-q 〈SPC〉 or C-q 〈LFD〉
(recall that a newline is really a linefeed). C-o inserts a newline without line breaking.

Auto Fill mode works well with Lisp mode: when it makes a new line in Lisp mode,
it indents that line with 〈TAB〉. If a line ending in a Lisp comment gets too long, the text
of the comment is split into two comment lines. Optionally, new comment delimiters are
inserted at the end of the first line and the beginning of the second, so that each line is a
separate comment. The variable comment-multi-line controls the choice (see Section 22.6
[Comments], page 174).

Auto Fill mode does not refill entire paragraphs. It can break lines but cannot merge
lines. Editing in the middle of a paragraph can result in a paragraph that is not correctly
filled. The easiest way to make the paragraph properly filled again is using an explicit fill
commands.

Many users like Auto Fill mode and want to use it in all text files. The section on init
files explains how you can arrange this permanently for yourself. See Section 29.6 [Init File],
page 283.

21.6.2 Explicit Fill Commands

M-q Fill current paragraph (fill-paragraph).

M-g Fill each paragraph in the region (fill-region).

C-x f Set the fill column (set-fill-column).

M-x fill-region-as-paragraph

Fill the region, considering it as one paragraph.

M-s Center a line.

Chapter 21: Commands for Human Languages 163

To refill a paragraph, use the command Meta-q (fill-paragraph). It causes the para-
graph containing point, or the one after point if point is between paragraphs, to be refilled.
All line breaks are removed, and new ones are inserted where necessary. M-q can be undone
with C-_. See Chapter 5 [Undo], page 49.

To refill many paragraphs, use M-g (fill-region), which divides the region into para-
graphs and fills each of them.

Meta-q and Meta-g use the same criteria as Meta-h for finding paragraph boundaries
(see Section 21.4 [Paragraphs], page 160). For more control, you can use M-x fill-region-

as-paragraph, which refills everything between point and mark. This command recognizes
only blank lines as paragraph separators.

A numeric argument to M-g or M-q causes it to justify the text as well as filling it. Extra
spaces are inserted to make the right margin line up exactly at the fill column. To remove
the extra spaces, use M-q or M-g with no argument.

The variable auto-fill-inhibit-regexp takes as a value a regexp to match lines that
should not be auto-filled.

The command Meta-s (center-line) centers the current line within the current fill
column. With an argument, it centers several lines individually and moves past them.

The maximum line width for filling is in the variable fill-column. Altering the value
of fill-column makes it local to the current buffer; until then, the default value—initially
70—is in effect. See Section 29.2.4 [Locals], page 270.

The easiest way to set fill-column is to use the command C-x f (set-fill-column).
With no argument, it sets fill-column to the current horizontal position of point. With a
numeric argument, it uses that number as the new fill column.

21.6.3 The Fill Prefix

To fill a paragraph in which each line starts with a special marker (which might be a few
spaces, giving an indented paragraph), use the fill prefix feature. The fill prefix is a string
which is not included in filling. Emacs expects every line to start with a fill prefix.

C-x . Set the fill prefix (set-fill-prefix).

M-q Fill a paragraph using current fill prefix (fill-paragraph).

M-x fill-individual-paragraphs

Fill the region, considering each change of indentation as starting a new para-
graph.

To specify a fill prefix, move to a line that starts with the desired prefix, put point at
the end of the prefix, and give the command C-x . (set-fill-prefix). That’s a period
after the C-x. To turn off the fill prefix, specify an empty prefix: type C-x . with point at
the beginning of a line.

When a fill prefix is in effect, the fill commands remove the fill prefix from each line
before filling and insert it on each line after filling. Auto Fill mode also inserts the fill prefix
inserted on new lines it creates. Lines that do not start with the fill prefix are considered to
start paragraphs, both in M-q and the paragraph commands; this is just right if you are using

164 XEmacs User’s Manual

paragraphs with hanging indentation (every line indented except the first one). Lines which
are blank or indented once the prefix is removed also separate or start paragraphs; this is
what you want if you are writing multi-paragraph comments with a comment delimiter on
each line.

The fill prefix is stored in the variable fill-prefix. Its value is a string, or nil when
there is no fill prefix. This is a per-buffer variable; altering the variable affects only the
current buffer, but there is a default value which you can change as well. See Section 29.2.4
[Locals], page 270.

Another way to use fill prefixes is through M-x fill-individual-paragraphs. This
function divides the region into groups of consecutive lines with the same amount and kind
of indentation and fills each group as a paragraph, using its indentation as a fill prefix.

21.7 Case Conversion Commands

Emacs has commands for converting either a single word or any arbitrary range of text
to upper case or to lower case.

M-l Convert following word to lower case (downcase-word).

M-u Convert following word to upper case (upcase-word).

M-c Capitalize the following word (capitalize-word).

C-x C-l Convert region to lower case (downcase-region).

C-x C-u Convert region to upper case (upcase-region).

The word conversion commands are used most frequently. Meta-l (downcase-word)
converts the word after point to lower case, moving past it. Thus, repeating Meta-l converts
successive words. Meta-u (upcase-word) converts to all capitals instead, while Meta-c

(capitalize-word) puts the first letter of the word into upper case and the rest into lower
case. The word conversion commands convert several words at once if given an argument.
They are especially convenient for converting a large amount of text from all upper case
to mixed case: you can move through the text using M-l, M-u, or M-c on each word as
appropriate, occasionally using M-f instead to skip a word.

When given a negative argument, the word case conversion commands apply to the
appropriate number of words before point, but do not move point. This is convenient when
you have just typed a word in the wrong case: you can give the case conversion command
and continue typing.

If a word case conversion command is given in the middle of a word, it applies only to
the part of the word which follows point. This is just like what Meta-d (kill-word) does.
With a negative argument, case conversion applies only to the part of the word before point.

The other case conversion commands are C-x C-u (upcase-region) and C-x C-l

(downcase-region), which convert everything between point and mark to the specified
case. Point and mark do not move.

Chapter 22: Editing Programs 165

22 Editing Programs

Emacs has many commands designed to understand the syntax of programming lan-
guages such as Lisp and C. These commands can:

• Move over or kill balanced expressions or sexps (see Section 22.2 [Lists], page 166).
• Move over or mark top-level balanced expressions (defuns, in Lisp; functions, in C).
• Show how parentheses balance (see Section 22.5 [Matching], page 173).
• Insert, kill, or align comments (see Section 22.6 [Comments], page 174).
• Follow the usual indentation conventions of the language (see Section 22.4 [Grinding],

page 169).

The commands available for words, sentences, and paragraphs are useful in editing code
even though their canonical application is for editing human language text. Most symbols
contain words (see Section 21.2 [Words], page 158); sentences can be found in strings and
comments (see Section 21.3 [Sentences], page 159). Paragraphs per se are not present in
code, but the paragraph commands are useful anyway, because Lisp mode and C mode
define paragraphs to begin and end at blank lines (see Section 21.4 [Paragraphs], page 160).
Judicious use of blank lines to make the program clearer also provides interesting chunks of
text for the paragraph commands to work on.

The selective display feature is useful for looking at the overall structure of a function
(see Section 12.3 [Selective Display], page 83). This feature causes only the lines that are
indented less than a specified amount to appear on the screen.

22.1 Major Modes for Programming Languages

Emacs has several major modes for the programming languages Lisp, Scheme (a variant
of Lisp), C, Fortran, and Muddle. Ideally, a major mode should be implemented for each
programming language you might want to edit with Emacs; but often the mode for one
language can serve for other syntactically similar languages. The language modes that exist
are those that someone decided to take the trouble to write.

There are several variants of Lisp mode, which differ in the way they interface to Lisp
execution. See Section 23.2 [Lisp Modes], page 192.

Each of the programming language modes defines the 〈TAB〉 key to run an indentation
function that knows the indentation conventions of that language and updates the current
line’s indentation accordingly. For example, in C mode 〈TAB〉 is bound to c-indent-line.
〈LFD〉 is normally defined to do 〈RET〉 followed by 〈TAB〉; thus it, too, indents in a mode-specific
fashion.

In most programming languages, indentation is likely to vary from line to line. So the
major modes for those languages rebind 〈DEL〉 to treat a tab as if it were the equivalent
number of spaces (using the command backward-delete-char-untabify). This makes it
possible to rub out indentation one column at a time without worrying whether it is made
up of spaces or tabs. In these modes, use C-b C-d to delete a tab character before point.

166 XEmacs User’s Manual

Programming language modes define paragraphs to be separated only by blank lines, so
that the paragraph commands remain useful. Auto Fill mode, if enabled in a programming
language major mode, indents the new lines which it creates.

Turning on a major mode calls a user-supplied function called the mode hook, which
is the value of a Lisp variable. For example, turning on C mode calls the value of the
variable c-mode-hook if that value exists and is non-nil. Mode hook variables for other
programming language modes include lisp-mode-hook, emacs-lisp-mode-hook, lisp-
interaction-mode-hook, scheme-mode-hook, and muddle-mode-hook. The mode hook
function receives no arguments.

22.2 Lists and Sexps

By convention, Emacs keys for dealing with balanced expressions are usually Control-

Meta- characters. They tend to be analogous in function to their Control- and Meta-

equivalents. These commands are usually thought of as pertaining to expressions in pro-
gramming languages, but can be useful with any language in which some sort of parentheses
exist (including English).

The commands fall into two classes. Some commands deal only with lists (parenthetical
groupings). They see nothing except parentheses, brackets, braces (depending on what
must balance in the language you are working with), and escape characters that might be
used to quote those.

The other commands deal with expressions or sexps. The word ‘sexp’ is derived from
s-expression, the term for a symbolic expression in Lisp. In Emacs, the notion of ‘sexp’ is
not limited to Lisp. It refers to an expression in the language your program is written in.
Each programming language has its own major mode, which customizes the syntax tables
so that expressions in that language count as sexps.

Sexps typically include symbols, numbers, and string constants, as well as anything
contained in parentheses, brackets, or braces.

In languages that use prefix and infix operators, such as C, it is not possible for all
expressions to be sexps. For example, C mode does not recognize ‘foo + bar’ as an sexp,
even though it is a C expression; it recognizes ‘foo’ as one sexp and ‘bar’ as another, with
the ‘+’ as punctuation between them. This is a fundamental ambiguity: both ‘foo + bar’
and ‘foo’ are legitimate choices for the sexp to move over if point is at the ‘f’. Note that
‘(foo + bar)’ is a sexp in C mode.

Some languages have obscure forms of syntax for expressions that nobody has bothered
to make Emacs understand properly.

C-M-f Move forward over an sexp (forward-sexp).

C-M-b Move backward over an sexp (backward-sexp).

C-M-k Kill sexp forward (kill-sexp).

C-M-u Move up and backward in list structure (backward-up-list).

C-M-d Move down and forward in list structure (down-list).

C-M-n Move forward over a list (forward-list).

Chapter 22: Editing Programs 167

C-M-p Move backward over a list (backward-list).

C-M-t Transpose expressions (transpose-sexps).

C-M-@ Put mark after following expression (mark-sexp).

To move forward over an sexp, use C-M-f (forward-sexp). If the first significant char-
acter after point is an opening delimiter (‘(’ in Lisp; ‘(’, ‘[’, or ‘{’ in C), C-M-f moves past
the matching closing delimiter. If the character begins a symbol, string, or number, C-M-f
moves over that. If the character after point is a closing delimiter, C-M-f just moves past
it. (This last is not really moving across an sexp; it is an exception which is included in
the definition of C-M-f because it is as useful a behavior as anyone can think of for that
situation.)

The command C-M-b (backward-sexp) moves backward over a sexp. The detailed rules
are like those above for C-M-f, but with directions reversed. If there are any prefix characters
(single quote, back quote, and comma, in Lisp) preceding the sexp, C-M-b moves back over
them as well.

C-M-f or C-M-b with an argument repeats that operation the specified number of times;
with a negative argument, it moves in the opposite direction.

In languages such as C where the comment-terminator can be recognized, the sexp com-
mands move across comments as if they were whitespace. In Lisp and other languages where
comments run until the end of a line, it is very difficult to ignore comments when parsing
backwards; therefore, in such languages the sexp commands treat the text of comments as
if it were code.

Killing an sexp at a time can be done with C-M-k (kill-sexp). C-M-k kills the characters
that C-M-f would move over.

The list commands, C-M-n (forward-list) and C-M-p (backward-list), move over lists
like the sexp commands but skip over any number of other kinds of sexps (symbols, strings,
etc). In some situations, these commands are useful because they usually ignore comments,
since the comments usually do not contain any lists.

C-M-n and C-M-p stay at the same level in parentheses, when that is possible. To move
up one (or n) levels, use C-M-u (backward-up-list). C-M-u moves backward up past one
unmatched opening delimiter. A positive argument serves as a repeat count; a negative
argument reverses direction of motion and also requests repetition, so it moves forward and
up one or more levels.

To move down in list structure, use C-M-d (down-list). In Lisp mode, where ‘(’ is the
only opening delimiter, this is nearly the same as searching for a ‘(’. An argument specifies
the number of levels of parentheses to go down.

C-M-t (transpose-sexps) drags the previous sexp across the next one. An argument
serves as a repeat count, and a negative argument drags backwards (thus canceling out the
effect of C-M-t with a positive argument). An argument of zero, rather than doing nothing,
transposes the sexps ending after point and the mark.

To make the region be the next sexp in the buffer, use C-M-@ (mark-sexp) which sets
the mark at the same place that C-M-f would move to. C-M-@ takes arguments like C-M-f.
In particular, a negative argument is useful for putting the mark at the beginning of the
previous sexp.

168 XEmacs User’s Manual

The list and sexp commands’ understanding of syntax is completely controlled by the
syntax table. Any character can, for example, be declared to be an opening delimiter and
act like an open parenthesis. See Section 29.5 [Syntax], page 280.

22.3 Defuns

In Emacs, a parenthetical grouping at the top level in the buffer is called a defun. The
name derives from the fact that most top-level lists in Lisp are instances of the special form
defun, but Emacs calls any top-level parenthetical grouping counts a defun regardless of its
contents or the programming language. For example, in C, the body of a function definition
is a defun.

C-M-a Move to beginning of current or preceding defun (beginning-of-defun).

C-M-e Move to end of current or following defun (end-of-defun).

C-M-h Put region around whole current or following defun (mark-defun).

The commands to move to the beginning and end of the current defun are C-M-a

(beginning-of-defun) and C-M-e (end-of-defun).

To operate on the current defun, use C-M-h (mark-defun) which puts point at the
beginning and the mark at the end of the current or next defun. This is the easiest way
to prepare for moving the defun to a different place. In C mode, C-M-h runs the function
mark-c-function, which is almost the same as mark-defun, but which backs up over the
argument declarations, function name, and returned data type so that the entire C function
is inside the region.

To compile and evaluate the current defun, use M-x compile-defun. This function prints
the results in the minibuffer. If you include an argument, it inserts the value in the current
buffer after the defun.

Emacs assumes that any open-parenthesis found in the leftmost column is the start of
a defun. Therefore, never put an open-parenthesis at the left margin in a Lisp file unless
it is the start of a top level list. Never put an open-brace or other opening delimiter at the
beginning of a line of C code unless it starts the body of a function. The most likely problem
case is when you want an opening delimiter at the start of a line inside a string. To avoid
trouble, put an escape character (‘\’ in C and Emacs Lisp, ‘/’ in some other Lisp dialects)
before the opening delimiter. It will not affect the contents of the string.

The original Emacs found defuns by moving upward a level of parentheses until there
were no more levels to go up. This required scanning back to the beginning of the buffer
for every function. To speed this up, Emacs was changed to assume that any ‘(’ (or other
character assigned the syntactic class of opening-delimiter) at the left margin is the start of a
defun. This heuristic is nearly always right; however, it mandates the convention described
above.

22.4 Indentation for Programs

Chapter 22: Editing Programs 169

The best way to keep a program properly indented (“ground”) is to use Emacs to re-
indent it as you change the program. Emacs has commands to indent properly either a single
line, a specified number of lines, or all of the lines inside a single parenthetical grouping.

22.4.1 Basic Program Indentation Commands

〈TAB〉 Adjust indentation of current line.

〈LFD〉 Equivalent to 〈RET〉 followed by 〈TAB〉 (newline-and-indent).

The basic indentation command is 〈TAB〉, which gives the current line the correct inden-
tation as determined from the previous lines. The function that 〈TAB〉 runs depends on the
major mode; it is lisp-indent-line in Lisp mode, c-indent-line in C mode, etc. These
functions understand different syntaxes for different languages, but they all do about the
same thing. 〈TAB〉 in any programming language major mode inserts or deletes whitespace at
the beginning of the current line, independent of where point is in the line. If point is inside
the whitespace at the beginning of the line, 〈TAB〉 leaves it at the end of that whitespace;
otherwise, 〈TAB〉 leaves point fixed with respect to the characters around it.

Use C-q 〈TAB〉 to insert a tab at point.

When entering a large amount of new code, use 〈LFD〉 (newline-and-indent), which
is equivalent to a 〈RET〉 followed by a 〈TAB〉. 〈LFD〉 creates a blank line, then gives it the
appropriate indentation.

〈TAB〉 indents the second and following lines of the body of a parenthetical grouping each
under the preceding one; therefore, if you alter one line’s indentation to be nonstandard,
the lines below tend to follow it. This is the right behavior in cases where the standard
result of 〈TAB〉 does not look good.

Remember that Emacs assumes that an open-parenthesis, open-brace, or other opening
delimiter at the left margin (including the indentation routines) is the start of a function.
You should therefore never have an opening delimiter in column zero that is not the be-
ginning of a function, not even inside a string. This restriction is vital for making the
indentation commands fast. See Section 22.3 [Defuns], page 168, for more information on
this behavior.

22.4.2 Indenting Several Lines

Several commands are available to re-indent several lines of code which have been altered
or moved to a different level in a list structure.

C-M-q Re-indent all the lines within one list (indent-sexp).

C-u 〈TAB〉 Shift an entire list rigidly sideways so that its first line is properly indented.

C-M-\ Re-indent all lines in the region (indent-region).

170 XEmacs User’s Manual

To re-indent the contents of a single list, position point before the beginning of it and
type C-M-q. This key is bound to indent-sexp in Lisp mode, indent-c-exp in C mode,
and bound to other suitable functions in other modes. The indentation of the line the sexp
starts on is not changed; therefore, only the relative indentation within the list, and not its
position, is changed. To correct the position as well, type a 〈TAB〉 before C-M-q.

If the relative indentation within a list is correct but the indentation of its beginning
is not, go to the line on which the list begins and type C-u 〈TAB〉. When you give 〈TAB〉 a
numeric argument, it moves all the lines in the group, starting on the current line, sideways
the same amount that the current line moves. The command does not move lines that start
inside strings, or C preprocessor lines when in C mode.

Another way to specify a range to be re-indented is with point and mark. The command
C-M-\ (indent-region) applies 〈TAB〉 to every line whose first character is between point
and mark.

22.4.3 Customizing Lisp Indentation

The indentation pattern for a Lisp expression can depend on the function called by the
expression. For each Lisp function, you can choose among several predefined patterns of
indentation, or define an arbitrary one with a Lisp program.

The standard pattern of indentation is as follows: the second line of the expression
is indented under the first argument, if that is on the same line as the beginning of the
expression; otherwise, the second line is indented underneath the function name. Each
following line is indented under the previous line whose nesting depth is the same.

If the variable lisp-indent-offset is non-nil, it overrides the usual indentation pat-
tern for the second line of an expression, so that such lines are always indented lisp-
indent-offset more columns than the containing list.

Certain functions override the standard pattern. Functions whose names start with def
always indent the second line by lisp-body-indention extra columns beyond the open-
parenthesis starting the expression.

Individual functions can override the standard pattern in various ways, according to the
lisp-indent-function property of the function name. (Note: lisp-indent-function
was formerly called lisp-indent-hook). There are four possibilities for this property:

nil This is the same as no property; the standard indentation pattern is used.

defun The pattern used for function names that start with def is used for this function
also.

a number, number
The first number arguments of the function are distinguished arguments; the
rest are considered the body of the expression. A line in the expression is
indented according to whether the first argument on it is distinguished or not.
If the argument is part of the body, the line is indented lisp-body-indent
more columns than the open-parenthesis starting the containing expression. If
the argument is distinguished and is either the first or second argument, it is
indented twice that many extra columns. If the argument is distinguished and
not the first or second argument, the standard pattern is followed for that line.

Chapter 22: Editing Programs 171

a symbol, symbol
symbol should be a function name; that function is called to calculate the in-
dentation of a line within this expression. The function receives two arguments:

state The value returned by parse-partial-sexp (a Lisp primitive for
indentation and nesting computation) when it parses up to the
beginning of this line.

pos The position at which the line being indented begins.

It should return either a number, which is the number of columns of indentation
for that line, or a list whose first element is such a number. The difference
between returning a number and returning a list is that a number says that all
following lines at the same nesting level should be indented just like this one; a
list says that following lines might call for different indentations. This makes a
difference when the indentation is computed by C-M-q; if the value is a number,
C-M-q need not recalculate indentation for the following lines until the end of
the list.

22.4.4 Customizing C Indentation

Two variables control which commands perform C indentation and when.

If c-auto-newline is non-nil, newlines are inserted both before and after braces that
you insert and after colons and semicolons. Correct C indentation is done on all the lines
that are made this way.

If c-tab-always-indent is non-nil, the 〈TAB〉 command in C mode does indentation
only if point is at the left margin or within the line’s indentation. If there is non-whitespace
to the left of point, 〈TAB〉 just inserts a tab character in the buffer. Normally, this variable
is nil, and 〈TAB〉 always reindents the current line.

C does not have anything analogous to particular function names for which special forms
of indentation are desirable. However, it has a different need for customization facilities:
many different styles of C indentation are in common use.

There are six variables you can set to control the style that Emacs C mode will use.

c-indent-level
Indentation of C statements within surrounding block. The surrounding block’s
indentation is the indentation of the line on which the open-brace appears.

c-continued-statement-offset
Extra indentation given to a substatement, such as the then-clause of an if or
body of a while.

c-brace-offset
Extra indentation for lines that start with an open brace.

c-brace-imaginary-offset
An open brace following other text is treated as if it were this far to the right
of the start of its line.

172 XEmacs User’s Manual

c-argdecl-indent
Indentation level of declarations of C function arguments.

c-label-offset
Extra indentation for a line that is a label, case, or default.

The variable c-indent-level controls the indentation for C statements with respect to
the surrounding block. In the example:

{
foo ();

the difference in indentation between the lines is c-indent-level. Its standard value is 2.
If the open-brace beginning the compound statement is not at the beginning of its line,

the c-indent-level is added to the indentation of the line, not the column of the open-
brace. For example,

if (losing) {
do_this ();

One popular indentation style is that which results from setting c-indent-level to 8 and
putting open-braces at the end of a line in this way. Another popular style prefers to put
the open-brace on a separate line.

In fact, the value of the variable c-brace-imaginary-offset is also added to the in-
dentation of such a statement. Normally this variable is zero. Think of this variable as the
imaginary position of the open brace, relative to the first non-blank character on the line.
By setting the variable to 4 and c-indent-level to 0, you can get this style:

if (x == y) {
do_it ();
}

When c-indent-level is zero, the statements inside most braces line up exactly under
the open brace. An exception are braces in column zero, like those surrounding a function’s
body. The statements inside those braces are not placed at column zero. Instead, c-brace-
offset and c-continued-statement-offset (see below) are added to produce a typical
offset between brace levels, and the statements are indented that far.

c-continued-statement-offset controls the extra indentation for a line that starts
within a statement (but not within parentheses or brackets). These lines are usually state-
ments inside other statements, like the then-clauses of if statements and the bodies of while
statements. The c-continued-statement-offset parameter determines the difference in
indentation between the two lines in:

if (x == y)
do_it ();

The default value for c-continued-statement-offset is 2. Some popular indentation
styles correspond to a value of zero for c-continued-statement-offset.

c-brace-offset is the extra indentation given to a line that starts with an open-brace.
Its standard value is zero; compare:

if (x == y)
{

with:

Chapter 22: Editing Programs 173

if (x == y)
do_it ();

If you set c-brace-offset to 4, the first example becomes:
if (x == y)

{

c-argdecl-indent controls the indentation of declarations of the arguments of a C
function. It is absolute: argument declarations receive exactly c-argdecl-indent spaces.
The standard value is 5 and results in code like this:

char *
index (string, char)

char *string;
int char;

c-label-offset is the extra indentation given to a line that contains a label, a case
statement, or a default: statement. Its standard value is −2 and results in code like this:

switch (c)
{
case ’x’:

If c-label-offset were zero, the same code would be indented as:
switch (c)
{

case ’x’:

This example assumes that the other variables above also have their default values.
Using the indentation style produced by the default settings of the variables just dis-

cussed and putting open braces on separate lines produces clear and readable files. For an
example, look at any of the C source files of XEmacs.

22.5 Automatic Display of Matching Parentheses

The Emacs parenthesis-matching feature shows you automatically how parentheses
match in the text. Whenever a self-inserting character that is a closing delimiter is typed,
the cursor moves momentarily to the location of the matching opening delimiter, provided
that is visible on the screen. If it is not on the screen, some text starting with that opening
delimiter is displayed in the echo area. Either way, you see the grouping you are closing off.

In Lisp, automatic matching applies only to parentheses. In C, it also applies to braces
and brackets. Emacs knows which characters to regard as matching delimiters based on the
syntax table set by the major mode. See Section 29.5 [Syntax], page 280.

If the opening delimiter and closing delimiter are mismatched—as in ‘[x)’—the echo
area displays a warning message. The correct matches are specified in the syntax table.

Two variables control parenthesis matching displays. blink-matching-paren turns the
feature on or off. The default is t (match display is on); nil turns it off. blink-matching-
paren-distance specifies how many characters back Emacs searches to find a matching
opening delimiter. If the match is not found in the specified region, scanning stops, and
nothing is displayed. This prevents wasting lots of time scanning when there is no match.
The default is 4000.

174 XEmacs User’s Manual

22.6 Manipulating Comments

The comment commands insert, kill and align comments.

M-; Insert or align comment (indent-for-comment).

C-x ; Set comment column (set-comment-column).

C-u - C-x ;

Kill comment on current line (kill-comment).

M-〈LFD〉 Like 〈RET〉 followed by inserting and aligning a comment (indent-new-comment-
line).

The command that creates a comment is Meta-; (indent-for-comment). If there is no
comment already on the line, a new comment is created and aligned at a specific column
called the comment column. Emacs creates the comment by inserting the string at the value
of comment-start; see below. Point is left after that string. If the text of the line extends
past the comment column, indentation is done to a suitable boundary (usually, at least one
space is inserted). If the major mode has specified a string to terminate comments, that
string is inserted after point, to keep the syntax valid.

You can also use Meta-; to align an existing comment. If a line already contains the
string that starts comments, M-; just moves point after it and re-indents it to the conven-
tional place. Exception: comments starting in column 0 are not moved.

Some major modes have special rules for indenting certain kinds of comments in certain
contexts. For example, in Lisp code, comments which start with two semicolons are indented
as if they were lines of code, instead of at the comment column. Comments which start
with three semicolons are supposed to start at the left margin. Emacs understands these
conventions by indenting a double-semicolon comment using 〈TAB〉 and by not changing the
indentation of a triple-semicolon comment at all.

;; This function is just an example.
;;; Here either two or three semicolons are appropriate.
(defun foo (x)
;;; And now, the first part of the function:

;; The following line adds one.
(1+ x)) ; This line adds one.

In C code, a comment preceded on its line by nothing but whitespace is indented like a
line of code.

Even when an existing comment is properly aligned, M-; is still useful for moving directly
to the start of the comment.

C-u - C-x ; (kill-comment) kills the comment on the current line, if there is one. The
indentation before the start of the comment is killed as well. If there does not appear to be
a comment in the line, nothing happens. To reinsert the comment on another line, move to
the end of that line, type first C-y, and then M-; to realign the comment. Note that C-u

- C-x ; is not a distinct key; it is C-x ; (set-comment-column) with a negative argument.
That command is programmed to call kill-comment when called with a negative argument.
However, kill-comment is a valid command which you could bind directly to a key if you
wanted to.

Chapter 22: Editing Programs 175

22.6.1 Multiple Lines of Comments

If you are typing a comment and want to continue it on another line, use the command
Meta-〈LFD〉 (indent-new-comment-line), which terminates the comment you are typing,
creates a new blank line afterward, and begins a new comment indented under the old
one. If Auto Fill mode is on and you go past the fill column while typing, the comment is
continued in just this fashion. If point is not at the end of the line when you type M-〈LFD〉,
the text on the rest of the line becomes part of the new comment line.

22.6.2 Options Controlling Comments

The comment column is stored in the variable comment-column. You can explicitly
set it to a number. Alternatively, the command C-x ; (set-comment-column) sets the
comment column to the column point is at. C-u C-x ; sets the comment column to match
the last comment before point in the buffer, and then calls Meta-; to align the current line’s
comment under the previous one. Note that C-u - C-x ; runs the function kill-comment
as described above.

comment-column is a per-buffer variable; altering the variable affects only the current
buffer. You can also change the default value. See Section 29.2.4 [Locals], page 270. Many
major modes initialize this variable for the current buffer.

The comment commands recognize comments based on the regular expression that is the
value of the variable comment-start-skip. This regexp should not match the null string.
It may match more than the comment starting delimiter in the strictest sense of the word;
for example, in C mode the value of the variable is "/*+ *", which matches extra stars
and spaces after the ‘/*’ itself. (Note that ‘\\’ is needed in Lisp syntax to include a ‘\’ in
the string, which is needed to deny the first star its special meaning in regexp syntax. See
Section 13.5 [Regexps], page 89.)

When a comment command makes a new comment, it inserts the value of comment-
start to begin it. The value of comment-end is inserted after point and will follow the
text you will insert into the comment. In C mode, comment-start has the value "/* " and
comment-end has the value " */".

comment-multi-line controls how M-〈LFD〉 (indent-new-comment-line) behaves when
used inside a comment. If comment-multi-line is nil, as it normally is, then M-〈LFD〉
terminates the comment on the starting line and starts a new comment on the new following
line. If comment-multi-line is not nil, then M-〈LFD〉 sets up the new following line as part
of the same comment that was found on the starting line. This is done by not inserting a
terminator on the old line and not inserting a starter on the new line. In languages where
multi-line comments are legal, the value you choose for this variable is a matter of taste.

The variable comment-indent-hook should contain a function that is called to compute
the indentation for a newly inserted comment or for aligning an existing comment. Major
modes set this variable differently. The function is called with no arguments, but with point
at the beginning of the comment, or at the end of a line if a new comment is to be inserted.
The function should return the column in which the comment ought to start. For example,
in Lisp mode, the indent hook function bases its decision on the number of semicolons that
begin an existing comment and on the code in the preceding lines.

176 XEmacs User’s Manual

22.7 Editing Without Unbalanced Parentheses

M-(Put parentheses around next sexp(s) (insert-parentheses).

M-) Move past next close parenthesis and re-indent (move-over-close-and-
reindent).

The commands M-((insert-parentheses) and M-) (move-over-close-
and-reindent) are designed to facilitate a style of editing which keeps parentheses balanced
at all times. M-(inserts a pair of parentheses, either together as in ‘()’, or, if given
an argument, around the next several sexps, and leaves point after the open parenthesis.
Instead of typing (F O O), you can type M-(F O O, which has the same effect except for
leaving the cursor before the close parenthesis. You can then type M-), which moves past
the close parenthesis, deletes any indentation preceding it (in this example there is none),
and indents with 〈LFD〉 after it.

22.8 Completion for Lisp Symbols

Completion usually happens in the minibuffer. An exception is completion for Lisp
symbol names, which is available in all buffers.

The command M-〈TAB〉 (lisp-complete-symbol) takes the partial Lisp symbol before
point to be an abbreviation, and compares it against all non-trivial Lisp symbols currently
known to Emacs. Any additional characters that they all have in common are inserted at
point. Non-trivial symbols are those that have function definitions, values, or properties.

If there is an open-parenthesis immediately before the beginning of the partial symbol,
only symbols with function definitions are considered as completions.

If the partial name in the buffer has more than one possible completion and they have no
additional characters in common, a list of all possible completions is displayed in another
window.

22.9 Documentation Commands

As you edit Lisp code to be run in Emacs, you can use the commands C-h f (describe-
function) and C-h v (describe-variable) to print documentation of functions and vari-
ables you want to call. These commands use the minibuffer to read the name of a function
or variable to document, and display the documentation in a window.

For extra convenience, these commands provide default arguments based on the code in
the neighborhood of point. C-h f sets the default to the function called in the innermost list
containing point. C-h v uses the symbol name around or adjacent to point as its default.

The M-x manual-entry command gives you access to documentation on Unix commands,
system calls, and libraries. The command reads a topic as an argument, and displays
the Unix manual page for that topic. manual-entry always searches all 8 sections of the
manual and concatenates all the entries it finds. For example, the topic ‘termcap’ finds the

Chapter 22: Editing Programs 177

description of the termcap library from section 3, followed by the description of the termcap
data base from section 5.

22.10 Change Logs

The Emacs command M-x add-change-log-entry helps you keep a record of when and
why you have changed a program. It assumes that you have a file in which you write a
chronological sequence of entries describing individual changes. The default is to store the
change entries in a file called ‘ChangeLog’ in the same directory as the file you are editing.
The same ‘ChangeLog’ file therefore records changes for all the files in a directory.

A change log entry starts with a header line that contains your name and the current
date. Except for these header lines, every line in the change log starts with a tab. One
entry can describe several changes; each change starts with a line starting with a tab and a
star. M-x add-change-log-entry visits the change log file and creates a new entry unless
the most recent entry is for today’s date and your name. In either case, it adds a new line
to start the description of another change just after the header line of the entry. When M-x

add-change-log-entry is finished, all is prepared for you to edit in the description of what
you changed and how. You must then save the change log file yourself.

The change log file is always visited in Indented Text mode, which means that 〈LFD〉 and
auto-filling indent each new line like the previous line. This is convenient for entering the
contents of an entry, which must be indented. See Section 21.1 [Text Mode], page 151.

Here is an example of the formatting conventions used in the change log for Emacs:
Wed Jun 26 19:29:32 1985 Richard M. Stallman (rms at mit-prep)

* xdisp.c (try_window_id):
If C-k is done at end of next-to-last line,
this fn updates window_end_vpos and cannot leave
window_end_pos nonnegative (it is zero, in fact).
If display is preempted before lines are output,
this is inconsistent. Fix by setting
blank_end_of_window to nonzero.

Tue Jun 25 05:25:33 1985 Richard M. Stallman (rms at mit-prep)

* cmds.c (Fnewline):
Call the auto fill hook if appropriate.

* xdisp.c (try_window_id):
If point is found by compute_motion after xp, record that
permanently. If display_text_line sets point position wrong
(case where line is killed, point is at eob and that line is
not displayed), set it again in final compute_motion.

22.11 Tags Tables

178 XEmacs User’s Manual

A tags table is a description of how a multi-file program is broken up into files. It lists
the names of the component files and the names and positions of the functions (or other
named subunits) in each file. Grouping the related files makes it possible to search or replace
through all the files with one command. Recording the function names and positions makes
possible the M-. command which finds the definition of a function by looking up which of
the files it is in.

Tags tables are stored in files called tags table files. The conventional name for a tags
table file is ‘TAGS’.

Each entry in the tags table records the name of one tag, the name of the file that the
tag is defined in (implicitly), and the position in that file of the tag’s definition.

Just what names from the described files are recorded in the tags table depends on
the programming language of the described file. They normally include all functions and
subroutines, and may also include global variables, data types, and anything else convenient.
Each name recorded is called a tag.

22.11.1 Source File Tag Syntax

Here is how tag syntax is defined for the most popular languages:
• In C code, any C function or typedef is a tag, and so are definitions of struct, union

and enum. #define macro definitions and enum constants are also tags, unless you
specify ‘--no-defines’ when making the tags table. Similarly, global variables are
tags, unless you specify ‘--no-globals’. Use of ‘--no-globals’ and ‘--no-defines’
can make the tags table file much smaller.

• In C++ code, in addition to all the tag constructs of C code, member functions are also
recognized, and optionally member variables if you use the ‘--members’ option. Tags
for variables and functions in classes are named ‘class::variable’ and ‘class::function’.

• In Java code, tags include all the constructs recognized in C++, plus the extends
and implements constructs. Tags for variables and functions in classes are named
‘class.variable’ and ‘class.function’.

• In LaTEX text, the argument of any of the commands \chapter, \section,
\subsection, \subsubsection, \eqno, \label, \ref, \cite, \bibitem, \part,
\appendix, \entry, or \index, is a tag.
Other commands can make tags as well, if you specify them in the environment variable
TEXTAGS before invoking etags. The value of this environment variable should be a
colon-separated list of commands names. For example,

TEXTAGS="def:newcommand:newenvironment"
export TEXTAGS

specifies (using Bourne shell syntax) that the commands ‘\def’, ‘\newcommand’ and
‘\newenvironment’ also define tags.

• In Lisp code, any function defined with defun, any variable defined with defvar or
defconst, and in general the first argument of any expression that starts with ‘(def’
in column zero, is a tag.

Chapter 22: Editing Programs 179

• In Scheme code, tags include anything defined with def or with a construct whose
name starts with ‘def’. They also include variables set with set! at top level in the
file.

Several other languages are also supported:
• In assembler code, labels appearing at the beginning of a line, followed by a colon, are

tags.
• In Bison or Yacc input files, each rule defines as a tag the nonterminal it constructs.

The portions of the file that contain C code are parsed as C code.
• In Cobol code, paragraphs names are the tags, i.e. any word starting in column 8 and

followed by a full stop.
• In Erlang code, the tags are the functions, records, and macros defined in the file.
• In Fortran code, functions and subroutines are tags.
• In Objective C code, tags include Objective C definitions for classes, class categories,

methods and protocols.
• In Pascal code, the tags are the functions and procedures defined in the file.
• In Perl code, the tags are the procedures defined by the sub keyword.
• In Postscript code, the tags are the functions.
• In Prolog code, a tag name appears at the left margin.

You can also generate tags based on regexp matching (see Section 22.11.2 [Create Tags
Table], page 179) to handle other formats and languages.

22.11.2 Creating Tags Tables

The etags program is used to create a tags table file. It knows the syntax of several
languages, as described in the previous section. Here is how to run etags:

etags inputfiles...

The etags program reads the specified files, and writes a tags table named ‘TAGS’ in the
current working directory. etags recognizes the language used in an input file based on its
file name and contents. You can specify the language with the ‘--language=name’ option,
described below.

If the tags table data become outdated due to changes in the files described in the table,
the way to update the tags table is the same way it was made in the first place. It is not
necessary to do this often.

If the tags table fails to record a tag, or records it for the wrong file, then Emacs cannot
possibly find its definition. However, if the position recorded in the tags table becomes
a little bit wrong (due to some editing in the file that the tag definition is in), the only
consequence is a slight delay in finding the tag. Even if the stored position is very wrong,
Emacs will still find the tag, but it must search the entire file for it.

So you should update a tags table when you define new tags that you want to have
listed, or when you move tag definitions from one file to another, or when changes become
substantial. Normally there is no need to update the tags table after each edit, or even
every day.

180 XEmacs User’s Manual

One tags table can effectively include another. Specify the included tags file name with
the ‘--include=file’ option when creating the file that is to include it. The latter file then
acts as if it contained all the files specified in the included file, as well as the files it directly
contains.

If you specify the source files with relative file names when you run etags, the tags file
will contain file names relative to the directory where the tags file was initially written.
This way, you can move an entire directory tree containing both the tags file and the source
files, and the tags file will still refer correctly to the source files.

If you specify absolute file names as arguments to etags, then the tags file will contain
absolute file names. This way, the tags file will still refer to the same files even if you move
it, as long as the source files remain in the same place. Absolute file names start with ‘/’,
or with ‘device:/’ on MS-DOS and Windows.

When you want to make a tags table from a great number of files, you may have problems
listing them on the command line, because some systems have a limit on its length. The
simplest way to circumvent this limit is to tell etags to read the file names from its standard
input, by typing a dash in place of the file names, like this:

find . -name "*.[chCH]" -print | etags -

Use the option ‘--language=name’ to specify the language explicitly. You can intermix
these options with file names; each one applies to the file names that follow it. Specify
‘--language=auto’ to tell etags to resume guessing the language from the file names and
file contents. Specify ‘--language=none’ to turn off language-specific processing entirely;
then etags recognizes tags by regexp matching alone. ‘etags --help’ prints the list of the
languages etags knows, and the file name rules for guessing the language.

The ‘--regex’ option provides a general way of recognizing tags based on regexp match-
ing. You can freely intermix it with file names. Each ‘--regex’ option adds to the preceding
ones, and applies only to the following files. The syntax is:

--regex=/tagregexp[/nameregexp]/

where tagregexp is used to match the lines to tag. It is always anchored, that is, it behaves
as if preceded by ‘^’. If you want to account for indentation, just match any initial number
of blanks by beginning your regular expression with ‘[\t]*’. In the regular expressions,
‘\’ quotes the next character, and ‘\t’ stands for the tab character. Note that etags does
not handle the other C escape sequences for special characters.

The syntax of regular expressions in etags is the same as in Emacs, augmented with
the interval operator, which works as in grep and ed. The syntax of an interval operator is
‘\{m,n\}’, and its meaning is to match the preceding expression at least m times and up
to n times.

You should not match more characters with tagregexp than that needed to recognize
what you want to tag. If the match is such that more characters than needed are unavoidably
matched by tagregexp, you may find useful to add a nameregexp, in order to narrow the
tag scope. You can find some examples below.

The ‘-R’ option deletes all the regexps defined with ‘--regex’ options. It applies to the
file names following it, as you can see from the following example:

etags --regex=/reg1/ voo.doo --regex=/reg2/ \
bar.ber -R --lang=lisp los.er

Chapter 22: Editing Programs 181

Here etags chooses the parsing language for ‘voo.doo’ and ‘bar.ber’ according to their
contents. etags also uses reg1 to recognize additional tags in ‘voo.doo’, and both reg1
and reg2 to recognize additional tags in ‘bar.ber’. etags uses the Lisp tags rules, and no
regexp matching, to recognize tags in ‘los.er’.

Here are some more examples. The regexps are quoted to protect them from shell
interpretation.
Tag the DEFVAR macros in the emacs source files:

--regex=’/[\t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/’

Tag VHDL files (this example is a single long line, broken here for formatting reasons):
--language=none
--regex=’/[\t]*\(ARCHITECTURE\|CONFIGURATION\) +[^]* +OF/’
--regex=’/[\t]*\(ATTRIBUTE\|ENTITY\|FUNCTION\|PACKAGE\
\(BODY\)?\|PROCEDURE\|PROCESS\|TYPE\)[\t]+\([^ \t(]+\)/\3/’

Tag TCL files (this last example shows the usage of a nameregexp):
--lang=none --regex=’/proc[\t]+\([^ \t]+\)/\1/’

For a list of the other available etags options, execute etags --help.

22.11.3 Selecting a Tags Table

At any time Emacs has one selected tags table, and all the commands for working with
tags tables use the selected one. To select a tags table, use the variable tag-table-alist.

The value of tag-table-alist is a list that determines which TAGS files should be active
for a given buffer. This is not really an association list, in that all elements are checked. The
car of each element of this list is a pattern against which the buffers file name is compared;
if it matches, then the cdr of the list should be the name of the tags table to use. If more
than one element of this list matches the buffers file name, all of the associated tags tables
are used. Earlier ones are searched first.

If the car of elements of this list are strings, they are treated as regular-expressions
against which the file is compared (like the auto-mode-alist). If they are not strings, they
are evaluated. If they evaluate to non-nil, the current buffer is considered to match.

If the cdr of the elements of this list are strings, they are assumed to name a tags file. If
they name a directory, the string ‘tags’ is appended to them to get the file name. If they
are not strings, they are evaluated and must return an appropriate string.

For example:
(setq tag-table-alist

’(("/usr/src/public/perl/" . "/usr/src/public/perl/perl-3.0/")
("\\.el$" . "/usr/local/emacs/src/")
("/jbw/gnu/" . "/usr15/degree/stud/jbw/gnu/")
("" . "/usr/local/emacs/src/")
))

The example defines the tags table alist in the following way:
• Anything in the directory ‘/usr/src/public/perl/’ should use the ‘TAGS’ file

‘/usr/src/public/perl/perl-3.0/TAGS’.

182 XEmacs User’s Manual

• Files ending in ‘.el’ should use the ‘TAGS’ file ‘/usr/local/emacs/src/TAGS’.
• Anything in or below the directory ‘/jbw/gnu/’ should use the ‘TAGS’ file

‘/usr15/degree/stud/jbw/gnu/TAGS’.

If you had a file called ‘/usr/jbw/foo.el’, it would use both ‘TAGS’ files,
‘/usr/local/emacs/src/TAGS’ and ‘/usr15/degree/stud/jbw/gnu/TAGS’ (in that order),
because it matches both patterns.

If the buffer-local variable buffer-tag-table is set, it names a tags table that is searched
before all others when find-tag is executed from this buffer.

If there is a file called ‘TAGS’ in the same directory as the file in question, then that tags
file will always be used as well (after the buffer-tag-table but before the tables specified
by this list).

If the variable tags-file-name is set, the ‘TAGS’ file it names will apply to all buffers
(for backwards compatibility.) It is searched first.

If the value of the variable tags-always-build-completion-table is t, the tags file
will always be added to the completion table without asking first, regardless of the size of
the tags file.

The function M-x visit-tags-table, is largely made obsolete by the variable tag-
table-alist, tells tags commands to use the tags table file file first. The file should be
the name of a file created with the etags program. A directory name is also acceptable; it
means the file ‘TAGS’ in that directory. The function only stores the file name you provide
in the variable tags-file-name. Emacs does not actually read in the tags table contents
until you try to use them. You can set the variable explicitly instead of using visit-tags-
table. The value of the variable tags-file-name is the name of the tags table used by
all buffers. This is for backward compatibility, and is largely supplanted by the variable
tag-table-alist.

22.11.4 Finding a Tag

The most important thing that a tags table enables you to do is to find the definition of
a specific tag.

M-. tag &optional other-window
Find first definition of tag (find-tag).

C-u M-. Find next alternate definition of last tag specified.

C-x 4 . tag
Find first definition of tag, but display it in another window (find-tag-other-
window).

M-. (find-tag) is the command to find the definition of a specified tag. It searches
through the tags table for that tag, as a string, then uses the tags table information to
determine the file in which the definition is used and the approximate character position
of the definition in the file. Then find-tag visits the file, moves point to the approximate
character position, and starts searching ever-increasing distances away for the text that
should appear at the beginning of the definition.

Chapter 22: Editing Programs 183

If an empty argument is given (by typing 〈RET〉), the sexp in the buffer before or around
point is used as the name of the tag to find. See Section 22.2 [Lists], page 166, for information
on sexps.

The argument to find-tag need not be the whole tag name; it can be a substring of
a tag name. However, there can be many tag names containing the substring you specify.
Since find-tag works by searching the text of the tags table, it finds the first tag in the
table that the specified substring appears in. To find other tags that match the substring,
give find-tag a numeric argument, as in C-u M-.. This does not read a tag name, but
continues searching the tag table’s text for another tag containing the same substring last
used. If your keyboard has a real 〈META〉 key, M-0 M-. is an easier alternative to C-u M-..

If the optional second argument other-window is non-nil, it uses another window to
display the tag. Multiple active tags tables and completion are supported.

Variables of note include the following:

tag-table-alist

Controls which tables apply to which buffers.

tags-file-name

Stores a default tags table.

tags-build-completion-table

Controls completion behavior.

buffer-tag-table

Specifies a buffer-local table.

make-tags-files-invisible

Sets whether tags tables should be very hidden.

tag-mark-stack-max

Specifies how many tags-based hops to remember.

Like most commands that can switch buffers, find-tag has another similar command
that displays the new buffer in another window. C-x 4 . invokes the function find-tag-
other-window. (This key sequence ends with a period.)

Emacs comes with a tags table file ‘TAGS’ (in the directory containing Lisp libraries) that
includes all the Lisp libraries and all the C sources of Emacs. By specifying this file with
visit-tags-table and then using M-. you can quickly look at the source of any Emacs
function.

22.11.5 Searching and Replacing with Tags Tables

The commands in this section visit and search all the files listed in the selected tags
table, one by one. For these commands, the tags table serves only to specify a sequence of
files to search. A related command is M-x grep (see Section 23.1 [Compilation], page 191).

M-x tags-search 〈RET〉 regexp 〈RET〉
Search for regexp through the files in the selected tags table.

184 XEmacs User’s Manual

M-x tags-query-replace 〈RET〉 regexp 〈RET〉 replacement 〈RET〉
Perform a query-replace-regexp on each file in the selected tags table.

M-, Restart one of the commands above, from the current location of point (tags-
loop-continue).

M-x tags-search reads a regexp using the minibuffer, then searches for matches in all
the files in the selected tags table, one file at a time. It displays the name of the file being
searched so you can follow its progress. As soon as it finds an occurrence, tags-search
returns.

Having found one match, you probably want to find all the rest. To find one more match,
type M-, (tags-loop-continue) to resume the tags-search. This searches the rest of the
current buffer, followed by the remaining files of the tags table.

M-x tags-query-replace performs a single query-replace-regexp through all the files
in the tags table. It reads a regexp to search for and a string to replace with, just like ordi-
nary M-x query-replace-regexp. It searches much like M-x tags-search, but repeatedly,
processing matches according to your input. See Section 13.7 [Replace], page 93, for more
information on query replace.

It is possible to get through all the files in the tags table with a single invocation of M-x
tags-query-replace. But often it is useful to exit temporarily, which you can do with any
input event that has no special query replace meaning. You can resume the query replace
subsequently by typing M-,; this command resumes the last tags search or replace command
that you did.

The commands in this section carry out much broader searches than the find-tag family.
The find-tag commands search only for definitions of tags that match your substring or
regexp. The commands tags-search and tags-query-replace find every occurrence of
the regexp, as ordinary search commands and replace commands do in the current buffer.

These commands create buffers only temporarily for the files that they have to search
(those which are not already visited in Emacs buffers). Buffers in which no match is found
are quickly killed; the others continue to exist.

It may have struck you that tags-search is a lot like grep. You can also run grep itself
as an inferior of Emacs and have Emacs show you the matching lines one by one. This
works much like running a compilation; finding the source locations of the grep matches
works like finding the compilation errors. See Section 23.1 [Compilation], page 191.

If you wish to process all the files in a selected tags table, but M-x tags-search and M-x

tags-query-replace are not giving you the desired result, you can use M-x next-file.

C-u M-x next-file

With a numeric argument, regardless of its value, visit the first file in the tags
table and prepare to advance sequentially by files.

M-x next-file

Visit the next file in the selected tags table.

22.11.6 Tags Table Inquiries

Chapter 22: Editing Programs 185

M-x list-tags

Display a list of the tags defined in a specific program file.

M-x tags-apropos

Display a list of all tags matching a specified regexp.

M-x list-tags reads the name of one of the files described by the selected tags table,
and displays a list of all the tags defined in that file. The “file name” argument is really
just a string to compare against the names recorded in the tags table; it is read as a string
rather than a file name. Therefore, completion and defaulting are not available, and you
must enter the string the same way it appears in the tag table. Do not include a directory as
part of the file name unless the file name recorded in the tags table contains that directory.

M-x tags-apropos is like apropos for tags. It reads a regexp, then finds all the tags in
the selected tags table whose entries match that regexp, and displays the tag names found.

22.12 Fortran Mode

Fortran mode provides special motion commands for Fortran statements and subpro-
grams, and indentation commands that understand Fortran conventions of nesting, line
numbers, and continuation statements.

Special commands for comments are provided because Fortran comments are unlike those
of other languages.

Built-in abbrevs optionally save typing when you insert Fortran keywords.

Use M-x fortran-mode to switch to this major mode. Doing so calls the value of
fortran-mode-hook as a function of no arguments if that variable has a non-nil value.

Fortran mode was contributed by Michael Prange.

22.12.1 Motion Commands

Fortran mode provides special commands to move by subprograms (functions and sub-
routines) and by statements. There is also a command to put the region around one
subprogram, which is convenient for killing it or moving it.

C-M-a Move to beginning of subprogram
(beginning-of-fortran-subprogram).

C-M-e Move to end of subprogram (end-of-fortran-subprogram).

C-M-h Put point at beginning of subprogram and mark at end (mark-fortran-
subprogram).

C-c C-n Move to beginning of current or next statement (fortran-next-
statement).

C-c C-p Move to beginning of current or previous statement (fortran-
previous-statement).

186 XEmacs User’s Manual

22.12.2 Fortran Indentation

Special commands and features are available for indenting Fortran code. They make
sure various syntactic entities (line numbers, comment line indicators, and continuation
line flags) appear in the columns that are required for standard Fortran.

22.12.2.1 Fortran Indentation Commands

〈TAB〉 Indent the current line (fortran-indent-line).

M-〈LFD〉 Break the current line and set up a continuation line.

C-M-q Indent all the lines of the subprogram point is in (fortran-indent-
subprogram).

〈TAB〉 is redefined by Fortran mode to reindent the current line for Fortran (fortran-
indent-line). Line numbers and continuation markers are indented to their required
columns, and the body of the statement is independently indented, based on its nesting in
the program.

The key C-M-q is redefined as fortran-indent-subprogram, a command that reindents
all the lines of the Fortran subprogram (function or subroutine) containing point.

The key M-〈LFD〉 is redefined as fortran-split-line, a command to split a line in
the appropriate fashion for Fortran. In a non-comment line, the second half becomes a
continuation line and is indented accordingly. In a comment line, both halves become
separate comment lines.

22.12.2.2 Line Numbers and Continuation

If a number is the first non-whitespace in the line, it is assumed to be a line number and
is moved to columns 0 through 4. (Columns are always counted from 0 in XEmacs.) If the
text on the line starts with the conventional Fortran continuation marker ‘$’, it is moved to
column 5. If the text begins with any non whitespace character in column 5, it is assumed
to be an unconventional continuation marker and remains in column 5.

Line numbers of four digits or less are normally indented one space. This amount is con-
trolled by the variable fortran-line-number-indent, which is the maximum indentation
a line number can have. Line numbers are indented to right-justify them to end in column
4 unless that would require more than the maximum indentation. The default value of the
variable is 1.

Simply inserting a line number is enough to indent it according to these rules. As each
digit is inserted, the indentation is recomputed. To turn off this feature, set the variable
fortran-electric-line-number to nil. Then inserting line numbers is like inserting
anything else.

Chapter 22: Editing Programs 187

22.12.2.3 Syntactic Conventions

Fortran mode assumes that you follow certain conventions that simplify the task of
understanding a Fortran program well enough to indent it properly:
• Two nested ‘do’ loops never share a ‘continue’ statement.
• The same character appears in column 5 of all continuation lines. It is the value of the

variable fortran-continuation-char. By default, this character is ‘$’.

If you fail to follow these conventions, the indentation commands may indent some lines
unaesthetically. However, a correct Fortran program will retain its meaning when reindented
even if the conventions are not followed.

22.12.2.4 Variables for Fortran Indentation

Several additional variables control how Fortran indentation works.

fortran-do-indent
Extra indentation within each level of ‘do’ statement (the default is 3).

fortran-if-indent
Extra indentation within each level of ‘if’ statement (the default is 3).

fortran-continuation-indent
Extra indentation for bodies of continuation lines (the default is 5).

fortran-check-all-num-for-matching-do
If this is nil, indentation assumes that each ‘do’ statement ends on a ‘continue’
statement. Therefore, when computing indentation for a statement other than
‘continue’, it can save time by not checking for a ‘do’ statement ending there.
If this is non-nil, indenting any numbered statement must check for a ‘do’ that
ends there. The default is nil.

fortran-minimum-statement-indent
Minimum indentation for Fortran statements. For standard Fortran, this is 6.
Statement bodies are always indented at least this much.

22.12.3 Comments

The usual Emacs comment commands assume that a comment can follow a line of code.
In Fortran, the standard comment syntax requires an entire line to be just a comment.
Therefore, Fortran mode replaces the standard Emacs comment commands and defines
some new variables.

Fortran mode can also handle a non-standard comment syntax where comments start
with ‘!’ and can follow other text. Because only some Fortran compilers accept this syntax,
Fortran mode will not insert such comments unless you have specified to do so in advance
by setting the variable comment-start to ‘"!"’ (see Section 29.2 [Variables], page 263).

M-; Align comment or insert new comment (fortran-comment-indent).

188 XEmacs User’s Manual

C-x ; Applies to nonstandard ‘!’ comments only.

C-c ; Turn all lines of the region into comments, or (with arg) turn them back into
real code (fortran-comment-region).

M-; in Fortran mode is redefined as the command fortran-comment-indent. Like the
usual M-; command, it recognizes an existing comment and aligns its text appropriately. If
there is no existing comment, a comment is inserted and aligned.

Inserting and aligning comments is not the same in Fortran mode as in other modes.
When a new comment must be inserted, a full-line comment is inserted if the current line
is blank. On a non-blank line, a non-standard ‘!’ comment is inserted if you previously
specified you wanted to use them. Otherwise a full-line comment is inserted on a new line
before the current line.

Non-standard ‘!’ comments are aligned like comments in other languages, but full-line
comments are aligned differently. In a standard full-line comment, the comment delimiter
itself must always appear in column zero. What can be aligned is the text within the
comment. You can choose from three styles of alignment by setting the variable fortran-
comment-indent-style to one of these values:

fixed The text is aligned at a fixed column, which is the value of fortran-comment-
line-column. This is the default.

relative The text is aligned as if it were a line of code, but with an additional fortran-
comment-line-column columns of indentation.

nil Text in full-line columns is not moved automatically.

You can also specify the character to be used to indent within full-line comments by
setting the variable fortran-comment-indent-char to the character you want to use.

Fortran mode introduces two variables comment-line-start and comment-line-start-
skip, which do for full-line comments what comment-start and comment-start-skip do
for ordinary text-following comments. Normally these are set properly by Fortran mode, so
you do not need to change them.

The normal Emacs comment command C-x ; has not been redefined. It can therefore
be used if you use ‘!’ comments, but is useless in Fortran mode otherwise.

The command C-c ; (fortran-comment-region) turns all the lines of the region into
comments by inserting the string ‘C$$$’ at the front of each one. With a numeric arg, the
region is turned back into live code by deleting ‘C$$$’ from the front of each line. You can
control the string used for the comments by setting the variable fortran-comment-region.
Note that here we have an example of a command and a variable with the same name; the
two uses of the name never conflict because in Lisp and in Emacs it is always clear from
the context which one is referred to.

22.12.4 Columns

C-c C-r Displays a “column ruler” momentarily above the current line (fortran-
column-ruler).

Chapter 22: Editing Programs 189

C-c C-w Splits the current window horizontally so that it is 72 columns wide. This may
help you avoid going over that limit (fortran-window-create).

The command C-c C-r (fortran-column-ruler) shows a column ruler above the cur-
rent line. The comment ruler consists of two lines of text that show you the locations of
columns with special significance in Fortran programs. Square brackets show the limits of
the columns for line numbers, and curly brackets show the limits of the columns for the
statement body. Column numbers appear above them.

Note that the column numbers count from zero, as always in XEmacs. As a result, the
numbers may not be those you are familiar with; but the actual positions in the line are
standard Fortran.

The text used to display the column ruler is the value of the variable fortran-comment-
ruler. By changing this variable, you can change the display.

For even more help, use C-c C-w (fortran-window-create), a command which splits
the current window horizontally, resulting in a window 72 columns wide. When you edit in
this window, you can immediately see when a line gets too wide to be correct Fortran.

22.12.5 Fortran Keyword Abbrevs

Fortran mode provides many built-in abbrevs for common keywords and declarations.
These are the same sort of abbrevs that you can define yourself. To use them, you must
turn on Abbrev mode. see Chapter 24 [Abbrevs], page 205.

The built-in abbrevs are unusual in one way: they all start with a semicolon. You cannot
normally use semicolon in an abbrev, but Fortran mode makes this possible by changing
the syntax of semicolon to “word constituent”.

For example, one built-in Fortran abbrev is ‘;c’ for ‘continue’. If you insert ‘;c’ and then
insert a punctuation character such as a space or a newline, the ‘;c’ changes automatically
to ‘continue’, provided Abbrev mode is enabled.

Type ‘;?’ or ‘;C-h’ to display a list of all built-in Fortran abbrevs and what they stand
for.

22.13 Asm Mode

Asm mode is a major mode for editing files of assembler code. It defines these commands:

〈TAB〉 tab-to-tab-stop.

〈LFD〉 Insert a newline and then indent using tab-to-tab-stop.

: Insert a colon and then remove the indentation from before the label preceding
colon. Then do tab-to-tab-stop.

; Insert or align a comment.

The variable asm-comment-char specifies which character starts comments in assembler
syntax.

190 XEmacs User’s Manual

Chapter 23: Compiling and Testing Programs 191

23 Compiling and Testing Programs

The previous chapter discusses the Emacs commands that are useful for making changes
in programs. This chapter deals with commands that assist in the larger process of devel-
oping and maintaining programs.

23.1 Running “make”, or Compilers Generally

Emacs can run compilers for non-interactive languages like C and Fortran as inferior
processes, feeding the error log into an Emacs buffer. It can also parse the error messages
and visit the files in which errors are found, moving point to the line where the error
occurred.

M-x compile

Run a compiler asynchronously under Emacs, with error messages to
‘*compilation*’ buffer.

M-x grep Run grep asynchronously under Emacs, with matching lines listed in the buffer
named ‘*compilation*’.

M-x kill-compilation

Kill the process made by the M-x compile command.

M-x kill-grep

Kill the running compilation or grep subprocess.

C-x ‘ Visit the next compiler error message or grep match.

To run make or another compiler, type M-x compile. This command reads a shell com-
mand line using the minibuffer, then executes the specified command line in an inferior shell
with output going to the buffer named ‘*compilation*’. By default, the current buffer’s de-
fault directory is used as the working directory for the execution of the command; therefore,
the makefile comes from this directory.

When the shell command line is read, the minibuffer appears containing a default com-
mand line (the command you used the last time you typed M-x compile). If you type just
〈RET〉, the same command line is used again. The first M-x compile provides make -k as
the default. The default is taken from the variable compile-command; if the appropriate
compilation command for a file is something other than make -k, it can be useful to have the
file specify a local value for compile-command (see Section 29.2.5 [File Variables], page 271).

When you start a compilation, the buffer ‘*compilation*’ is displayed in another win-
dow but not selected. Its mode line displays the word ‘run’ or ‘exit’ in the parentheses
to tell you whether compilation is finished. You do not have to keep this buffer visible;
compilation continues in any case.

To kill the compilation process, type M-x-kill-compilation. The mode line of the
‘*compilation*’ buffer changes to say ‘signal’ instead of ‘run’. Starting a new compilation
also kills any running compilation, as only one can occur at any time. Starting a new
compilation prompts for confirmation before actually killing a compilation that is running.

192 XEmacs User’s Manual

To parse the compiler error messages, type C-x ‘ (next-error). The character fol-
lowing C-x is the grave accent, not the single quote. The command displays the buffer
‘*compilation*’ in one window and the buffer in which the next error occurred in another
window. Point in that buffer is moved to the line where the error was found. The corre-
sponding error message is scrolled to the top of the window in which ‘*compilation*’ is
displayed.

The first time you use C-x ‘ after the start of a compilation, it parses all the error
messages, visits all the files that have error messages, and creates markers pointing at
the lines the error messages refer to. It then moves to the first error message location.
Subsequent uses of C-x ‘ advance down the data set up by the first use. When the preparsed
error messages are exhausted, the next C-x ‘ checks for any more error messages that have
come in; this is useful if you start editing compiler errors while compilation is still going on.
If no additional error messages have come in, C-x ‘ reports an error.

C-u C-x ‘ discards the preparsed error message data and parses the ‘*compilation*’
buffer again, then displays the first error. This way, you can process the same set of errors
again.

Instead of running a compiler, you can run grep and see the lines on which matches were
found. To do this, type M-x grep with an argument line that contains the same arguments
you would give to grep: a grep-style regexp (usually in single quotes to quote the shell’s
special characters) followed by filenames, which may use wildcard characters. The output
from grep goes in the ‘*compilation*’ buffer. You can use C-x ‘ to find the lines that
match as if they were compilation errors.

Note: a shell is used to run the compile command, but the shell is not run in interactive
mode. In particular, this means that the shell starts up with no prompt. If you find your
usual shell prompt making an unsightly appearance in the ‘*compilation*’ buffer, it means
you have made a mistake in your shell’s initialization file (‘.cshrc’ or ‘.shrc’ or . . .) by
setting the prompt unconditionally. The shell initialization file should set the prompt only
if there already is a prompt. Here’s how to do it in csh:

if ($?prompt) set prompt = ...

23.2 Major Modes for Lisp

Emacs has four different major modes for Lisp. They are the same in terms of editing
commands, but differ in the commands for executing Lisp expressions.

Emacs-Lisp mode
The mode for editing source files of programs to run in Emacs Lisp. This mode
defines C-M-x to evaluate the current defun. See Section 23.3 [Lisp Libraries],
page 193.

Lisp Interaction mode
The mode for an interactive session with Emacs Lisp. It defines 〈LFD〉 to evaluate
the sexp before point and insert its value in the buffer. See Section 23.6 [Lisp
Interaction], page 198.

Chapter 23: Compiling and Testing Programs 193

Lisp mode The mode for editing source files of programs that run in other dialects of Lisp
than Emacs Lisp. This mode defines C-M-x to send the current defun to an
inferior Lisp process. See Section 23.7 [External Lisp], page 199.

Inferior Lisp mode
The mode for an interactive session with an inferior Lisp process. This mode
combines the special features of Lisp mode and Shell mode (see Section 28.2.3
[Shell Mode], page 254).

Scheme mode
Like Lisp mode but for Scheme programs.

Inferior Scheme mode
The mode for an interactive session with an inferior Scheme process.

23.3 Libraries of Lisp Code for Emacs

Lisp code for Emacs editing commands is stored in files whose names conventionally end
in ‘.el’. This ending tells Emacs to edit them in Emacs-Lisp mode (see Section 23.2 [Lisp
Modes], page 192).

23.3.1 Loading Libraries

M-x load-file file
Load the file file of Lisp code.

M-x load-library library
Load the library named library.

M-x locate-library library &optional nosuffix
Show the full path name of Emacs library library.

To execute a file of Emacs Lisp, use M-x load-file. This command reads the file name
you provide in the minibuffer, then executes the contents of that file as Lisp code. It is not
necessary to visit the file first; in fact, this command reads the file as found on disk, not
the text in an Emacs buffer.

Once a file of Lisp code is installed in the Emacs Lisp library directories, users can load
it using M-x load-library. Programs can load it by calling load-library, or with load,
a more primitive function that is similar but accepts some additional arguments.

M-x load-library differs from M-x load-file in that it searches a sequence of directo-
ries and tries three file names in each directory. The three names are: first, the specified
name with ‘.elc’ appended; second, the name with ‘.el’ appended; third, the specified
name alone. A ‘.elc’ file would be the result of compiling the Lisp file into byte code; if
possible, it is loaded in preference to the Lisp file itself because the compiled file loads and
runs faster.

Because the argument to load-library is usually not in itself a valid file name, file
name completion is not available. In fact, when using this command, you usually do not
know exactly what file name will be used.

194 XEmacs User’s Manual

The sequence of directories searched by M-x load-library is specified by the variable
load-path, a list of strings that are directory names. The elements of this list may not
begin with "‘~’", so you must call expand-file-name on them before adding them to the
list. The default value of the list contains the directory where the Lisp code for Emacs itself
is stored. If you have libraries of your own, put them in a single directory and add that
directory to load-path. nil in this list stands for the current default directory, but it is
probably not a good idea to put nil in the list. If you start wishing that nil were in the
list, you should probably use M-x load-file for this case.

The variable is initialized by the EMACSLOADPATH environment variable. If no value
is specified, the variable takes the default value specified in the file ‘paths.h’ when Emacs
was built. If a path isn’t specified in ‘paths.h’, a default value is obtained from the file
system, near the directory in which the Emacs executable resides.

Like M-x load-library, M-x locate-library searches the directories in load-path to
find the file that M-x load-library would load. If the optional second argument nosuffix
is non-nil, the suffixes ‘.elc’ or ‘.el’ are not added to the specified name library (like
calling load instead of load-library).

You often do not have to give any command to load a library, because the commands
defined in the library are set up to autoload that library. Running any of those commands
causes load to be called to load the library; this replaces the autoload definitions with the
real ones from the library.

If autoloading a file does not finish, either because of an error or because of a C-g quit, all
function definitions made by the file are undone automatically. So are any calls to provide.
As a consequence, the entire file is loaded a second time if you use one of the autoloadable
commands again. This prevents problems when the command is no longer autoloading but
is working incorrectly because the file was only partially loaded. Function definitions are
undone only for autoloading; explicit calls to load do not undo anything if loading is not
completed.

The variable after-load-alist takes an alist of expressions to be evaluated when par-
ticular files are loaded. Each element has the form (filename forms...). When load is run
and the filename argument is filename, the forms in the corresponding element are executed
at the end of loading.

filename must match exactly. Normally filename is the name of a library, with no
directory specified, since that is how load is normally called. An error in forms does not
undo the load, but it does prevent execution of the rest of the forms.

23.3.2 Compiling Libraries

Emacs Lisp code can be compiled into byte-code which loads faster, takes up less space
when loaded, and executes faster.

M-x batch-byte-compile

Run byte-compile-file on the files remaining on the command line.

M-x byte-compile-buffer &optional buffer
Byte-compile and evaluate contents of buffer (default is current buffer).

Chapter 23: Compiling and Testing Programs 195

M-x byte-compile-file

Compile a file of Lisp code named filename into a file of byte code.

M-x byte-compile-and-load-file filename
Compile a file of Lisp code named filename into a file of byte code and load it.

M-x byte-recompile-directory directory
Recompile every ‘.el’ file in directory that needs recompilation.

M-x disassemble

Print disassembled code for object on (optional) stream.

M-x make-obsolete function new
Make the byte-compiler warn that function is obsolete and new should be used
instead.

byte-compile-file creates a byte-code compiled file from an Emacs-Lisp source file.
The default argument for this function is the file visited in the current buffer. The function
reads the specified file, compiles it into byte code, and writes an output file whose name is
made by appending ‘c’ to the input file name. Thus, the file ‘rmail.el’ would be compiled
into ‘rmail.elc’. To compile a file of Lisp code named filename into a file of byte code and
then load it, use byte-compile-and-load-file. To compile and evaluate Lisp code in a
given buffer, use byte-compile-buffer.

To recompile all changed Lisp files in a directory, use M-x byte-recompile-directory.
Specify just the directory name as an argument. Each ‘.el’ file that has been byte-compiled
before is byte-compiled again if it has changed since the previous compilation. A numeric
argument to this command tells it to offer to compile each ‘.el’ file that has not been
compiled yet. You must answer y or n to each offer.

You can use the function batch-byte-compile to invoke Emacs non-interactively from
the shell to do byte compilation. When you use this function, the files to be compiled are
specified with command-line arguments. Use a shell command of the form:

emacs -batch -f batch-byte-compile files...

Directory names may also be given as arguments; in that case, byte-recompile-
directory is invoked on each such directory. batch-byte-compile uses all remaining
command-line arguments as file or directory names, then kills the Emacs process.

M-x disassemble explains the result of byte compilation. Its argument is a function
name. It displays the byte-compiled code in a help window in symbolic form, one instruction
per line. If the instruction refers to a variable or constant, that is shown, too.

23.3.3 Converting Mocklisp to Lisp

XEmacs can run Mocklisp files by converting them to Emacs Lisp first. To convert
a Mocklisp file, visit it and then type M-x convert-mocklisp-buffer. Then save the
resulting buffer of Lisp file in a file whose name ends in ‘.el’ and use the new file as a Lisp
library.

You cannot currently byte-compile converted Mocklisp code. The reason is that con-
verted Mocklisp code uses some special Lisp features to deal with Mocklisp’s incompatible
ideas of how arguments are evaluated and which values signify “true” or “false”.

196 XEmacs User’s Manual

23.4 Evaluating Emacs-Lisp Expressions

Lisp programs intended to be run in Emacs should be edited in Emacs-Lisp mode; this
will happen automatically for file names ending in ‘.el’. By contrast, Lisp mode itself
should be used for editing Lisp programs intended for other Lisp systems. Emacs-Lisp
mode can be selected with the command M-x emacs-lisp-mode.

For testing of Lisp programs to run in Emacs, it is useful to be able to evaluate part
of the program as it is found in the Emacs buffer. For example, if you change the text of
a Lisp function definition and then evaluate the definition, Emacs installs the change for
future calls to the function. Evaluation of Lisp expressions is also useful in any kind of
editing task for invoking non-interactive functions (functions that are not commands).

M-〈ESC〉 Read a Lisp expression in the minibuffer, evaluate it, and print the value in the
minibuffer (eval-expression).

C-x C-e Evaluate the Lisp expression before point, and print the value in the minibuffer
(eval-last-sexp).

C-M-x Evaluate the defun containing point or after point, and print the value in the
minibuffer (eval-defun).

M-x eval-region

Evaluate all the Lisp expressions in the region.

M-x eval-current-buffer

Evaluate all the Lisp expressions in the buffer.

M-〈ESC〉 (eval-expression) is the most basic command for evaluating a Lisp expression
interactively. It reads the expression using the minibuffer, so you can execute any expression
on a buffer regardless of what the buffer contains. When evaluation is complete, the current
buffer is once again the buffer that was current when M-〈ESC〉 was typed.

M-〈ESC〉 can easily confuse users, especially on keyboards with autorepeat, where it can
result from holding down the 〈ESC〉 key for too long. Therefore, eval-expression is nor-
mally a disabled command. Attempting to use this command asks for confirmation and gives
you the option of enabling it; once you enable the command, you are no longer required to
confirm. See Section 29.4.3 [Disabling], page 280.

In Emacs-Lisp mode, the key C-M-x is bound to the function eval-defun, which parses
the defun containing point or following point as a Lisp expression and evaluates it. The
value is printed in the echo area. This command is convenient for installing in the Lisp
environment changes that you have just made in the text of a function definition.

The command C-x C-e (eval-last-sexp) performs a similar job but is available in all
major modes, not just Emacs-Lisp mode. It finds the sexp before point, reads it as a Lisp
expression, evaluates it, and prints the value in the echo area. It is sometimes useful to
type in an expression and then, with point still after it, type C-x C-e.

If C-M-x or C-x C-e are given a numeric argument, they print the value by inserting it
into the current buffer at point, rather than in the echo area. The argument value does not
matter.

Chapter 23: Compiling and Testing Programs 197

The most general command for evaluating Lisp expressions from a buffer is eval-region.
M-x eval-region parses the text of the region as one or more Lisp expressions, evaluating
them one by one. M-x eval-current-buffer is similar, but it evaluates the entire buffer.
This is a reasonable way to install the contents of a file of Lisp code that you are just ready
to test. After finding and fixing a bug, use C-M-x on each function that you change, to keep
the Lisp world in step with the source file.

23.5 The Emacs-Lisp Debugger

XEmacs contains a debugger for Lisp programs executing inside it. This debugger is
normally not used; many commands frequently get Lisp errors when invoked in inappro-
priate contexts (such as C-f at the end of the buffer) and it would be unpleasant to enter
a special debugging mode in this case. When you want to make Lisp errors invoke the
debugger, you must set the variable debug-on-error to non-nil. Quitting with C-g is not
considered an error, and debug-on-error has no effect on the handling of C-g. However, if
you set debug-on-quit to be non-nil, C-g will invoke the debugger. This can be useful for
debugging an infinite loop; type C-g once the loop has had time to reach its steady state.
debug-on-quit has no effect on errors.

You can make Emacs enter the debugger when a specified function is called or at a
particular place in Lisp code. Use M-x debug-on-entry with argument fun-name to have
Emacs enter the debugger as soon as fun-name is called. Use M-x cancel-debug-on-entry

to make the function stop entering the debugger when called. (Redefining the function also
does this.) To enter the debugger from some other place in Lisp code, you must insert the
expression (debug) there and install the changed code with C-M-x. See Section 23.4 [Lisp
Eval], page 196.

When the debugger is entered, it displays the previously selected buffer in one window
and a buffer named ‘*Backtrace*’ in another window. The backtrace buffer contains one
line for each level of Lisp function execution currently going on. At the beginning of the
buffer is a message describing the reason that the debugger was invoked, for example, an
error message if it was invoked due to an error.

The backtrace buffer is read-only and is in Backtrace mode, a special major mode in
which letters are defined as debugger commands. The usual Emacs editing commands
are available; you can switch windows to examine the buffer that was being edited at the
time of the error, and you can switch buffers, visit files, and perform any other editing
operations. However, the debugger is a recursive editing level (see Section 28.5 [Recursive
Edit], page 258); it is a good idea to return to the backtrace buffer and explictly exit the
debugger when you don’t want to use it any more. Exiting the debugger kills the backtrace
buffer.

The contents of the backtrace buffer show you the functions that are executing and the
arguments that were given to them. It also allows you to specify a stack frame by moving
point to the line describing that frame. The frame whose line point is on is considered the
current frame. Some of the debugger commands operate on the current frame. Debugger
commands are mainly used for stepping through code one expression at a time. Here is a
list of them:

198 XEmacs User’s Manual

c Exit the debugger and continue execution. In most cases, execution of the
program continues as if the debugger had never been entered (aside from the
effect of any variables or data structures you may have changed while inside
the debugger). This includes entry to the debugger due to function entry or
exit, explicit invocation, and quitting or certain errors. Most errors cannot be
continued; trying to continue an error usually causes the same error to occur
again.

d Continue execution, but enter the debugger the next time a Lisp function is
called. This allows you to step through the subexpressions of an expression,
and see what the subexpressions do and what values they compute.

When you enter the debugger this way, Emacs flags the stack frame for the
function call from which you entered. The same function is then called when
you exit the frame. To cancel this flag, use u.

b Set up to enter the debugger when the current frame is exited. Frames that
invoke the debugger on exit are flagged with stars.

u Don’t enter the debugger when the current frame is exited. This cancels a b

command on a frame.

e Read a Lisp expression in the minibuffer, evaluate it, and print the value in
the echo area. This is equivalent to the command M-〈ESC〉, except that e is not
normally disabled like M-〈ESC〉.

q Terminate the program being debugged; return to top-level Emacs command
execution.

If the debugger was entered due to a C-g but you really want to quit, not to
debug, use the q command.

r Return a value from the debugger. The value is computed by reading an ex-
pression with the minibuffer and evaluating it.

The value returned by the debugger makes a difference when the debugger was
invoked due to exit from a Lisp call frame (as requested with b); then the value
specified in the r command is used as the value of that frame.

The debugger’s return value also matters with many errors. For example,
wrong-type-argument errors will use the debugger’s return value instead of
the invalid argument; no-catch errors will use the debugger value as a throw
tag instead of the tag that was not found. If an error was signaled by calling
the Lisp function signal, the debugger’s return value is returned as the value
of signal.

23.6 Lisp Interaction Buffers

The buffer ‘*scratch*’, which is selected when Emacs starts up, is provided for evalu-
ating Lisp expressions interactively inside Emacs. Both the expressions you evaluate and
their output goes in the buffer.

Chapter 23: Compiling and Testing Programs 199

The ‘*scratch*’ buffer’s major mode is Lisp Interaction mode, which is the same as
Emacs-Lisp mode except for one command, 〈LFD〉. In Emacs-Lisp mode, 〈LFD〉 is an in-
dentation command. In Lisp Interaction mode, 〈LFD〉 is bound to eval-print-last-sexp.
This function reads the Lisp expression before point, evaluates it, and inserts the value in
printed representation before point.

The way to use the ‘*scratch*’ buffer is to insert Lisp expressions at the end, ending
each one with 〈LFD〉 so that it will be evaluated. The result is a complete typescript of the
expressions you have evaluated and their values.

The rationale for this feature is that Emacs must have a buffer when it starts up, but
that buffer is not useful for editing files since a new buffer is made for every file that you
visit. The Lisp interpreter typescript is the most useful thing I can think of for the initial
buffer to do. M-x lisp-interaction-mode will put any buffer in Lisp Interaction mode.

23.7 Running an External Lisp

Emacs has facilities for running programs in other Lisp systems. You can run a Lisp
process as an inferior of Emacs, and pass expressions to it to be evaluated. You can also
pass changed function definitions directly from the Emacs buffers in which you edit the Lisp
programs to the inferior Lisp process.

To run an inferior Lisp process, type M-x run-lisp. This runs the program named lisp,
the same program you would run by typing lisp as a shell command, with both input and
output going through an Emacs buffer named ‘*lisp*’. In other words, any “terminal
output” from Lisp will go into the buffer, advancing point, and any “terminal input” for
Lisp comes from text in the buffer. To give input to Lisp, go to the end of the buffer and
type the input, terminated by 〈RET〉. The ‘*lisp*’ buffer is in Inferior Lisp mode, which
has all the special characteristics of Lisp mode and Shell mode (see Section 28.2.3 [Shell
Mode], page 254).

Use Lisp mode to run the source files of programs in external Lisps. You can select this
mode with M-x lisp-mode. It is used automatically for files whose names end in ‘.l’ or
‘.lisp’, as most Lisp systems usually expect.

When you edit a function in a Lisp program you are running, the easiest way to send the
changed definition to the inferior Lisp process is the key C-M-x. In Lisp mode, this key runs
the function lisp-send-defun, which finds the defun around or following point and sends
it as input to the Lisp process. (Emacs can send input to any inferior process regardless of
what buffer is current.)

Contrast the meanings of C-M-x in Lisp mode (for editing programs to be run in another
Lisp system) and Emacs-Lisp mode (for editing Lisp programs to be run in Emacs): in
both modes it has the effect of installing the function definition that point is in, but the
way of doing so is different according to where the relevant Lisp environment is found. See
Section 23.2 [Lisp Modes], page 192.

23.8 Packages

200 XEmacs User’s Manual

The XEmacs 21 distribution comes only with a very basic set of built-in modes and
packages. Most of the packages that were part of the distribution of earlier versions of
XEmacs are now separately available. The installer as well as the user can choose which
packages to install; the actual installation process is easy. This gives an installer the ability
to tailor an XEmacs installation for local needs with safe removal of unnecessary code.

23.8.1 Package Flavors

There are two main flavors of packages.

• Regular Packages A regular package is one in which multiple files are involved and one
may not in general safely remove any of them.

• Single-File Packages A single-file package is an aggregate collection of thematically re-
lated but otherwise independent lisp files. These files are bundled together for download
convenience and individual files may deleted at will without any loss of functionality.

23.8.2 Package Distributions

XEmacs Lisp packages are distributed in two ways depending on the intended use. Binary
Packages are for installers and end-users and may be installed directly into an XEmacs
package directory. Source Packages are for developers and include all files necessary for
rebuilding bytecompiled lisp and creating tarballs for distribution.

23.8.3 Binary Packages

Binary packages may be installed directly into an XEmacs package hierarchy.

23.8.4 Source Packages

Source packages contain all of the Package author’s (where appropriate in regular pack-
ages) source code plus all of the files necessary to build distribution tarballs (Unix Tar
format files and gzipped for space savings).

23.8.5 Getting Started

When you first download XEmacs 21, you will usually first grab the core distribution,
a file called ‘xemacs-21.0.tar.gz’. (Replace the 21.0 by the current version number.)
The core distribution contains the sources of XEmacs and a minimal set of Emacs Lisp
files, which are in the subdirectory named ‘lisp’. This subdirectory used to contain all
Emacs Lisp files distributed with XEmacs. Now, to conserve disk space, most non-essential
packages were made optional.

Chapter 23: Compiling and Testing Programs 201

23.8.6 Choosing the Packages You Need

The available packages can currently be found in the same ftp directory where
you grabbed the core distribition from, and are located in the subdirectory
‘packages/binary-packages’. Package file names follow the naming convention
‘<package-name>-<version>-pkg.tar.gz’.

If you have EFS 〈undefined〉 [(EFS)], page 〈undefined〉, packages can be installed over the
network. Alternatively, if you have copies of the packages locally, you can install packages
from a local disk or CDROM.

The file ‘etc/PACKAGES’ in the core distribution contains a list of the packages available
at the time of the XEmacs release. Packages are also listed on the Options menu under:

Options->Customize->Emacs->Packages

However, don’t select any of these menu picks unless you actually want to install the
given package (and have properly configured your system to do so).

You can also get a list of available packages, and whether or not they are installed, using
the visual package browser and installer. You can access it via the menus:

Options->Manage Packages->List & Install

Or, you can get to it via the keyboard:
M-x pui-list-packages

Hint to system administrators of multi-user systems: it might be a good idea to install
all packages and not interfere with the wishes of your users.

23.8.7 XEmacs and Installing Packages

Normally, packages are installed over the network, using EFS 〈undefined〉 [(EFS)],
page 〈undefined〉. However, you may not have network access, or you may already have
some or all of the packages on a local disk, such as a CDROM. If you want to install from
a local disk, you must first tell XEmacs where to find the package binaries. This is done
by adding a line like the following to your ‘.emacs’ file:

(setq package-get-remote (cons (list nil "/my/path/to/package/binaries")
package-get-remote))

Here, you’d change ‘/my/path/to/package/binaries’ to be the path to your local pack-
age binaries. Next, restart XEmacs, and you’re ready to go (advanced users can just re-
evaluate the sexp).

If you are installing from a temporary, one-time directory, you can also add these direc-
tory names to package-get-remote using:

M-x pui-add-install-directory

Note, however, that any directories added using this function are not saved; this infor-
mation will be lost when you quit XEmacs.

If you’re going to install over the network, you only have to insure that EFS 〈undefined〉
[(EFS)], page 〈undefined〉 works, and that it can get outside a firewall, if you happen to be
behind one. You shouldn’t have to do anything else; XEmacs already knows where to go.
However you can add your own mirrors to this list. See package-get-remote.

The easiest way to install a package is to use the visual package browser and installer,
using the menu pick:

202 XEmacs User’s Manual

Options->Manage Packages->List & Install

or
Options->Manage Packages->Using Custom->Select-> ...

You can also access it using the keyboard:
M-x pui-list-packages

The visual package browser will then display a list of all packages. Help information will
be displayed at the very bottom of the buffer; you may have to scroll down to see it. You
can also press ? to get the same help. From this buffer, you can tell the package status by
the character in the first column:

- The package has not been installed.

* The package has been installed, but a newer version is available. The current
version is out-of-date.

+ The package has been marked for installation/update.

If there is no character in the first column, the package has been installed and is up-to-
date.

From here, you can select or unselect packages for installation using the 〈RET〉 key, the
Mouse-2 button or selecting "Select" from the (Popup) Menu. Once you’ve finished selecting
the packages, you can press the x key (or use the menu) to actually install the packages.
Note that you will have to restart XEmacs for XEmacs to recognize any new packages.

Key summary:

? Display simple help.

〈RET〉
〈Mouse-2〉 Toggle between selecting and unselecting a package for installation.

x Install selected packages.

〈SPC〉 View, in the minibuffer, additional information about the package, such as the
package date (not the build date) and the package author. Moving the mouse
over a package name will also do the same thing.

v Toggle between verbose and non-verbose package display.

g Refresh the package display.

q Kill the package buffer.

Moving the mouse over a package will also cause additional information about the pack-
age to be displayed in the minibuffer.

23.8.8 Other package installation interfaces

For an alternative package interface, you can select packages from the customize menus,
under:

Options->Customize->Emacs->Packages-> ...

or

Chapter 23: Compiling and Testing Programs 203

Options->Manage Packages->Using Custom->Select-> ...

Set their state to on, and then do:
Options->Manage Packages->Using Custom->Update Packages

This will automatically retrieve the packages you have selected from the XEmacs ftp site
or your local disk, and install them into XEmacs. Additionally it will update any packages
you already have installed to the newest version. Note that if a package is newly installed
you will have to restart XEmacs for the change to take effect.

You can also install packages using a semi-manual interface:
M-x package-get-all <return>

Enter the name of the package (e.g., prog-modes), and XEmacs will search for the
latest version (as listed in the lisp file ‘lisp/package-get-base.el’), and install it and
any packages that it depends upon.

23.8.9 Manual Binary Package Installation

Pre-compiled, binary packages can be installed in either a system package directory (this
is determined when XEmacs is compiled), or in a subdirectory off your ‘$HOME’ directory:

~/.xemacs/packages

XEmacs does not have to be running to install binary packages, although XEmacs will
not know about any newly-installed packages until you restart XEmacs. Note, however,
that installing a newer version of a package while XEmacs is running could cause strange
errors in XEmacs; it’s best to exit XEmacs before upgrading an existing package.

To install binary packages manually:

1. Download the package(s) that you want to install. Each binary package will typically
be a gzip’d tarball.

2. Decide where to install the packages: in the system package directory, or in
‘~/.xemacs/packages’. If you want to install the packages in the system package
directory, make sure you can write into that directory. If you want to install in your
‘$HOME’ directory, create the directory, ‘~/.xemacs/packages’.

3. Next, cd to the directory under which you want to install the package(s).
4. From this directory, uncompress and extract each of the gzip’d tarballs that you down-

loaded in step 1. Unix and Cygnus cygwin users will typically do this using the com-
mands:

gunzip < package.tar.gz | tar xvf -

Above, replace ‘package.tar.gz’ with the filename of the package that you downloaded
in step 1.
Of course, if you use GNU tar, you could also use:

tar xvzf package.tar.gz

5. That’s it. Quit and restart XEmacs to get it to recognize any new or changed packages.

Source packages are available from the ‘packages/source-packages’ subdirectory of
your favorite XEmacs distribution site. Alternatively, they are available via CVS from
‘cvs.xemacs.org’. Look at ‘http://cvs.xemacs.org’ for instructions.

204 XEmacs User’s Manual

23.8.10 Prerequisites for Building Source Packages

You must have GNU cp, GNU install (or a BSD compatible install program) GNU
make (3.75 or later preferred), makeinfo (1.68 from texinfo-3.11 or later required), GNU
tar and XEmacs 21.0. The source packages will untar into a correct directory structure.
At the top level you must have ‘XEmacs.rules’ and ‘package-compile.el’. These files are
available from the XEmacs FTP site from the same place you obtained your source package
distributions.

23.8.11 What You Can Do With Source Packages

NB: A global build operation doesn’t exist yet as of 13 January 1998.
Source packages are most useful for creating XEmacs package tarballs for installation

into your own XEmacs installations or for distributing to others.
Supported operations from ‘make’ are:

clean Remove all built files except ‘auto-autoloads.el’ and ‘custom-load.el’.

distclean
Remove XEmacs backups as well as the files deleted by make clean.

all Bytecompile all files, build and bytecompile byproduct files like
‘auto-autoloads.el’ and ‘custom-load.el’. Create info version of TeXinfo
documentation if present.

srckit Usually aliased to make srckit-std. This does a make distclean and creates
a package source tarball in the staging directory. This is generally only of use
for package maintainers.

binkit May be aliased to binkit-sourceonly, binkit-sourceinfo, binkit-
sourcedata, or binkit-sourcedatainfo. sourceonly indicates there is
nothing to install in a data directory or info directory. sourceinfo indicates
that source and info files are to be installed. sourcedata indicates that source
and etc (data) files are to be installed. sourcedatainfo indicates source, etc
(data), and info files are to be installed. A few packages have needs beyond
the basic templates so this is not yet complete.

dist Runs the rules srckit followed by binkit. This is primarily of use by XEmacs
maintainers producing files for distribution.

Chapter 24: Abbrevs 205

24 Abbrevs

An abbrev is a word which expands into some different text. Abbrevs are defined by the
user to expand in specific ways. For example, you might define ‘foo’ as an abbrev expanding
to ‘find outer otter’. With this abbrev defined, you would be able to get ‘find outer
otter ’ into the buffer by typing f o o 〈SPC〉.

Abbrevs expand only when Abbrev mode (a minor mode) is enabled. Disabling Abbrev
mode does not cause abbrev definitions to be discarded, but they do not expand until
Abbrev mode is enabled again. The command M-x abbrev-mode toggles Abbrev mode; with
a numeric argument, it turns Abbrev mode on if the argument is positive, off otherwise.
See Section 29.1 [Minor Modes], page 263. abbrev-mode is also a variable; Abbrev mode is
on when the variable is non-nil. The variable abbrev-mode automatically becomes local
to the current buffer when it is set.

Abbrev definitions can be mode-specific—active only in one major mode. Abbrevs can
also have global definitions that are active in all major modes. The same abbrev can
have a global definition and various mode-specific definitions for different major modes. A
mode-specific definition for the current major mode overrides a global definition.

You can define Abbrevs interactively during an editing session. You can also save lists
of abbrev definitions in files and reload them in later sessions. Some users keep extensive
lists of abbrevs that they load in every session.

A second kind of abbreviation facility is called the dynamic expansion. Dynamic abbrev
expansion happens only when you give an explicit command and the result of the expansion
depends only on the current contents of the buffer. See Section 24.5 [Dynamic Abbrevs],
page 208.

24.1 Defining Abbrevs

C-x a g Define an abbrev to expand into some text before point (add-global-abbrev).

C-x a l Similar, but define an abbrev available only in the current major mode (add-
mode-abbrev).

C-x a i g Define a word in the buffer as an abbrev (inverse-add-global-abbrev).

C-x a i l Define a word in the buffer as a mode-specific abbrev (inverse-add-mode-
abbrev).

M-x kill-all-abbrevs

After this command, no abbrev definitions remain in effect.

The usual way to define an abbrev is to enter the text you want the abbrev to expand
to, position point after it, and type C-x a g (add-global-abbrev). This reads the abbrev
itself using the minibuffer, and then defines it as an abbrev for one or more words before
point. Use a numeric argument to say how many words before point should be taken as the
expansion. For example, to define the abbrev ‘foo’ as in the example above, insert the text

206 XEmacs User’s Manual

‘find outer otter’, then type
C-u 3 C-x a g f o o 〈RET〉.

An argument of zero to C-x a g means to use the contents of the region as the expansion
of the abbrev being defined.

The command C-x a l (add-mode-abbrev) is similar, but defines a mode-specific abbrev.
Mode-specific abbrevs are active only in a particular major mode. C-x a l defines an abbrev
for the major mode in effect at the time C-x a l is typed. The arguments work the same
way they do for C-x a g.

If the text of an abbrev you want is already in the buffer instead of the expansion,
use command C-x a i g (inverse-add-global-abbrev) instead of C-x a g, or use C-x a i

l (inverse-add-mode-abbrev) instead of C-x a l. These commands are called “inverse”
because they invert the meaning of the argument found in the buffer and the argument read
using the minibuffer.

To change the definition of an abbrev, just add the new definition. You will be asked to
confirm if the abbrev has a prior definition. To remove an abbrev definition, give a negative
argument to C-x a g or C-x a l. You must choose the command to specify whether to
kill a global definition or a mode-specific definition for the current mode, since those two
definitions are independent for one abbrev.

M-x kill-all-abbrevs removes all existing abbrev definitions.

24.2 Controlling Abbrev Expansion

An abbrev expands whenever it is in a buffer just before point and you type a self-
inserting punctuation character (〈SPC〉, comma, etc.). Most often an abbrev is used by
inserting the abbrev followed by punctuation.

Abbrev expansion preserves case; thus, ‘foo’ expands into ‘find outer otter’, ‘Foo’ into
‘Find outer otter’, and ‘FOO’ into ‘FIND OUTER OTTER’ or ‘Find Outer Otter’ according to
the variable abbrev-all-caps (a non-nil value chooses the first of the two expansions).

Two commands are available to control abbrev expansion:

M-’ Separate a prefix from a following abbrev to be expanded (abbrev-prefix-
mark).

C-x a e Expand the abbrev before point (expand-abbrev). This is effective even when
Abbrev mode is not enabled.

M-x unexpand-abbrev

Undo last abbrev expansion.

M-x expand-region-abbrevs

Expand some or all abbrevs found in the region.

You may wish to expand an abbrev with a prefix attached. For example, if ‘cnst’ expands
into ‘construction’, you may want to use it to enter ‘reconstruction’. It does not work
to type recnst, because that is not necessarily a defined abbrev. Instead, you can use the
command M-’ (abbrev-prefix-mark) between the prefix ‘re’ and the abbrev ‘cnst’. First,

Chapter 24: Abbrevs 207

insert ‘re’. Then type M-’; this inserts a minus sign in the buffer to indicate that it has done
its work. Then insert the abbrev ‘cnst’. The buffer now contains ‘re-cnst’. Now insert a
punctuation character to expand the abbrev ‘cnst’ into ‘construction’. The minus sign
is deleted at this point by M-’. The resulting text is the desired ‘reconstruction’.

If you actually want the text of the abbrev in the buffer, rather than its expansion, insert
the following punctuation with C-q. Thus, foo C-q - leaves ‘foo-’ in the buffer.

If you expand an abbrev by mistake, you can undo the expansion (replace the expansion
by the original abbrev text) with M-x unexpand-abbrev. You can also use C-_ (undo) to
undo the expansion; but that will first undo the insertion of the punctuation character.

M-x expand-region-abbrevs searches through the region for defined abbrevs, and offers
to replace each one it finds with its expansion. This command is useful if you have typed
text using abbrevs but forgot to turn on Abbrev mode first. It may also be useful together
with a special set of abbrev definitions for making several global replacements at once. The
command is effective even if Abbrev mode is not enabled.

24.3 Examining and Editing Abbrevs

M-x list-abbrevs

Print a list of all abbrev definitions.

M-x edit-abbrevs

Edit a list of abbrevs; you can add, alter, or remove definitions.

The output from M-x list-abbrevs looks like this:
(lisp-mode-abbrev-table)
"dk" 0 "define-key"
(global-abbrev-table)
"dfn" 0 "definition"

(Some blank lines of no semantic significance, and some other abbrev tables, have been
omitted.)

A line containing a name in parentheses is the header for abbrevs in a particular abbrev
table; global-abbrev-table contains all the global abbrevs, and the other abbrev tables
that are named after major modes contain the mode-specific abbrevs.

Within each abbrev table, each non-blank line defines one abbrev. The word at the
beginning is the abbrev. The number that appears is the number of times the abbrev has
been expanded. Emacs keeps track of this to help you see which abbrevs you actually use,
in case you want to eliminate those that you don’t use often. The string at the end of the
line is the expansion.

M-x edit-abbrevs allows you to add, change or kill abbrev definitions by editing a list
of them in an Emacs buffer. The list has the format described above. The buffer of abbrevs
is called ‘*Abbrevs*’, and is in Edit-Abbrevs mode. This mode redefines the key C-c C-c

to install the abbrev definitions as specified in the buffer. The edit-abbrevs-redefine
command does this. Any abbrevs not described in the buffer are eliminated when this is
done.

208 XEmacs User’s Manual

edit-abbrevs is actually the same as list-abbrevs, except that it selects the buffer
‘*Abbrevs*’ whereas list-abbrevs merely displays it in another window.

24.4 Saving Abbrevs

These commands allow you to keep abbrev definitions between editing sessions.

M-x write-abbrev-file

Write a file describing all defined abbrevs.

M-x read-abbrev-file

Read such an abbrev file and define abbrevs as specified there.

M-x quietly-read-abbrev-file

Similar, but do not display a message about what is going on.

M-x define-abbrevs

Define abbrevs from buffer.

M-x insert-abbrevs

Insert all abbrevs and their expansions into the buffer.

Use M-x write-abbrev-file to save abbrev definitions for use in a later session. The
command reads a file name using the minibuffer and writes a description of all current
abbrev definitions into the specified file. The text stored in the file looks like the output of
M-x list-abbrevs.

M-x read-abbrev-file prompts for a file name using the minibuffer and reads the spec-
ified file, defining abbrevs according to its contents. M-x quietly-read-abbrev-file is
the same but does not display a message in the echo area; it is actually useful primar-
ily in the ‘.emacs’ file. If you give an empty argument to either of these functions, the
file name Emacs uses is the value of the variable abbrev-file-name, which is by default
"~/.abbrev_defs".

Emacs offers to save abbrevs automatically if you have changed any of them, whenever
it offers to save all files (for C-x s or C-x C-c). Set the variable save-abbrevs to nil to
inhibit this feature.

The commands M-x insert-abbrevs and M-x define-abbrevs are similar to the pre-
vious commands but work on text in an Emacs buffer. M-x insert-abbrevs inserts text
into the current buffer before point, describing all current abbrev definitions; M-x define-

abbrevs parses the entire current buffer and defines abbrevs accordingly.

24.5 Dynamic Abbrev Expansion

The abbrev facility described above operates automatically as you insert text, but all
abbrevs must be defined explicitly. By contrast, dynamic abbrevs allow the meanings of
abbrevs to be determined automatically from the contents of the buffer, but dynamic abbrev
expansion happens only when you request it explicitly.

Chapter 24: Abbrevs 209

M-/ Expand the word in the buffer before point as a dynamic abbrev, by searching
in the buffer for words starting with that abbreviation (dabbrev-expand).

For example, if the buffer contains ‘does this follow ’ and you type f o M-/, the effect
is to insert ‘follow’ because that is the last word in the buffer that starts with ‘fo’. A
numeric argument to M-/ says to take the second, third, etc. distinct expansion found
looking backward from point. Repeating M-/ searches for an alternative expansion by
looking farther back. After the entire buffer before point has been considered, the buffer
after point is searched.

Dynamic abbrev expansion is completely independent of Abbrev mode; the expansion
of a word with M-/ is completely independent of whether it has a definition as an ordinary
abbrev.

210 XEmacs User’s Manual

Chapter 25: Editing Pictures 211

25 Editing Pictures

If you want to create a picture made out of text characters (for example, a picture
of the division of a register into fields, as a comment in a program), use the command
edit-picture to enter Picture mode.

In Picture mode, editing is based on the quarter-plane model of text. In this model,
the text characters lie studded on an area that stretches infinitely far to the right and
downward. The concept of the end of a line does not exist in this model; the most you can
say is where the last non-blank character on the line is found.

Of course, Emacs really always considers text as a sequence of characters, and lines really
do have ends. But in Picture mode most frequently-used keys are rebound to commands
that simulate the quarter-plane model of text. They do this by inserting spaces or by
converting tabs to spaces.

Most of the basic editing commands of Emacs are redefined by Picture mode to do
essentially the same thing but in a quarter-plane way. In addition, Picture mode defines
various keys starting with the C-c prefix to run special picture editing commands.

One of these keys, C-c C-c, is pretty important. Often a picture is part of a larger file
that is usually edited in some other major mode. M-x edit-picture records the name of
the previous major mode. You can then use the C-c C-c command (picture-mode-exit)
to restore that mode. C-c C-c also deletes spaces from the ends of lines, unless you give it
a numeric argument.

The commands used in Picture mode all work in other modes (provided the ‘picture’
library is loaded), but are only bound to keys in Picture mode. Note that the descriptions
below talk of moving “one column” and so on, but all the picture mode commands handle
numeric arguments as their normal equivalents do.

Turning on Picture mode calls the value of the variable picture-mode-hook as a func-
tion, with no arguments, if that value exists and is non-nil.

25.1 Basic Editing in Picture Mode

Most keys do the same thing in Picture mode that they usually do, but do it in a quarter-
plane style. For example, C-f is rebound to run picture-forward-column, which moves
point one column to the right, by inserting a space if necessary, so that the actual end
of the line makes no difference. C-b is rebound to run picture-backward-column, which
always moves point left one column, converting a tab to multiple spaces if necessary. C-n

and C-p are rebound to run picture-move-down and picture-move-up, which can either
insert spaces or convert tabs as necessary to make sure that point stays in exactly the same
column. C-e runs picture-end-of-line, which moves to after the last non-blank character
on the line. There was no need to change C-a, as the choice of screen model does not affect
beginnings of lines.

Insertion of text is adapted to the quarter-plane screen model through the use of Over-
write mode (see Section 29.1 [Minor Modes], page 263). Self-inserting characters replace

212 XEmacs User’s Manual

existing text, column by column, rather than pushing existing text to the right. 〈RET〉 runs
picture-newline, which just moves to the beginning of the following line so that new text
will replace that line.

Text is erased instead of deleted and killed. 〈DEL〉 (picture-backward-clear-column)
replaces the preceding character with a space rather than removing it. C-d (picture-
clear-column) does the same in a forward direction. C-k (picture-clear-line) really
kills the contents of lines, but never removes the newlines from a buffer.

To do actual insertion, you must use special commands. C-o (picture-open-line)
creates a blank line, but does so after the current line; it never splits a line. C-M-o, split-
line, makes sense in Picture mode, so it remains unchanged. 〈LFD〉 (picture-duplicate-
line) inserts another line with the same contents below the current line.

To actually delete parts of the picture, use C-w, or with C-c C-d (which is defined as
delete-char, as C-d is in other modes), or with one of the picture rectangle commands
(see Section 25.4 [Rectangles in Picture], page 213).

25.2 Controlling Motion After Insert

Since “self-inserting” characters just overwrite and move point in Picture mode, there
is no essential restriction on how point should be moved. Normally point moves right,
but you can specify any of the eight orthogonal or diagonal directions for motion after a
“self-inserting” character. This is useful for drawing lines in the buffer.

C-c < Move left after insertion (picture-movement-left).

C-c > Move right after insertion (picture-movement-right).

C-c ^ Move up after insertion (picture-movement-up).

C-c . Move down after insertion (picture-movement-down).

C-c ‘ Move up and left (“northwest”) after insertion
(picture-movement-nw).

C-c ’ Move up and right (“northeast”) after insertion
(picture-movement-ne).

C-c / Move down and left (“southwest”) after insertion
(picture-movement-sw).

C-c \ Move down and right (“southeast”) after insertion
(picture-movement-se).

Two motion commands move based on the current Picture insertion direction. The com-
mand C-c C-f (picture-motion) moves in the same direction as motion after “insertion”
currently does, while C-c C-b (picture-motion-reverse) moves in the opposite direction.

Chapter 25: Editing Pictures 213

25.3 Picture Mode Tabs

Two kinds of tab-like action are provided in Picture mode. Context-based tabbing is done
with M-〈TAB〉 (picture-tab-search). With no argument, it moves to a point underneath
the next “interesting” character that follows whitespace in the previous non-blank line.
“Next” here means “appearing at a horizontal position greater than the one point starts
out at”. With an argument, as in C-u M-〈TAB〉, the command moves to the next such
interesting character in the current line. M-〈TAB〉 does not change the text; it only moves
point. “Interesting” characters are defined by the variable picture-tab-chars, which
contains a string of characters considered interesting. Its default value is "!-~".
〈TAB〉 itself runs picture-tab, which operates based on the current tab stop settings;

it is the Picture mode equivalent of tab-to-tab-stop. Without arguments it just moves
point, but with a numeric argument it clears the text that it moves over.

The context-based and tab-stop-based forms of tabbing are brought together by the
command C-c 〈TAB〉 (picture-set-tab-stops.) This command sets the tab stops to the
positions which M-〈TAB〉 would consider significant in the current line. If you use this com-
mand with 〈TAB〉, you can get the effect of context-based tabbing. But M-〈TAB〉 is more
convenient in the cases where it is sufficient.

25.4 Picture Mode Rectangle Commands

Picture mode defines commands for working on rectangular pieces of the text in ways
that fit with the quarter-plane model. The standard rectangle commands may also be useful
(see Section 10.5 [Rectangles], page 77).

C-c C-k Clear out the region-rectangle (picture-clear-rectangle). With argument,
kill it.

C-c C-w r Similar but save rectangle contents in register r first (picture-clear-
rectangle-to-register).

C-c C-y Copy last killed rectangle into the buffer by overwriting, with upper left corner
at point (picture-yank-rectangle). With argument, insert instead.

C-c C-x r Similar, but use the rectangle in register r
(picture-yank-rectangle-from-register).

The picture rectangle commands C-c C-k (picture-clear-rectangle) and C-c C-w

(picture-clear-rectangle-to-register) differ from the standard rectangle commands
in that they normally clear the rectangle instead of deleting it; this is analogous with the
way C-d is changed in Picture mode.

However, deletion of rectangles can be useful in Picture mode, so these commands delete
the rectangle if given a numeric argument.

The Picture mode commands for yanking rectangles differ from the standard ones in
overwriting instead of inserting. This is the same way that Picture mode insertion of
other text is different from other modes. C-c C-y (picture-yank-rectangle) inserts (by

214 XEmacs User’s Manual

overwriting) the rectangle that was most recently killed, while C-c C-x (picture-yank-
rectangle-from-register) does for the rectangle found in a specified register.

Since most region commands in Picture mode operate on rectangles, when you select a
region of text with the mouse in Picture mode, it is highlighted as a rectangle.

Chapter 26: Sending Mail 215

26 Sending Mail

To send a message in Emacs, start by typing the command (C-x m) to select and initialize
the ‘*mail*’ buffer. You can then edit the text and headers of the message in the mail buffer,
and type the command (C-c C-c) to send the message.

C-x m Begin composing a message to send (mail).

C-x 4 m Likewise, but display the message in another window (mail-other-window).

C-c C-c In Mail mode, send the message and switch to another buffer (mail-send-and-
exit).

The command C-x m (mail) selects a buffer named ‘*mail*’ and initializes it with the
skeleton of an outgoing message. C-x 4 m (mail-other-window) selects the ‘*mail*’ buffer
in a different window, leaving the previous current buffer visible.

Because the buffer for mail composition is an ordinary Emacs buffer, you can switch to
other buffers while in the middle of composing mail, and switch back later (or never). If
you use the C-x m command again when you have been composing another message but
have not sent it, a new mail buffer will be created; in this way, you can compose multiple
messages at once. You can switch back to and complete an unsent message by using the
normal buffer selection mechanisms.

C-u C-x m is another way to switch back to a message in progress: it will search for an
existing, unsent mail message buffer and select it.

26.1 The Format of the Mail Buffer

In addition to the text or contents, a message has header fields, which say who sent
it, when, to whom, why, and so on. Some header fields, such as the date and sender, are
created automatically after the message is sent. Others, such as the recipient names, must
be specified by you in order to send the message properly.

Mail mode provides a few commands to help you edit some header fields, and some are
preinitialized in the buffer automatically at times. You can insert or edit any header fields
using ordinary editing commands.

The line in the buffer that says:
--text follows this line--

is a special delimiter that separates the headers you have specified from the text. Whatever
follows this line is the text of the message; the headers precede it. The delimiter line
itself does not appear in the message actually sent. The text used for the delimiter line is
controlled by the variable mail-header-separator.

Here is an example of what the headers and text in the ‘*mail*’ buffer might look like.
To: rms@mc
CC: mly@mc, rg@oz
Subject: The XEmacs User’s Manual
--Text follows this line--
Please ignore this message.

216 XEmacs User’s Manual

26.2 Mail Header Fields

There are several header fields you can use in the ‘*mail*’ buffer. Each header field
starts with a field name at the beginning of a line, terminated by a colon. It does not
matter whether you use upper or lower case in the field name. After the colon and optional
whitespace comes the contents of the field.

‘To’ This field contains the mailing addresses of the message.

‘Subject’ The contents of the ‘Subject’ field should be a piece of text that says what the
message is about. Subject fields are useful because most mail-reading programs
can provide a summary of messages, listing the subject of each message but not
its text.

‘CC’ This field contains additional mailing addresses to send the message to, but
whose readers should not regard the message as addressed to them.

‘BCC’ This field contains additional mailing addresses to send the message to, but
which should not appear in the header of the message actually sent.

‘FCC’ This field contains the name of one file (in Unix mail file format) to which a
copy of the message should be appended when the message is sent.

‘From’ Use the ‘From’ field to say who you are, when the account you are using to send
the mail is not your own. The contents of the ‘From’ field should be a valid
mailing address, since replies will normally go there.

‘Reply-To’
Use the ‘Reply-To’ field to direct replies to a different address, not your own.
‘From’ and ‘Reply-To’ have the same effect on where replies go, but they convey
a different meaning to the person who reads the message.

‘In-Reply-To’
This field contains a piece of text describing a message you are replying to.
Some mail systems can use the information to correlate related pieces of mail.
This field is normally filled in by your mail handling package when you are
replying to a message and you never need to think about it.

The ‘To’, ‘CC’, ‘BCC’ and ‘FCC’ fields can appear any number of times, to specify many places
to send the message.
The ‘To’, ‘CC’, and ‘BCC’, fields can have continuation lines. All the lines starting with
whitespace, following the line on which the field starts, are considered part of the field. For
example,

To: foo@here, this@there,
me@gnu.cambridge.mass.usa.earth.spiral3281

If you have a ‘~/.mailrc’ file, Emacs scans it for mail aliases the first time you try to send
mail in an Emacs session. Emacs expands aliases found in the ‘To’, ‘CC’, and ‘BCC’ fields
where appropriate. You can set the variable mail-abbrev-mailrc-file to the name of the
file with mail aliases. If nil, ‘~/.mailrc’ is used.

Your ‘.mailrc’ file ensures that word-abbrevs are defined for each of your mail aliases
when point is in a ‘To’, ‘CC’, ‘BCC’, or ‘From’ field. The aliases are defined in your ‘.mailrc’

Chapter 26: Sending Mail 217

file or in a file specified by the MAILRC environment variable if it exists. Your mail aliases
expand any time you type a word-delimiter at the end of an abbreviation.

In this version of Emacs, what you see is what you get: in contrast to some other versions,
no abbreviations are expanded after you have sent the mail. This means you don’t suffer
the annoyance of having the system do things behind your back — if the system rewrites an
address you typed, you know it immediately, instead of after the mail has been sent and it’s
too late to do anything about it. For example, you will never again be in trouble because
you forgot to delete an old alias from your ‘.mailrc’ and a new local user is given a userid
which conflicts with one of your aliases.

Your mail alias abbrevs are in effect only when point is in an appropriate header field.
The mail aliases will not expand in the body of the message, or in other header fields. The
default mode-specific abbrev table mail-mode-abbrev-table is used instead if defined.
That means if you have been using mail-mode specific abbrevs, this code will not adversely
affect you. You can control which header fields the abbrevs are used in by changing the
variable mail-abbrev-mode-regexp.

If auto-fill mode is on, abbrevs wrap at commas instead of at word boundaries, and
header continuation lines will be properly indented.

You can also insert a mail alias with mail-interactive-insert-alias. This function,
which is bound to C-c C-a, prompts you for an alias (with completion) and inserts its
expansion at point.

In this version of Emacs, it is possible to have lines like the following in your ‘.mailrc’
file:

alias someone "John Doe <doe@quux.com>"

That is, if you want an address to have embedded spaces, simply surround it with double-
quotes. The quotes are necessary because the format of the ‘.mailrc’ file uses spaces as
address delimiters.

Aliases in the ‘.mailrc’ file may be nested. For example, assume you define aliases like:
alias group1 fred ethel
alias group2 larry curly moe
alias everybody group1 group2

When you now type ‘everybody’ on the ‘To’ line, it will expand to:
fred, ethyl, larry, curly, moe

Aliases may contain forward references; the alias of ‘everybody’ in the example above
can precede the aliases of ‘group1’ and ‘group2’.

In this version of Emacs, you can use the source ‘.mailrc’ command for reading aliases
from some other file as well.

Aliases may contain hyphens, as in "alias foo-bar foo@bar", even though
word-abbrevs normally cannot contain hyphens.

To read in the contents of another ‘.mailrc’-type file from Emacs, use the command
M-x merge-mail-aliases. The rebuild-mail-aliases command is similar, but deletes
existing aliases first.

If you want multiple addresses separated by a string other than ‘,’ (a comma), then set
the variable mail-alias-seperator-string to it. This has to be a comma bracketed by
whitespace if you want any kind of reasonable behavior.

218 XEmacs User’s Manual

If the variable mail-archive-file-name is non-nil, it should be a string naming a file.
Each time you start to edit a message to send, an ‘FCC’ field is entered for that file. Unless
you remove the ‘FCC’ field, every message is written into that file when it is sent.

26.3 Mail Mode

The major mode used in the ‘*mail*’ buffer is Mail mode. Mail mode is similar to Text
mode, but several commands are provided on the C-c prefix. These commands all deal
specifically with editing or sending the message.

C-c C-s Send the message, and leave the ‘*mail*’ buffer selected (mail-send).

C-c C-c Send the message, and select some other buffer (mail-send-and-exit).

C-c C-f C-t

Move to the ‘To’ header field, creating one if there is none (mail-to).

C-c C-f C-s

Move to the ‘Subject’ header field, creating one if there is none
(mail-subject).

C-c C-f C-c

Move to the ‘CC’ header field, creating one if there is none (mail-cc).

C-c C-w Insert the file ‘~/.signature’ at the end of the message text (mail-signature).

C-c C-y Yank the selected message (mail-yank-original).

C-c C-q Fill all paragraphs of yanked old messages, each individually (mail-fill-
yanked-message).

〈button3〉 Pops up a menu of useful mail-mode commands.

There are two ways to send a message. C-c C-c (mail-send-and-exit) is the usual way
to send the message. It sends the message and then deletes the window (if there is another
window) or switches to another buffer. It puts the ‘*mail*’ buffer at the lowest priority for
automatic reselection, since you are finished with using it. C-c C-s (mail-send) sends the
message and marks the ‘*mail*’ buffer unmodified, but leaves that buffer selected so that
you can modify the message (perhaps with new recipients) and send it again.

Mail mode provides some other special commands that are useful for editing the headers
and text of the message before you send it. There are three commands defined to move
point to particular header fields, all based on the prefix C-c C-f (‘C-f’ is for “field”). They
are C-c C-f C-t (mail-to) to move to the ‘To’ field, C-c C-f C-s (mail-subject) for the
‘Subject’ field, and C-c C-f C-c (mail-cc) for the ‘CC’ field. These fields have special
motion commands because they are edited most frequently.

C-c C-w (mail-signature) adds a standard piece of text at the end of the message to
say more about who you are. The text comes from the file ‘.signature’ in your home
directory.

When you use an Rmail command to send mail from the Rmail mail reader, you can use
C-c C-y mail-yank-original inside the ‘*mail*’ buffer to insert the text of the message

Chapter 26: Sending Mail 219

you are replying to. Normally Rmail indents each line of that message four spaces and
eliminates most header fields. A numeric argument specifies the number of spaces to indent.
An argument of just C-u says not to indent at all and not to eliminate anything. C-c C-

y always uses the current message from the ‘RMAIL’ buffer, so you can insert several old
messages by selecting one in ‘RMAIL’, switching to ‘*mail*’ and yanking it, then switching
back to ‘RMAIL’ to select another.

After using C-c C-y, you can use the command C-c C-q (mail-fill-yanked-message)
to fill the paragraphs of the yanked old message or messages. One use of C-c C-q fills all
such paragraphs, each one separately.

Clicking the right mouse button in a mail buffer pops up a menu of the above commands,
for easy access.

Turning on Mail mode (which C-x m does automatically) calls the value of text-mode-
hook, if it is not void or nil, and then calls the value of mail-mode-hook if that is not void
or nil.

220 XEmacs User’s Manual

Chapter 27: Reading Mail 221

27 Reading Mail

XEmacs provides three separate mail-reading packages. Each one comes with its own
manual, which is included standard with the XEmacs distribution.

The recommended mail-reading package for new users is VM. VM works with standard
Unix-mail-format folders and was designed as a replacement for the older Rmail.

XEmacs also provides a sophisticated and comfortable front-end to the MH
mail-processing system, called ‘mh-e’. Unlike in other mail programs, folders in MH are
stored as file-system directories, with each message occupying one (numbered) file. This
facilitates working with mail using shell commands, and many other features of MH
are also designed to integrate well with the shell and with shell scripts. Keep in mind,
however, that in order to use mh-e you must have the MH mail-processing system installed
on your computer.

Finally, XEmacs provides the Rmail package. Rmail is (currently) the only mail reading
package distributed with FSF GNU Emacs, and is powerful in its own right. However, it
stores mail folders in a special format called ‘Babyl’, that is incompatible with all other
frequently-used mail programs. A utility program is provided for converting Babyl folders to
standard Unix-mail format; however, unless you already have mail in Babyl-format folders,
you should consider using VM or mh-e instead. (If at times you have to use FSF Emacs, it
is not hard to obtain and install VM for that editor.)

27.4 Calendar Mode and the Diary

Emacs provides the functions of a desk calendar, with a diary of planned or past events.
To enter the calendar, type M-x calendar; this displays a three-month calendar centered
on the current month, with point on the current date. With a numeric argument, as in C-u

M-x calendar, it prompts you for the month and year to be the center of the three-month
calendar. The calendar uses its own buffer, whose major mode is Calendar mode.

Button2 in the calendar brings up a menu of operations on a particular date; Buttons3
brings up a menu of commonly used calendar features that are independent of any particular
date. To exit the calendar, type q. See section “Calendar” in The Emacs Lisp Reference
Manual, for customization information about the calendar and diary.

27.4.1 Movement in the Calendar

Calendar mode lets you move through the calendar in logical units of time such as days,
weeks, months, and years. If you move outside the three months originally displayed, the
calendar display “scrolls” automatically through time to make the selected date visible.
Moving to a date lets you view its holidays or diary entries, or convert it to other calendars;
moving longer time periods is also useful simply to scroll the calendar.

222 XEmacs User’s Manual

27.4.1.1 Motion by Integral Days, Weeks, Months, Years

The commands for movement in the calendar buffer parallel the commands for movement
in text. You can move forward and backward by days, weeks, months, and years.

C-f Move point one day forward (calendar-forward-day).

C-b Move point one day backward (calendar-backward-day).

C-n Move point one week forward (calendar-forward-week).

C-p Move point one week backward (calendar-backward-week).

M-} Move point one month forward (calendar-forward-month).

M-{ Move point one month backward (calendar-backward-month).

C-x] Move point one year forward (calendar-forward-year).

C-x [Move point one year backward (calendar-backward-year).

The day and week commands are natural analogues of the usual Emacs commands for
moving by characters and by lines. Just as C-n usually moves to the same column in the
following line, in Calendar mode it moves to the same day in the following week. And C-p

moves to the same day in the previous week.
The arrow keys are equivalent to C-f, C-b, C-n and C-p, just as they normally are in

other modes.
The commands for motion by months and years work like those for weeks, but move a

larger distance. The month commands M-} and M-{ move forward or backward by an entire
month’s time. The year commands C-x] and C-x [move forward or backward a whole
year.

The easiest way to remember these commands is to consider months and years analogous
to paragraphs and pages of text, respectively. But the commands themselves are not quite
analogous. The ordinary Emacs paragraph commands move to the beginning or end of a
paragraph, whereas these month and year commands move by an entire month or an entire
year, which usually involves skipping across the end of a month or year.

All these commands accept a numeric argument as a repeat count. For convenience, the
digit keys and the minus sign specify numeric arguments in Calendar mode even without
the Meta modifier. For example, 100 C-f moves point 100 days forward from its present
location.

27.4.1.2 Beginning or End of Week, Month or Year

A week (or month, or year) is not just a quantity of days; we think of weeks (months,
years) as starting on particular dates. So Calendar mode provides commands to move to
the beginning or end of a week, month or year:

C-a Move point to start of week (calendar-beginning-of-week).

Chapter 27: Reading Mail 223

C-e Move point to end of week (calendar-end-of-week).

M-a Move point to start of month (calendar-beginning-of-month).

M-e Move point to end of month (calendar-end-of-month).

M-< Move point to start of year (calendar-beginning-of-year).

M-> Move point to end of year (calendar-end-of-year).

These commands also take numeric arguments as repeat counts, with the repeat count
indicating how many weeks, months, or years to move backward or forward.

By default, weeks begin on Sunday. To make them begin on Monday instead, set the
variable calendar-week-start-day to 1.

27.4.1.3 Particular Dates

Calendar mode provides commands for moving to a particular date specified in various
ways.

g d Move point to specified date (calendar-goto-date).

o Center calendar around specified month (calendar-other-month).

. Move point to today’s date (calendar-goto-today).

g d (calendar-goto-date) prompts for a year, a month, and a day of the month, and
then moves to that date. Because the calendar includes all dates from the beginning of the
current era, you must type the year in its entirety; that is, type ‘1990’, not ‘90’.

o (calendar-other-month) prompts for a month and year, then centers the three-month
calendar around that month.

You can return to today’s date with . (calendar-goto-today).

27.4.2 Scrolling the Calendar through Time

The calendar display scrolls automatically through time when you move out of the visible
portion. You can also scroll it manually. Imagine that the calendar window contains a long
strip of paper with the months on it. Scrolling it means moving the strip so that new
months become visible in the window.

C-x < Scroll calendar one month forward (scroll-calendar-left).

C-x > Scroll calendar one month backward (scroll-calendar-right).

C-v

〈NEXT〉 Scroll calendar three months forward (scroll-calendar-left-three-
months).

M-v

〈PRIOR〉 Scroll calendar three months backward (scroll-calendar-right-three-
months).

224 XEmacs User’s Manual

The most basic calendar scroll commands scroll by one month at a time. This means
that there are two months of overlap between the display before the command and the
display after. C-x < scrolls the calendar contents one month to the left; that is, it moves
the display forward in time. C-x > scrolls the contents to the right, which moves backwards
in time.

The commands C-v and M-v scroll the calendar by an entire “screenful”—three months—
in analogy with the usual meaning of these commands. C-v makes later dates visible and
M-v makes earlier dates visible. These commands take a numeric argument as a repeat
count; in particular, since C-u multiplies the next command by four, typing C-u C-v scrolls
the calendar forward by a year and typing C-u M-v scrolls the calendar backward by a year.

The function keys 〈NEXT〉 and 〈PRIOR〉 are equivalent to C-v and M-v, just as they are in
other modes.

27.4.3 The Mark and the Region

The concept of the mark applies to the calendar just as to any other buffer, but it marks
a date, not a position in the buffer. The region consists of the days between the mark and
point (including the starting and stopping dates).

C-SPC Set the mark to today’s date (calendar-set-mark).

C-@ The same.

C-x C-x Interchange mark and point (calendar-exchange-point-and-mark).

M-= Display the number of days in the current region (calendar-count-days-
region).

You set the mark in the calendar, as in any other buffer, by using C-@ or C-SPC

(calendar-set-mark). You return to the marked date with the command C-x C-x

(calendar-exchange-point-and-mark) which puts the mark where point was and point
where mark was. The calendar is scrolled as necessary, if the marked date was not visible
on the screen. This does not change the extent of the region.

To determine the number of days in the region, type M-= (calendar-count-days-
region). The numbers of days printed is inclusive; that is, it includes the days specified by
mark and point.

The main use of the mark in the calendar is to remember dates that you may want to
go back to. To make this feature more useful, the mark ring (see Section 9.1.4 [Mark Ring],
page 65) operates exactly as in other buffers: Emacs remembers 16 previous locations of
the mark. To return to a marked date, type C-u C-SPC (or C-u C-@); this is the command
calendar-set-mark given a numeric argument. It moves point to where the mark was,
restores the mark from the ring of former marks, and stores the previous point at the end
of the mark ring. So, repeated use of this command moves point through all the old marks
on the ring, one by one.

27.4.4 Miscellaneous Calendar Commands

Chapter 27: Reading Mail 225

p d Display day-in-year (calendar-print-day-of-year).

? Briefly describe calendar commands (describe-calendar-mode).

C-c C-l Regenerate the calendar window (redraw-calendar).

SPC Scroll the next window (scroll-other-window).

q Exit from calendar (exit-calendar).

If you want to know how many days have elapsed since the start of the year, or the
number of days remaining in the year, type the p d command (calendar-print-day-of-
year). This displays both of those numbers in the echo area.

To display a brief description of the calendar commands, type ? (describe-calendar-
mode). For a fuller description, type C-h m.

You can use SPC (scroll-other-window) to scroll the other window. This is handy
when you display a list of holidays or diary entries in another window.

If the calendar window text gets corrupted, type C-c C-l (redraw-calendar) to redraw
it. (This can only happen if you use non-Calendar-mode editing commands.)

In Calendar mode, you can use SPC (scroll-other-window) to scroll the other window.
This is handy when you display a list of holidays or diary entries in another window.

To exit from the calendar, type q (exit-calendar). This buries all buffers related to the
calendar, selecting other buffers. (If a frame contains a dedicated calendar window, exiting
from the calendar iconifies that frame.)

27.5 LaTeX Calendar

The Calendar LaTEX commands produce a buffer of LaTEX code that prints as a calen-
dar. Depending on the command you use, the printed calendar covers the day, week, month
or year that point is in.

t m Generate a one-month calendar (cal-tex-cursor-month).

t M Generate a sideways-printing one-month calendar (cal-tex-cursor-month-
landscape).

t d Generate a one-day calendar (cal-tex-cursor-day).

t w 1 Generate a one-page calendar for one week (cal-tex-cursor-week).

t w 2 Generate a two-page calendar for one week (cal-tex-cursor-week2).

t w 3 Generate an ISO-style calendar for one week (cal-tex-cursor-week-iso).

t w 4 Generate a calendar for one Monday-starting week (cal-tex-cursor-week-
monday).

t f w Generate a Filofax-style two-weeks-at-a-glance calendar (cal-tex-cursor-
filofax-2week).

t f W Generate a Filofax-style one-week-at-a-glance calendar (cal-tex-cursor-
filofax-week).

226 XEmacs User’s Manual

t y Generate a calendar for one year (cal-tex-cursor-year).

t Y Generate a sideways-printing calendar for one year (cal-tex-cursor-year-
landscape).

t f y Generate a Filofax-style calendar for one year (cal-tex-cursor-filofax-
year).

Some of these commands print the calendar sideways (in “landscape mode”), so it can
be wider than it is long. Some of them use Filofax paper size (3.75in x 6.75in). All of these
commands accept a prefix argument which specifies how many days, weeks, months or years
to print (starting always with the selected one).

If the variable cal-tex-holidays is non-nil (the default), then the printed calendars
show the holidays in calendar-holidays. If the variable cal-tex-diary is non-nil (the
default is nil), diary entries are included also (in weekly and monthly calendars only).

27.5.1 Holidays

The Emacs calendar knows about all major and many minor holidays, and can display
them.

h Display holidays for the selected date (calendar-cursor-holidays).

Button2 Holidays

Display any holidays for the date you click on.

x Mark holidays in the calendar window (mark-calendar-holidays).

u Unmark calendar window (calendar-unmark).

a List all holidays for the displayed three months in another window (list-
calendar-holidays).

M-x holidays

List all holidays for three months around today’s date in another window.

M-x list-holidays

List holidays in another window for a specified range of years.

To see if any holidays fall on a given date, position point on that date in the calendar
window and use the h command. Alternatively, click on that date with Button2 and then
choose Holidays from the menu that appears. Either way, this displays the holidays for
that date, in the echo area if they fit there, otherwise in a separate window.

To view the distribution of holidays for all the dates shown in the calendar, use the x

command. This displays the dates that are holidays in a different face (or places a ‘*’ after
these dates, if display with multiple faces is not available). The command applies both
to the currently visible months and to other months that subsequently become visible by
scrolling. To turn marking off and erase the current marks, type u, which also erases any
diary marks (see Section 27.8.2 [Diary], page 233).

To get even more detailed information, use the a command, which displays a separate
buffer containing a list of all holidays in the current three-month range. You can use 〈SPC〉
in the calendar window to scroll that list.

Chapter 27: Reading Mail 227

The command M-x holidays displays the list of holidays for the current month and the
preceding and succeeding months; this works even if you don’t have a calendar window.
If you want the list of holidays centered around a different month, use C-u M-x holidays,
which prompts for the month and year.

The holidays known to Emacs include United States holidays and the major Christian,
Jewish, and Islamic holidays; also the solstices and equinoxes.

The command M-x list-holidays displays the list of holidays for a range of years.
This function asks you for the starting and stopping years, and allows you to choose all the
holidays or one of several categories of holidays. You can use this command even if you
don’t have a calendar window.

The dates used by Emacs for holidays are based on current practice, not historical fact.
Historically, for instance, the start of daylight savings time and even its existence have
varied from year to year, but present United States law mandates that daylight savings
time begins on the first Sunday in April. When the daylight savings rules are set up for the
United States, Emacs always uses the present definition, even though it is wrong for some
prior years.

27.5.2 Times of Sunrise and Sunset

Special calendar commands can tell you, to within a minute or two, the times of sunrise
and sunset for any date.

S Display times of sunrise and sunset for the selected date (calendar-sunrise-
sunset).

Button2 Sunrise/Sunset

Display times of sunrise and sunset for the date you click on.

M-x sunrise-sunset

Display times of sunrise and sunset for today’s date.

C-u M-x sunrise-sunset

Display times of sunrise and sunset for a specified date.

Within the calendar, to display the local times of sunrise and sunset in the echo area,
move point to the date you want, and type S. Alternatively, click Button2 on the date, then
choose Sunrise/Sunset from the menu that appears. The command M-x sunrise-sunset

is available outside the calendar to display this information for today’s date or a specified
date. To specify a date other than today, use C-u M-x sunrise-sunset, which prompts for
the year, month, and day.

You can display the times of sunrise and sunset for any location and any date with
C-u C-u M-x sunrise-sunset. This asks you for a longitude, latitude, number of minutes
difference from Coordinated Universal Time, and date, and then tells you the times of
sunrise and sunset for that location on that date.

Because the times of sunrise and sunset depend on the location on earth, you need to
tell Emacs your latitude, longitude, and location name before using these commands. Here
is an example of what to set:

228 XEmacs User’s Manual

(setq calendar-latitude 40.1)
(setq calendar-longitude -88.2)
(setq calendar-location-name "Urbana, IL")

Use one decimal place in the values of calendar-latitude and calendar-longitude.
Your time zone also affects the local time of sunrise and sunset. Emacs usually gets

time zone information from the operating system, but if these values are not what you want
(or if the operating system does not supply them), you must set them yourself. Here is an
example:

(setq calendar-time-zone -360)
(setq calendar-standard-time-zone-name "CST")
(setq calendar-daylight-time-zone-name "CDT")

The value of calendar-time-zone is the number of minutes difference between your local
standard time and Coordinated Universal Time (Greenwich time). The values of calendar-
standard-time-zone-name and calendar-daylight-time-zone-name are the abbrevia-
tions used in your time zone. Emacs displays the times of sunrise and sunset corrected for
daylight savings time. See Section 27.8.8.5 [Daylight Savings], page 243, for how daylight
savings time is determined.

As a user, you might find it convenient to set the calendar location variables for your
usual physical location in your ‘.emacs’ file. And when you install Emacs on a machine,
you can create a ‘default.el’ file which sets them properly for the typical location of most
users of that machine. See Section 29.6 [Init File], page 283.

27.5.3 Phases of the Moon

These calendar commands display the dates and times of the phases of the moon (new
moon, first quarter, full moon, last quarter). This feature is useful for debugging problems
that “depend on the phase of the moon.”

M Display the dates and times for all the quarters of the moon for the three-month
period shown (calendar-phases-of-moon).

M-x phases-of-moon

Display dates and times of the quarters of the moon for three months around
today’s date.

Within the calendar, use the M command to display a separate buffer of the phases of
the moon for the current three-month range. The dates and times listed are accurate to
within a few minutes.

Outside the calendar, use the command M-x phases-of-moon to display the list of the
phases of the moon for the current month and the preceding and succeeding months. For
information about a different month, use C-u M-x phases-of-moon, which prompts for the
month and year.

The dates and times given for the phases of the moon are given in local time (cor-
rected for daylight savings, when appropriate); but if the variable calendar-time-zone is
void, Coordinated Universal Time (the Greenwich time zone) is used. See Section 27.8.8.5
[Daylight Savings], page 243.

Chapter 27: Reading Mail 229

27.5.4 Conversion To and From Other Calendars

The Emacs calendar displayed is always the Gregorian calendar, sometimes called the
“new style” calendar, which is used in most of the world today. However, this calendar
did not exist before the sixteenth century and was not widely used before the eighteenth
century; it did not fully displace the Julian calendar and gain universal acceptance until the
early twentieth century. The Emacs calendar can display any month since January, year 1
of the current era, but the calendar displayed is the Gregorian, even for a date at which the
Gregorian calendar did not exist.

While Emacs cannot display other calendars, it can convert dates to and from several
other calendars.

If you are interested in these calendars, you can convert dates one at a time. Put point
on the desired date of the Gregorian calendar and press the appropriate keys. The p is a
mnemonic for “print” since Emacs “prints’ the equivalent date in the echo area.

27.6 Supported Calendar Systems

The ISO commercial calendar is used largely in Europe.

The Julian calendar, named after Julius Caesar, was the one used in Europe throughout
medieval times, and in many countries up until the nineteenth century.

Astronomers use a simple counting of days elapsed since noon, Monday, January 1, 4713
B.C. on the Julian calendar. The number of days elapsed is called the Julian day number
or the Astronomical day number.

The Hebrew calendar is used by tradition in the Jewish religion. The Emacs calendar
program uses the Hebrew calendar to determine the dates of Jewish holidays. Hebrew
calendar dates begin and end at sunset.

The Islamic calendar is used in many predominantly Islamic countries. Emacs uses it
to determine the dates of Islamic holidays. There is no universal agreement in the Islamic
world about the calendar; Emacs uses a widely accepted version, but the precise dates of
Islamic holidays often depend on proclamation by religious authorities, not on calculations.
As a consequence, the actual dates of observance can vary slightly from the dates computed
by Emacs. Islamic calendar dates begin and end at sunset.

The French Revolutionary calendar was created by the Jacobins after the 1789 revolution,
to represent a more secular and nature-based view of the annual cycle, and to install a 10-
day week in a rationalization measure similar to the metric system. The French government
officially abandoned this calendar at the end of 1805.

The Maya of Central America used three separate, overlapping calendar systems, the long
count, the tzolkin, and the haab. Emacs knows about all three of these calendars. Experts
dispute the exact correlation between the Mayan calendar and our calendar; Emacs uses
the Goodman-Martinez-Thompson correlation in its calculations.

The Copts use a calendar based on the ancient Egyptian solar calendar. Their calendar
consists of twelve 30-day months followed by an extra five-day period. Once every fourth

230 XEmacs User’s Manual

year they add a leap day to this extra period to make it six days. The Ethiopic calendar is
identical in structure, but has different year numbers and month names.

The Persians use a solar calendar based on a design of Omar Khayyam. Their calendar
consists of twelve months of which the first six have 31 days, the next five have 30 days, and
the last has 29 in ordinary years and 30 in leap years. Leap years occur in a complicated
pattern every four or five years.

The Chinese calendar is a complicated system of lunar months arranged into solar years.
The years go in cycles of sixty, each year containing either twelve months in an ordinary
year or thirteen months in a leap year; each month has either 29 or 30 days. Years, ordinary
months, and days are named by combining one of ten “celestial stems” with one of twelve
“terrestrial branches” for a total of sixty names that are repeated in a cycle of sixty.

27.7 Converting To Other Calendars

The following commands describe the selected date (the date at point) in various other
calendar systems:

Button2 Other Calendars

Display the date that you click on, expressed in various other calendars.

p c Display ISO commercial calendar equivalent for selected day (calendar-print-
iso-date).

p j Display Julian date for selected day (calendar-print-julian-date).

p a Display astronomical (Julian) day number for selected day (calendar-print-
astro-day-number).

p h Display Hebrew date for selected day (calendar-print-hebrew-date).

p i Display Islamic date for selected day (calendar-print-islamic-date).

p f Display French Revolutionary date for selected day (calendar-print-french-
date).

p C Display Chinese date for selected day (calendar-print-chinese-date).

p k Display Coptic date for selected day (calendar-print-coptic-date).

p e Display Ethiopic date for selected day (calendar-print-ethiopic-date).

p p Display Persian date for selected day (calendar-print-persian-date).

p m Display Mayan date for selected day (calendar-print-mayan-date).

If you are using X, the easiest way to translate a date into other calendars is to click on
it with Button2, then choose Other Calendars from the menu that appears. This displays
the equivalent forms of the date in all the calendars Emacs understands, in the form of a
menu. (Choosing an alternative from this menu doesn’t actually do anything—the menu is
used only for display.)

Put point on the desired date of the Gregorian calendar, then type the appropriate keys.
The p is a mnemonic for “print” since Emacs “prints” the equivalent date in the echo area.

Chapter 27: Reading Mail 231

27.8 Converting From Other Calendars

You can use the other supported calendars to specify a date to move to. This section
describes the commands for doing this using calendars other than Mayan; for the Mayan
calendar, see the following section.

g c Move to a date specified in the ISO commercial calendar (calendar-goto-iso-
date).

g j Move to a date specified in the Julian calendar (calendar-goto-julian-date).

g a Move to a date specified in astronomical (Julian) day number (calendar-goto-
astro-day-number).

g h Move to a date specified in the Hebrew calendar (calendar-goto-hebrew-
date).

g i Move to a date specified in the Islamic calendar (calendar-goto-islamic-
date).

g f Move to a date specified in the French Revolutionary calendar (calendar-goto-
french-date).

g C Move to a date specified in the Chinese calendar (calendar-goto-chinese-
date).

g p Move to a date specified in the Persian calendar (calendar-goto-persian-
date).

g k Move to a date specified in the Coptic calendar (calendar-goto-coptic-date).

g e Move to a date specified in the Ethiopic calendar (calendar-goto-ethiopic-
date).

These commands ask you for a date on the other calendar, move point to the Gregorian
calendar date equivalent to that date, and display the other calendar’s date in the echo area.
Emacs uses strict completion (see Section 6.3 [Completion], page 53) whenever it asks you
to type a month name, so you don’t have to worry about the spelling of Hebrew, Islamic,
or French names.

One common question concerning the Hebrew calendar is the computation of the an-
niversary of a date of death, called a “yahrzeit.” The Emacs calendar includes a facility
for such calculations. If you are in the calendar, the command M-x list-yahrzeit-dates

asks you for a range of years and then displays a list of the yahrzeit dates for those years
for the date given by point. If you are not in the calendar, this command first asks you for
the date of death and the range of years, and then displays the list of yahrzeit dates.

27.8.1 Converting from the Mayan Calendar

Here are the commands to select dates based on the Mayan calendar:

g m l Move to a date specified by the long count calendar (calendar-goto-mayan-
long-count-date).

232 XEmacs User’s Manual

g m n t Move to the next occurrence of a place in the tzolkin calendar (calendar-next-
tzolkin-date).

g m p t Move to the previous occurrence of a place in the tzolkin calendar (calendar-
previous-tzolkin-date).

g m n h Move to the next occurrence of a place in the haab calendar (calendar-next-
haab-date).

g m p h Move to the previous occurrence of a place in the haab calendar (calendar-
previous-haab-date).

g m n c Move to the next occurrence of a place in the calendar round (calendar-next-
calendar-round-date).

g m p c Move to the previous occurrence of a place in the calendar round (calendar-
previous-calendar-round-date).

To understand these commands, you need to understand the Mayan calendars. The long
count is a counting of days with these units:

1 kin = 1 day 1 uinal = 20 kin 1 tun = 18 uinal
1 katun = 20 tun 1 baktun = 20 katun

Thus, the long count date 12.16.11.16.6 means 12 baktun, 16 katun, 11 tun, 16 uinal, and 6
kin. The Emacs calendar can handle Mayan long count dates as early as 7.17.18.13.1, but
no earlier. When you use the g m l command, type the Mayan long count date with the
baktun, katun, tun, uinal, and kin separated by periods.

The Mayan tzolkin calendar is a cycle of 260 days formed by a pair of independent cycles
of 13 and 20 days. Since this cycle repeats endlessly, Emacs provides commands to move
backward and forward to the previous or next point in the cycle. Type g m p t to go to the
previous tzolkin date; Emacs asks you for a tzolkin date and moves point to the previous
occurrence of that date. Similarly, type g m n t to go to the next occurrence of a tzolkin
date.

The Mayan haab calendar is a cycle of 365 days arranged as 18 months of 20 days each,
followed a 5-day monthless period. Like the tzolkin cycle, this cycle repeats endlessly, and
there are commands to move backward and forward to the previous or next point in the
cycle. Type g m p h to go to the previous haab date; Emacs asks you for a haab date and
moves point to the previous occurrence of that date. Similarly, type g m n h to go to the
next occurrence of a haab date.

The Maya also used the combination of the tzolkin date and the haab date. This combi-
nation is a cycle of about 52 years called a calendar round. If you type g m p c, Emacs asks
you for both a haab and a tzolkin date and then moves point to the previous occurrence
of that combination. Use g m n c to move point to the next occurrence of a combination.
These commands signal an error if the haab/tzolkin date combination you have typed is
impossible.

Emacs uses strict completion (see Section 6.3 [Completion], page 53) whenever it asks
you to type a Mayan name, so you don’t have to worry about spelling.

Chapter 27: Reading Mail 233

27.8.2 The Diary

The Emacs diary keeps track of appointments or other events on a daily basis, in con-
junction with the calendar. To use the diary feature, you must first create a diary file
containing a list of events and their dates. Then Emacs can automatically pick out and
display the events for today, for the immediate future, or for any specified date.

By default, Emacs uses ‘~/diary’ as the diary file. This is the same file that the calendar
utility uses. A sample ‘~/diary’ file is:

12/22/1988 Twentieth wedding anniversary!!
&1/1. Happy New Year!
10/22 Ruth’s birthday.
* 21, *: Payday
Tuesday--weekly meeting with grad students at 10am

Supowit, Shen, Bitner, and Kapoor to attend.
1/13/89 Friday the thirteenth!!
&thu 4pm squash game with Lloyd.
mar 16 Dad’s birthday
April 15, 1989 Income tax due.
&* 15 time cards due.

This example uses extra spaces to align the event descriptions of most of the entries. Such
formatting is purely a matter of taste.

Although you probably will start by creating a diary manually, Emacs provides a number
of commands to let you view, add, and change diary entries. You can also share diary entries
with other users (see Section 27.8.8.9 [Included Diary Files], page 247).

27.8.3 Commands Displaying Diary Entries

Once you have created a ‘~/diary’ file, you can use the calendar to view it. You can
also view today’s events outside of Calendar mode.

d Display all diary entries for the selected date (view-diary-entries).

Button2 Diary

Display all diary entries for the date you click on.

s Display the entire diary file (show-all-diary-entries).

m Mark all visible dates that have diary entries (mark-diary-entries).

u Unmark the calendar window (calendar-unmark).

M-x print-diary-entries

Print hard copy of the diary display as it appears.

M-x diary Display all diary entries for today’s date.

M-x diary-mail-entries

Mail yourself email reminders about upcoming diary entries.

234 XEmacs User’s Manual

Displaying the diary entries with d shows in a separate window the diary entries for the
selected date in the calendar. The mode line of the new window shows the date of the diary
entries and any holidays that fall on that date. If you specify a numeric argument with d, it
shows all the diary entries for that many successive days. Thus, 2 d displays all the entries
for the selected date and for the following day.

Another way to display the diary entries for a date is to click Button2 on the date, and
then choose Diary from the menu that appears.

To get a broader view of which days are mentioned in the diary, use the m command.
This displays the dates that have diary entries in a different face (or places a ‘+’ after these
dates, if display with multiple faces is not available). The command applies both to the
currently visible months and to other months that subsequently become visible by scrolling.
To turn marking off and erase the current marks, type u, which also turns off holiday marks
(see Section 27.5.1 [Holidays], page 226).

To see the full diary file, rather than just some of the entries, use the s command.

Display of selected diary entries uses the selective display feature to hide entries that
don’t apply.

The diary buffer as you see it is an illusion, so simply printing the buffer does not
print what you see on your screen. There is a special command to print hard copy of the
diary buffer as it appears; this command is M-x print-diary-entries. It sends the data
directly to the printer. You can customize it like lpr-region (see Section 28.4 [Hardcopy],
page 257).

The command M-x diary displays the diary entries for the current date, independently
of the calendar display, and optionally for the next few days as well; the variable number-
of-diary-entries specifies how many days to include (see Chapter 29 [Customization],
page 263).

If you put (diary) in your ‘.emacs’ file, this automatically displays a window with the
day’s diary entries, when you enter Emacs. The mode line of the displayed window shows
the date and any holidays that fall on that date.

Many users like to receive notice of events in their diary as email. To send such mail
to yourself, use the command M-x diary-mail-entries. A prefix argument specifies how
many days (starting with today) to check; otherwise, the variable diary-mail-days says
how many days.

27.8.4 The Diary File

Your diary file is a file that records events associated with particular dates. The name
of the diary file is specified by the variable diary-file; ‘~/diary’ is the default. The
calendar utility program supports a subset of the format allowed by the Emacs diary
facilities, so you can use that utility to view the diary file, with reasonable results aside
from the entries it cannot understand.

Each entry in the diary file describes one event and consists of one or more lines. An
entry always begins with a date specification at the left margin. The rest of the entry is
simply text to describe the event. If the entry has more than one line, then the lines after

Chapter 27: Reading Mail 235

the first must begin with whitespace to indicate they continue a previous entry. Lines that
do not begin with valid dates and do not continue a preceding entry are ignored.

You can inhibit the marking of certain diary entries in the calendar window; to do this,
insert an ampersand (‘&’) at the beginning of the entry, before the date. This has no effect
on display of the entry in the diary window; it affects only marks on dates in the calendar
window. Nonmarking entries are especially useful for generic entries that would otherwise
mark many different dates.

If the first line of a diary entry consists only of the date or day name with no following
blanks or punctuation, then the diary window display doesn’t include that line; only the
continuation lines appear. For example, this entry:

02/11/1989
Bill B. visits Princeton today
2pm Cognitive Studies Committee meeting
2:30-5:30 Liz at Lawrenceville
4:00pm Dentist appt
7:30pm Dinner at George’s
8:00-10:00pm concert

appears in the diary window without the date line at the beginning. This style of entry
looks neater when you display just a single day’s entries, but can cause confusion if you ask
for more than one day’s entries.

You can edit the diary entries as they appear in the window, but it is important to
remember that the buffer displayed contains the entire diary file, with portions of it con-
cealed from view. This means, for instance, that the C-f (forward-char) command can
put point at what appears to be the end of the line, but what is in reality the middle of
some concealed line.

Be careful when editing the diary entries! Inserting additional lines or adding/deleting
characters in the middle of a visible line cannot cause problems, but editing at the end of
a line may not do what you expect. Deleting a line may delete other invisible entries that
follow it. Before editing the diary, it is best to display the entire file with s (show-all-
diary-entries).

27.8.5 Date Formats

Here are some sample diary entries, illustrating different ways of formatting a date. The
examples all show dates in American order (month, day, year), but Calendar mode supports
European order (day, month, year) as an option.

4/20/93 Switch-over to new tabulation system
apr. 25 Start tabulating annual results
4/30 Results for April are due
*/25 Monthly cycle finishes
Friday Don’t leave without backing up files

The first entry appears only once, on April 20, 1993. The second and third appear every
year on the specified dates, and the fourth uses a wildcard (asterisk) for the month, so it
appears on the 25th of every month. The final entry appears every week on Friday.

236 XEmacs User’s Manual

You can use just numbers to express a date, as in ‘month/day ’ or ‘month/day/year’.
This must be followed by a nondigit. In the date itself, month and day are numbers of one
or two digits. The optional year is also a number, and may be abbreviated to the last two
digits; that is, you can use ‘11/12/1989’ or ‘11/12/89’.

Dates can also have the form ‘monthname day ’ or ‘monthname day, year’, where the
month’s name can be spelled in full or abbreviated to three characters (with or without a
period). Case is not significant.

A date may be generic; that is, partially unspecified. Then the entry applies to all dates
that match the specification. If the date does not contain a year, it is generic and applies
to any year. Alternatively, month, day, or year can be a ‘*’; this matches any month, day,
or year, respectively. Thus, a diary entry ‘3/*/*’ matches any day in March of any year;
so does ‘march *’.

If you prefer the European style of writing dates—in which the day comes before the
month—type M-x european-calendar while in the calendar, or set the variable european-
calendar-style to t before using any calendar or diary command. This mode interprets
all dates in the diary in the European manner, and also uses European style for displaying
diary dates. (Note that there is no comma after the monthname in the European style.)
To go back to the (default) American style of writing dates, type M-x american-calendar.

You can use the name of a day of the week as a generic date which applies to any date
falling on that day of the week. You can abbreviate the day of the week to three letters
(with or without a period) or spell it in full; case is not significant.

27.8.6 Commands to Add to the Diary

While in the calendar, there are several commands to create diary entries:

i d Add a diary entry for the selected date (insert-diary-entry).

i w Add a diary entry for the selected day of the week (insert-weekly-diary-
entry).

i m Add a diary entry for the selected day of the month (insert-monthly-diary-
entry).

i y Add a diary entry for the selected day of the year (insert-yearly-diary-
entry).

You can make a diary entry for a specific date by selecting that date in the calendar
window and typing the i d command. This command displays the end of your diary file in
another window and inserts the date; you can then type the rest of the diary entry.

If you want to make a diary entry that applies to a specific day of the week, select that
day of the week (any occurrence will do) and type i w. This inserts the day-of-week as a
generic date; you can then type the rest of the diary entry. You can make a monthly diary
entry in the same fashion. Select the day of the month, use the i m command, and type
rest of the entry. Similarly, you can insert a yearly diary entry with the i y command.

All of the above commands make marking diary entries by default. To make a nonmark-
ing diary entry, give a numeric argument to the command. For example, C-u i w makes a
nonmarking weekly diary entry.

Chapter 27: Reading Mail 237

When you modify the diary file, be sure to save the file before exiting Emacs.

27.8.7 Special Diary Entries

In addition to entries based on calendar dates, the diary file can contain sexp entries for
regular events such as anniversaries. These entries are based on Lisp expressions (sexps)
that Emacs evaluates as it scans the diary file. Instead of a date, a sexp entry contains
‘%%’ followed by a Lisp expression which must begin and end with parentheses. The Lisp
expression determines which dates the entry applies to.

Calendar mode provides commands to insert certain commonly used sexp entries:

i a Add an anniversary diary entry for the selected date (insert-anniversary-
diary-entry).

i b Add a block diary entry for the current region (insert-block-diary-entry).

i c Add a cyclic diary entry starting at the date (insert-cyclic-diary-entry).

If you want to make a diary entry that applies to the anniversary of a specific date, move
point to that date and use the i a command. This displays the end of your diary file in
another window and inserts the anniversary description; you can then type the rest of the
diary entry. The entry looks like this:

The effect of i a is to add a diary-anniversary sexp to your diary file. You can also
add one manually, for instance:

%%(diary-anniversary 10 31 1948) Arthur’s birthday

This entry applies to October 31 in any year after 1948; ‘10 31 1948’ specifies the date.
(If you are using the European calendar style, the month and day are interchanged.) The
reason this expression requires a beginning year is that advanced diary functions can use it
to calculate the number of elapsed years.

A block diary entry applies to a specified range of consecutive dates. Here is a block
diary entry that applies to all dates from June 24, 1990 through July 10, 1990:

%%(diary-block 6 24 1990 7 10 1990) Vacation

The ‘6 24 1990’ indicates the starting date and the ‘7 10 1990’ indicates the stopping date.
(Again, if you are using the European calendar style, the month and day are interchanged.)

To insert a block entry, place point and the mark on the two dates that begin and end the
range, and type i b. This command displays the end of your diary file in another window
and inserts the block description; you can then type the diary entry.

Cyclic diary entries repeat after a fixed interval of days. To create one, select the
starting date and use the i c command. The command prompts for the length of interval,
then inserts the entry, which looks like this:

%%(diary-cyclic 50 3 1 1990) Renew medication

This entry applies to March 1, 1990 and every 50th day following; ‘3 1 1990’ specifies
the starting date. (If you are using the European calendar style, the month and day are
interchanged.)

238 XEmacs User’s Manual

All three of these commands make marking diary entries. To insert a nonmarking entry,
give a numeric argument to the command. For example, C-u i a makes a nonmarking
anniversary diary entry.

Marking sexp diary entries in the calendar is extremely time-consuming, since every date
visible in the calendar window must be individually checked. So it’s a good idea to make
sexp diary entries nonmarking (with ‘&’) when possible.

Another sophisticated kind of sexp entry, a floating diary entry, specifies a regularly
occurring event by offsets specified in days, weeks, and months. It is comparable to a
crontab entry interpreted by the cron utility. Here is a nonmarking, floating diary entry
that applies to the last Thursday in November:

&%%(diary-float 11 4 -1) American Thanksgiving

The 11 specifies November (the eleventh month), the 4 specifies Thursday (the fourth day
of the week, where Sunday is numbered zero), and the −1 specifies “last” (1 would mean
“first”, 2 would mean “second”, −2 would mean “second-to-last”, and so on). The month
can be a single month or a list of months. Thus you could change the 11 above to ‘’(1 2
3)’ and have the entry apply to the last Thursday of January, February, and March. If the
month is t, the entry applies to all months of the year.

The sexp feature of the diary allows you to specify diary entries based on any Emacs
Lisp expression. You can use the library of built-in functions or you can write your own
functions. The built-in functions include the ones shown in this section, plus a few others
(see Section 27.8.8.10 [Sexp Diary Entries], page 247).

The generality of sexps lets you specify any diary entry that you can describe algorith-
mically. Suppose you get paid on the 21st of the month if it is a weekday, and to the Friday
before if the 21st is on a weekend. The diary entry

&%%(let ((dayname (calendar-day-of-week date))
(day (car (cdr date))))

(or (and (= day 21) (memq dayname ’(1 2 3 4 5)))
(and (memq day ’(19 20)) (= dayname 5)))
) Pay check deposited

to just those dates. This example illustrates how the sexp can depend on the variable date;
this variable is a list (month day year) that gives the Gregorian date for which the diary
entries are being found. If the value of the sexp is t, the entry applies to that date. If the
sexp evaluates to nil, the entry does not apply to that date.

27.8.8 Customizing the Calendar and Diary

There are many customizations that you can use to make the calendar and diary suit
your personal tastes.

27.8.8.1 Customizing the Calendar

If you set the variable view-diary-entries-initially to t, calling up the calendar
automatically displays the diary entries for the current date as well. The diary dates appear

Chapter 27: Reading Mail 239

only if the current date is visible. If you add both of the following lines to your ‘.emacs’
file:

(setq view-diary-entries-initially t)
(calendar)

this displays both the calendar and diary windows whenever you start Emacs.

Similarly, if you set the variable view-calendar-holidays-initially to t, entering
the calendar automatically displays a list of holidays for the current three-month period.
The holiday list appears in a separate window.

You can set the variable mark-diary-entries-in-calendar to t in order to mark any
dates with diary entries. This takes effect whenever the calendar window contents are
recomputed. There are two ways of marking these dates: by changing the face (see Sec-
tion 29.8 [Faces], page 287), if the display supports that, or by placing a plus sign (‘+’)
beside the date otherwise.

Similarly, setting the variable mark-holidays-in-calendar to t marks holiday dates,
either with a change of face or with an asterisk (‘*’).

The variable calendar-holiday-marker specifies how to mark a date as being a holiday.
Its value may be a character to insert next to the date, or a face name to use for displaying
the date. Likewise, the variable diary-entry-marker specifies how to mark a date that has
diary entries. The calendar creates faces named holiday-face and diary-face for these
purposes; those symbols are the default values of these variables, when Emacs supports
multiple faces on your terminal.

The variable calendar-load-hook is a normal hook run when the calendar package is
first loaded (before actually starting to display the calendar).

Starting the calendar runs the normal hook initial-calendar-window-hook. Recom-
putation of the calendar display does not run this hook. But if you leave the calendar with
the q command and reenter it, the hook runs again.

The variable today-visible-calendar-hook is a normal hook run after the calendar
buffer has been prepared with the calendar when the current date is visible in the window.
One use of this hook is to replace today’s date with asterisks; to do that, use the hook
function calendar-star-date.

(add-hook ’today-visible-calendar-hook ’calendar-star-date)

Another standard hook function marks the current date, either by changing its face or by
adding an asterisk. Here’s how to use it:

(add-hook ’today-visible-calendar-hook ’calendar-mark-today)

The variable calendar-today-marker specifies how to mark today’s date. Its value should
be a character to insert next to the date or a face name to use for displaying the date. A
face named calendar-today-face is provided for this purpose; that symbol is the default
for this variable when Emacs supports multiple faces on your terminal.

A similar normal hook, today-invisible-calendar-hook is run if the current date is not
visible in the window.

27.8.8.2 Customizing the Holidays

240 XEmacs User’s Manual

Emacs knows about holidays defined by entries on one of several lists. You can cus-
tomize these lists of holidays to your own needs, adding or deleting holidays. The lists
of holidays that Emacs uses are for general holidays (general-holidays), local holidays
(local-holidays), Christian holidays (christian-holidays), Hebrew (Jewish) holidays
(hebrew-holidays), Islamic (Moslem) holidays (islamic-holidays), and other holidays
(other-holidays).

The general holidays are, by default, holidays common throughout the United States.
To eliminate these holidays, set general-holidays to nil.

There are no default local holidays (but sites may supply some). You can set the variable
local-holidays to any list of holidays, as described below.

By default, Emacs does not include all the holidays of the religions that it knows, only
those commonly found in secular calendars. For a more extensive collection of religious
holidays, you can set any (or all) of the variables all-christian-calendar-holidays,
all-hebrew-calendar-holidays, or all-islamic-calendar-holidays to t. If you want
to eliminate the religious holidays, set any or all of the corresponding variables christian-
holidays, hebrew-holidays, and islamic-holidays to nil.

You can set the variable other-holidays to any list of holidays. This list, normally
empty, is intended for individual use.

Each of the lists (general-holidays, local-holidays, christian-holidays, hebrew-
holidays, islamic-holidays, and other-holidays) is a list of holiday forms, each holiday
form describing a holiday (or sometimes a list of holidays).

Here is a table of the possible kinds of holiday form. Day numbers and month numbers
count starting from 1, but “dayname” numbers count Sunday as 0. The element string is
always the name of the holiday, as a string.

(holiday-fixed month day string)
A fixed date on the Gregorian calendar. month and day are numbers, string is
the name of the holiday.

(holiday-float month dayname k string)
The kth dayname in month on the Gregorian calendar (dayname=0 for Sunday,
and so on); negative k means count back from the end of the month. string is
the name of the holiday.

(holiday-hebrew month day string)
A fixed date on the Hebrew calendar. month and day are numbers, string is
the name of the holiday.

(holiday-islamic month day string)
A fixed date on the Islamic calendar. month and day are numbers, string is
the name of the holiday.

(holiday-julian month day string)
A fixed date on the Julian calendar. month and day are numbers, string is the
name of the holiday.

(holiday-sexp sexp string)
A date calculated by the Lisp expression sexp. The expression should use the
variable year to compute and return the date of a holiday, or nil if the holiday

Chapter 27: Reading Mail 241

doesn’t happen this year. The value of sexp must represent the date as a list
of the form (month day year). string is the name of the holiday.

(if condition holiday-form &optional holiday-form)
A holiday that happens only if condition is true.

(function [args])
A list of dates calculated by the function function, called with arguments args.

For example, suppose you want to add Bastille Day, celebrated in France on July 14.
You can do this by adding the following line to your ‘.emacs’ file:

(setq other-holidays ’((holiday-fixed 7 14 "Bastille Day")))

The holiday form (holiday-fixed 7 14 "Bastille Day") specifies the fourteenth day of
the seventh month (July).

Many holidays occur on a specific day of the week, at a specific time of month. Here is
a holiday form describing Hurricane Supplication Day, celebrated in the Virgin Islands on
the fourth Monday in August:

(holiday-float 8 1 4 "Hurricane Supplication Day")

Here the 8 specifies August, the 1 specifies Monday (Sunday is 0, Tuesday is 2, and so on),
and the 4 specifies the fourth occurrence in the month (1 specifies the first occurrence, 2 the
second occurrence, −1 the last occurrence, −2 the second-to-last occurrence, and so on).

You can specify holidays that occur on fixed days of the Hebrew, Islamic, and Julian
calendars too. For example,

(setq other-holidays
’((holiday-hebrew 10 2 "Last day of Hanukkah")

(holiday-islamic 3 12 "Mohammed’s Birthday")
(holiday-julian 4 2 "Jefferson’s Birthday")))

adds the last day of Hanukkah (since the Hebrew months are numbered with 1 starting
from Nisan), the Islamic feast celebrating Mohammed’s birthday (since the Islamic months
are numbered from 1 starting with Muharram), and Thomas Jefferson’s birthday, which is
2 April 1743 on the Julian calendar.

To include a holiday conditionally, use either Emacs Lisp’s if or the holiday-sexp
form. For example, American presidential elections occur on the first Tuesday after the
first Monday in November of years divisible by 4:

(holiday-sexp (if (= 0 (% year 4))
(calendar-gregorian-from-absolute

(1+ (calendar-dayname-on-or-before
1 (+ 6 (calendar-absolute-from-gregorian

(list 11 1 year))))))
"US Presidential Election"))

or
(if (= 0 (% displayed-year 4))

(fixed 11
(extract-calendar-day

(calendar-gregorian-from-absolute
(1+ (calendar-dayname-on-or-before

1 (+ 6 (calendar-absolute-from-gregorian

242 XEmacs User’s Manual

(list 11 1 displayed-year)))))))
"US Presidential Election"))

Some holidays just don’t fit into any of these forms because special calculations are
involved in their determination. In such cases you must write a Lisp function to do the
calculation. To include eclipses, for example, add (eclipses) to other-holidays and
write an Emacs Lisp function eclipses that returns a (possibly empty) list of the relevant
Gregorian dates among the range visible in the calendar window, with descriptive strings,
like this:

(((6 27 1991) "Lunar Eclipse") ((7 11 1991) "Solar Eclipse") ...)

27.8.8.3 Date Display Format

You can customize the manner of displaying dates in the diary, in mode lines, and in
messages by setting calendar-date-display-form. This variable holds a list of expressions
that can involve the variables month, day, and year, which are all numbers in string form,
and monthname and dayname, which are both alphabetic strings. In the American style, the
default value of this list is as follows:

((if dayname (concat dayname ", ")) monthname " " day ", " year)

while in the European style this value is the default:
((if dayname (concat dayname ", ")) day " " monthname " " year)

+The ISO standard date representation is this:
(year "-" month "-" day)

This specifies a typical American format:
(month "/" day "/" (substring year -2))

27.8.8.4 Time Display Format

The calendar and diary by default display times of day in the conventional American
style with the hours from 1 through 12, minutes, and either ‘am’ or ‘pm’. If you prefer the
European style, also known in the US as military, in which the hours go from 00 to 23, you
can alter the variable calendar-time-display-form. This variable is a list of expressions
that can involve the variables 12-hours, 24-hours, and minutes, which are all numbers
in string form, and am-pm and time-zone, which are both alphabetic strings. The default
value of calendar-time-display-form is as follows:

(12-hours ":" minutes am-pm
(if time-zone " (") time-zone (if time-zone ")"))

Here is a value that provides European style times:
(24-hours ":" minutes

(if time-zone " (") time-zone (if time-zone ")"))

gives military-style times like ‘21:07 (UT)’ if time zone names are defined, and times like
‘21:07’ if they are not.

Chapter 27: Reading Mail 243

27.8.8.5 Daylight Savings Time

Emacs understands the difference between standard time and daylight savings time—the
times given for sunrise, sunset, solstices, equinoxes, and the phases of the moon take that
into account. The rules for daylight savings time vary from place to place and have also
varied historically from year to year. To do the job properly, Emacs needs to know which
rules to use.

Some operating systems keep track of the rules that apply to the place where you are;
on these systems, Emacs gets the information it needs from the system automatically. If
some or all of this information is missing, Emacs fills in the gaps with the rules currently
used in Cambridge, Massachusetts. If the resulting rules are not what you want, you can
tell Emacs the rules to use by setting certain variables.

If the default choice of rules is not appropriate for your location, you can tell Emacs the
rules to use by setting the variables calendar-daylight-savings-starts and calendar-
daylight-savings-ends. Their values should be Lisp expressions that refer to the variable
year, and evaluate to the Gregorian date on which daylight savings time starts or (respec-
tively) ends, in the form of a list (month day year). The values should be nil if your area
does not use daylight savings time.

Emacs uses these expressions to determine the starting date of daylight savings time for
the holiday list and for correcting times of day in the solar and lunar calculations.

The values for Cambridge, Massachusetts are as follows:
(calendar-nth-named-day 1 0 4 year)
(calendar-nth-named-day -1 0 10 year)

That is, the first 0th day (Sunday) of the fourth month (April) in the year specified by year,
and the last Sunday of the tenth month (October) of that year. If daylight savings time
were changed to start on October 1, you would set calendar-daylight-savings-starts
to this:

(list 10 1 year)

For a more complex example, suppose daylight savings time begins on the first of Nisan
on the Hebrew calendar. You should set calendar-daylight-savings-starts to this
value:

(calendar-gregorian-from-absolute
(calendar-absolute-from-hebrew

(list 1 1 (+ year 3760))))

because Nisan is the first month in the Hebrew calendar and the Hebrew year differs from
the Gregorian year by 3760 at Nisan.

If there is no daylight savings time at your location, or if you want all times in standard
time, set calendar-daylight-savings-starts and calendar-daylight-savings-ends
to nil.

The variable calendar-daylight-time-offset specifies the difference between day-
light savings time and standard time, measured in minutes. The value for Cambridge,
Massachusetts is 60.

The two variables calendar-daylight-savings-starts-time and calendar-
daylight-savings-ends-time specify the number of minutes after midnight local time

244 XEmacs User’s Manual

when the transition to and from daylight savings time should occur. For Cambridge,
Massachusetts both variables’ values are 120.

27.8.8.6 Customizing the Diary

Ordinarily, the mode line of the diary buffer window indicates any holidays that fall on
the date of the diary entries. The process of checking for holidays can take several seconds,
so including holiday information delays the display of the diary buffer noticeably. If you’d
prefer to have a faster display of the diary buffer but without the holiday information, set
the variable holidays-in-diary-buffer to nil.

The variable number-of-diary-entries controls the number of days of diary entries
to be displayed at one time. It affects the initial display when view-diary-entries-
initially is t, as well as the command M-x diary. For example, the default value is
1, which says to display only the current day’s diary entries. If the value is 2, both the
current day’s and the next day’s entries are displayed. The value can also be a vector of
seven elements: for example, if the value is [0 2 2 2 2 4 1] then no diary entries appear
on Sunday, the current date’s and the next day’s diary entries appear Monday through
Thursday, Friday through Monday’s entries appear on Friday, while on Saturday only that
day’s entries appear.

The variable print-diary-entries-hook is a normal hook run after preparation of
a temporary buffer containing just the diary entries currently visible in the diary buffer.
(The other, irrelevant diary entries are really absent from the temporary buffer; in the diary
buffer, they are merely hidden.) The default value of this hook does the printing with the
command lpr-buffer. If you want to use a different command to do the printing, just
change the value of this hook. Other uses might include, for example, rearranging the lines
into order by day and time.

You can customize the form of dates in your diary file, if neither the standard American
nor European styles suits your needs, by setting the variable diary-date-forms. This
variable is a list of patterns for recognizing a date. Each date pattern is a list whose
elements may be regular expressions (see Section 13.5 [Regexps], page 89) or the symbols
month, day, year, monthname, and dayname. All these elements serve as patterns that
match certain kinds of text in the diary file. In order for the date pattern, as a whole, to
match, all of its elements must match consecutively.

A regular expression in a date pattern matches in its usual fashion, using the standard
syntax table altered so that ‘*’ is a word constituent.

The symbols month, day, year, monthname, and dayname match the month number,
day number, year number, month name, and day name of the date being considered. The
symbols that match numbers allow leading zeros; those that match names allow three-letter
abbreviations and capitalization. All the symbols can match ‘*’; since ‘*’ in a diary entry
means “any day”, “any month”, and so on, it should match regardless of the date being
considered.

The default value of diary-date-forms in the American style is this:
((month "/" day "[^/0-9]")
(month "/" day "/" year "[^0-9]")

Chapter 27: Reading Mail 245

(monthname " *" day "[^,0-9]")
(monthname " *" day ", *" year "[^0-9]")
(dayname "\\W"))

Emacs matches of the diary entries with the date forms is done with the standard syntax
table from Fundamental mode (see section “Syntax Tables” in XEmacs Lisp Reference
Manual), but with the ‘*’ changed so that it is a word constituent.

The date patterns in the list must be mutually exclusive and must not match any portion
of the diary entry itself, just the date and one character of whitespace. If, to be mutually
exclusive, the pattern must match a portion of the diary entry text—beyond the whitespace
that ends the date—then the first element of the date pattern must be backup. This causes
the date recognizer to back up to the beginning of the current word of the diary entry, after
finishing the match. Even if you use backup, the date pattern must absolutely not match
more than a portion of the first word of the diary entry. The default value of diary-date-
forms in the European style is this list:

((day "/" month "[^/0-9]")
(day "/" month "/" year "[^0-9]")
(backup day " *" monthname "\\W+\\<[^*0-9]")
(day " *" monthname " *" year "[^0-9]")
(dayname "\\W"))

Notice the use of backup in the third pattern, because it needs to match part of a word
beyond the date itself to distinguish it from the fourth pattern.

27.8.8.7 Hebrew- and Islamic-Date Diary Entries

Your diary file can have entries based on Hebrew or Islamic dates, as well as entries based
on the world-standard Gregorian calendar. However, because recognition of such entries is
time-consuming and most people don’t use them, you must explicitly enable their use. If
you want the diary to recognize Hebrew-date diary entries, for example, you must do this:

(add-hook ’nongregorian-diary-listing-hook ’list-hebrew-diary-entries)
(add-hook ’nongregorian-diary-marking-hook ’mark-hebrew-diary-entries)

If you want Islamic-date entries, do this:
(add-hook ’nongregorian-diary-listing-hook ’list-islamic-diary-entries)
(add-hook ’nongregorian-diary-marking-hook ’mark-islamic-diary-entries)

Hebrew- and Islamic-date diary entries have the same formats as Gregorian-date diary
entries, except that ‘H’ precedes a Hebrew date and ‘I’ precedes an Islamic date. Moreover,
because the Hebrew and Islamic month names are not uniquely specified by the first three
letters, you may not abbreviate them. For example, a diary entry for the Hebrew date
Heshvan 25 could look like this:

HHeshvan 25 Happy Hebrew birthday!

and would appear in the diary for any date that corresponds to Heshvan 25 on the Hebrew
calendar. And here is Islamic-date diary entry that matches Dhu al-Qada 25:

IDhu al-Qada 25 Happy Islamic birthday!

and would appear in the diary for any date that corresponds to Dhu al-Qada 25 on the
Islamic calendar.

246 XEmacs User’s Manual

As with Gregorian-date diary entries, Hebrew- and Islamic-date entries are nonmarking
if they are preceded with an ampersand (‘&’).

Here is a table of commands used in the calendar to create diary entries that match the
selected date and other dates that are similar in the Hebrew or Islamic calendar:

i h d Add a diary entry for the Hebrew date corresponding to the selected date
(insert-hebrew-diary-entry).

i h m Add a diary entry for the day of the Hebrew month corresponding to the selected
date (insert-monthly-hebrew-diary-entry). This diary entry matches any
date that has the same Hebrew day-within-month as the selected date.

i h y Add a diary entry for the day of the Hebrew year corresponding to the selected
date (insert-yearly-hebrew-diary-entry). This diary entry matches any
date which has the same Hebrew month and day-within-month as the selected
date.

i i d Add a diary entry for the Islamic date corresponding to the selected date
(insert-islamic-diary-entry).

i i m Add a diary entry for the day of the Islamic month corresponding to the selected
date (insert-monthly-islamic-diary-entry).

i i y Add a diary entry for the day of the Islamic year corresponding to the selected
date (insert-yearly-islamic-diary-entry).

These commands work much like the corresponding commands for ordinary diary entries:
they apply to the date that point is on in the calendar window, and what they do is insert
just the date portion of a diary entry at the end of your diary file. You must then insert
the rest of the diary entry.

27.8.8.8 Fancy Diary Display

Diary display works by preparing the diary buffer and then running the hook diary-
display-hook. The default value of this hook (simple-diary-display) hides the irrelevant
diary entries and then displays the buffer. However, if you specify the hook as follows,

(add-hook ’diary-display-hook ’fancy-diary-display)

this enables fancy diary display. It displays diary entries and holidays by copying them
into a special buffer that exists only for the sake of display. Copying to a separate buffer
provides an opportunity to change the displayed text to make it prettier—for example, to
sort the entries by the dates they apply to.

As with simple diary display, you can print a hard copy of the buffer with print-diary-
entries. To print a hard copy of a day-by-day diary for a week by positioning point
on Sunday of that week, type 7 d and then do M-x print-diary-entries. As usual, the
inclusion of the holidays slows down the display slightly; you can speed things up by setting
the variable holidays-in-diary-buffer to nil.

Ordinarily, the fancy diary buffer does not show days for which there are no diary entries,
even if that day is a holiday. If you want such days to be shown in the fancy diary buffer,
set the variable diary-list-include-blanks to t.

Chapter 27: Reading Mail 247

If you use the fancy diary display, you can use the normal hook list-diary-entries-
hook to sort each day’s diary entries by their time of day. Add this line to your ‘.emacs’
file:

(add-hook ’list-diary-entries-hook ’sort-diary-entries t)

For each day, this sorts diary entries that begin with a recognizable time of day according
to their times. Diary entries without times come first within each day.

27.8.8.9 Included Diary Files

Fancy diary display also has the ability to process included diary files. This permits a
group of people to share a diary file for events that apply to all of them. Lines in the diary
file of this form:

#include "filename"

includes the diary entries from the file filename in the fancy diary buffer. The include
mechanism is recursive, so that included files can include other files, and so on; you must
be careful not to have a cycle of inclusions, of course. Here is how to enable the include
facility:

(add-hook ’list-diary-entries-hook ’include-other-diary-files)
(add-hook ’mark-diary-entries-hook ’mark-included-diary-files)

The include mechanism works only with the fancy diary display, because ordinary diary
display shows the entries directly from your diary file.

27.8.8.10 Sexp Entries and the Fancy Diary Display

Sexp diary entries allow you to do more than just have complicated conditions under
which a diary entry applies. If you use the fancy diary display, sexp entries can generate
the text of the entry depending on the date itself. For example, an anniversary diary entry
can insert the number of years since the anniversary date into the text of the diary entry.
Thus the ‘%d’ in this dairy entry:

%%(diary-anniversary 10 31 1948) Arthur’s birthday (%d years old)

gets replaced by the age, so on October 31, 1990 the entry appears in the fancy diary buffer
like this:

Arthur’s birthday (42 years old)

If the diary file instead contains this entry:
%%(diary-anniversary 10 31 1948) Arthur’s %d%s birthday

the entry in the fancy diary buffer for October 31, 1990 appears like this:
Arthur’s 42nd birthday

Similarly, cyclic diary entries can interpolate the number of repetitions that have oc-
curred:

%%(diary-cyclic 50 1 1 1990) Renew medication (%d%s time)

looks like this:

248 XEmacs User’s Manual

Renew medication (5th time)

in the fancy diary display on September 8, 1990.

The generality of sexp diary entries lets you specify any diary entry that you can describe
algorithmically. A sexp diary entry contains an expression that computes whether the entry
applies to any given date. If its value is non-nil, the entry applies to that date; otherwise,
it does not. The expression can use the variable date to find the date being considered; its
value is a list (month day year) that refers to the Gregorian calendar.

Suppose you get paid on the 21st of the month if it is a weekday, and on the Friday
before if the 21st is on a weekend. Here is how to write a sexp diary entry that matches
those dates:

&%%(let ((dayname (calendar-day-of-week date))
(day (car (cdr date))))

(or (and (= day 21) (memq dayname ’(1 2 3 4 5)))
(and (memq day ’(19 20)) (= dayname 5)))
) Pay check deposited

applies to just those dates. This example illustrates how the sexp can depend on the variable
date; this variable is a list (month day year) that gives the Gregorian date for which the
diary entries are being found. If the value of the expression is t, the entry applies to that
date. If the expression evaluates to nil, the entry does not apply to that date.

The following sexp diary entries take advantage of the ability (in the fancy diary display)
to concoct diary entries whose text varies based on the date:

%%(diary-sunrise-sunset)
Make a diary entry for the local times of today’s sunrise and sunset.

%%(diary-phases-of-moon)
Make a diary entry for the phases (quarters) of the moon.

%%(diary-day-of-year)
Make a diary entry with today’s day number in the current year and the number
of days remaining in the current year.

%%(diary-iso-date)
Make a diary entry with today’s equivalent ISO commercial date.

%%(diary-julian-date)
Make a diary entry with today’s equivalent date on the Julian calendar.

%%(diary-astro-day-number)
Make a diary entry with today’s equivalent astronomical (Julian) day number.

%%(diary-hebrew-date)
Make a diary entry with today’s equivalent date on the Hebrew calendar.

%%(diary-islamic-date)
Make a diary entry with today’s equivalent date on the Islamic calendar.

%%(diary-french-date)
Make a diary entry with today’s equivalent date on the French Revolutionary
calendar.

Chapter 27: Reading Mail 249

%%(diary-mayan-date)
Make a diary entry with today’s equivalent date on the Mayan calendar.

Thus including the diary entry
&%%(diary-hebrew-date)

causes every day’s diary display to contain the equivalent date on the Hebrew
calendar, if you are using the fancy diary display. (With simple diary display, the
line ‘&%%(diary-hebrew-date)’ appears in the diary for any date, but does nothing
particularly useful.)

These functions can be used to construct sexp diary entries based on the Hebrew calendar
in certain standard ways:

%%(diary-rosh-hodesh)
Make a diary entry that tells the occurrence and ritual announcement of each
new Hebrew month.

%%(diary-parasha)
Make a Saturday diary entry that tells the weekly synagogue scripture reading.

%%(diary-sabbath-candles)
Make a Friday diary entry that tells the local time of Sabbath candle lighting.

%%(diary-omer)
Make a diary entry that gives the omer count, when appropriate.

%%(diary-yahrzeit month day year) name
Make a diary entry marking the anniversary of a date of death. The date is the
Gregorian (civil) date of death. The diary entry appears on the proper Hebrew
calendar anniversary and on the day before. (In the European style, the order
of the parameters is changed to day, month, year.)

27.8.8.11 Customizing Appointment Reminders

You can specify exactly how Emacs reminds you of an appointment, and how far in
advance it begins doing so, by setting these variables:

appt-message-warning-time
The time in minutes before an appointment that the reminder begins. The
default is 10 minutes.

appt-audible
If this is t (the default), Emacs rings the terminal bell for appointment re-
minders.

appt-visible
If this is t (the default), Emacs displays the appointment message in echo area.

appt-display-mode-line
If this is t (the default), Emacs displays the number of minutes to the appoint-
ment on the mode line.

250 XEmacs User’s Manual

appt-msg-window
If this is t (the default), Emacs displays the appointment message in another
window.

appt-display-duration
The number of seconds an appointment message is displayed. The default is 5
seconds.

Chapter 28: Miscellaneous Commands 251

28 Miscellaneous Commands

This chapter contains several brief topics that do not fit anywhere else.

28.1 Sorting Text

XEmacs provides several commands for sorting text in a buffer. All operate on the
contents of the region (the text between point and the mark). They divide the text of the
region into many sort records, identify a sort key for each record, and then reorder the
records using the order determined by the sort keys. The records are ordered so that their
keys are in alphabetical order, or, for numerical sorting, in numerical order. In alphabetical
sorting, all upper-case letters ‘A’ through ‘Z’ come before lower-case ‘a’, in accordance with
the ASCII character sequence.

The sort commands differ in how they divide the text into sort records and in which part
of each record they use as the sort key. Most of the commands make each line a separate
sort record, but some commands use paragraphs or pages as sort records. Most of the sort
commands use each entire sort record as its own sort key, but some use only a portion of
the record as the sort key.

M-x sort-lines

Divide the region into lines and sort by comparing the entire text of a line. A
prefix argument means sort in descending order.

M-x sort-paragraphs

Divide the region into paragraphs and sort by comparing the entire text of a
paragraph (except for leading blank lines). A prefix argument means sort in
descending order.

M-x sort-pages

Divide the region into pages and sort by comparing the entire text of a page
(except for leading blank lines). A prefix argument means sort in descending
order.

M-x sort-fields

Divide the region into lines and sort by comparing the contents of one field
in each line. Fields are defined as separated by whitespace, so the first run of
consecutive non-whitespace characters in a line constitutes field 1, the second
such run constitutes field 2, etc.

You specify which field to sort by with a numeric argument: 1 to sort by field
1, etc. A negative argument means sort in descending order. Thus, minus 2
means sort by field 2 in reverse-alphabetical order.

M-x sort-numeric-fields

Like M-x sort-fields, except the specified field is converted to a number for
each line and the numbers are compared. ‘10’ comes before ‘2’ when considered
as text, but after it when considered as a number.

252 XEmacs User’s Manual

M-x sort-columns

Like M-x sort-fields, except that the text within each line used for compari-
son comes from a fixed range of columns. An explanation is given below.

For example, if the buffer contains:
On systems where clash detection (locking of files being edited) is
implemented, XEmacs also checks the first time you modify a buffer
whether the file has changed on disk since it was last visited or
saved. If it has, you are asked to confirm that you want to change
the buffer.

then if you apply M-x sort-lines to the entire buffer you get:
On systems where clash detection (locking of files being edited) is
implemented, XEmacs also checks the first time you modify a buffer
saved. If it has, you are asked to confirm that you want to change
the buffer.
whether the file has changed on disk since it was last visited or

where the upper case ‘O’ comes before all lower case letters. If you apply instead C-u 2 M-x

sort-fields you get:
saved. If it has, you are asked to confirm that you want to change
implemented, XEmacs also checks the first time you modify a buffer
the buffer.
On systems where clash detection (locking of files being edited) is
whether the file has changed on disk since it was last visited or

where the sort keys were ‘If’, ‘XEmacs’, ‘buffer’, ‘systems’, and ‘the’.
M-x sort-columns requires more explanation. You specify the columns by putting point

at one of the columns and the mark at the other column. Because this means you cannot
put point or the mark at the beginning of the first line to sort, this command uses an
unusual definition of ‘region’: all of the line point is in is considered part of the region, and
so is all of the line the mark is in.

For example, to sort a table by information found in columns 10 to 15, you could put
the mark on column 10 in the first line of the table, and point on column 15 in the last line
of the table, and then use this command. Or you could put the mark on column 15 in the
first line and point on column 10 in the last line.

This can be thought of as sorting the rectangle specified by point and the mark, except
that the text on each line to the left or right of the rectangle moves along with the text
inside the rectangle. See Section 10.5 [Rectangles], page 77.

28.2 Running Shell Commands from XEmacs

XEmacs has commands for passing single command lines to inferior shell processes; it
can also run a shell interactively with input and output to an XEmacs buffer ‘*shell*’.

M-! Run a specified shell command line and display the output (shell-command).

M-| Run a specified shell command line with region contents as input; optionally
replace the region with the output (shell-command-on-region).

Chapter 28: Miscellaneous Commands 253

M-x shell Run a subshell with input and output through an XEmacs buffer. You can then
give commands interactively.

M-x term Run a subshell with input and output through an XEmacs buffer. You can then
give commands interactively. Full terminal emulation is available.

28.2.1 Single Shell Commands

M-! (shell-command) reads a line of text using the minibuffer and creates an inferior
shell to execute the line as a command. Standard input from the command comes from
the null device. If the shell command produces any output, the output goes to an XEmacs
buffer named ‘*Shell Command Output*’, which is displayed in another window but not
selected. A numeric argument, as in M-1 M-!, directs this command to insert any output
into the current buffer. In that case, point is left before the output and the mark is set
after the output.

M-| (shell-command-on-region) is like M-! but passes the contents of the region as
input to the shell command, instead of no input. If a numeric argument is used to direct
output to the current buffer, then the old region is deleted first and the output replaces it
as the contents of the region.

Both M-! and M-| use shell-file-name to specify the shell to use. This variable is
initialized based on your SHELL environment variable when you start XEmacs. If the file
name does not specify a directory, the directories in the list exec-path are searched; this
list is initialized based on the PATH environment variable when you start XEmacs. You can
override either or both of these default initializations in your ‘.emacs’ file.

When you use M-! and M-|, XEmacs has to wait until the shell command completes.
You can quit with C-g; that terminates the shell command.

28.2.2 Interactive Inferior Shell

To run a subshell interactively with its typescript in an XEmacs buffer, use M-x shell.
This creates (or reuses) a buffer named ‘*shell*’ and runs a subshell with input coming
from and output going to that buffer. That is to say, any “terminal output” from the
subshell will go into the buffer, advancing point, and any “terminal input” for the subshell
comes from text in the buffer. To give input to the subshell, go to the end of the buffer and
type the input, terminated by 〈RET〉.

XEmacs does not wait for the subshell to do anything. You can switch windows or buffers
and edit them while the shell is waiting, or while it is running a command. Output from
the subshell waits until XEmacs has time to process it; this happens whenever XEmacs is
waiting for keyboard input or for time to elapse.

To get multiple subshells, change the name of buffer ‘*shell*’ to something different by
using M-x rename-buffer. The next use of M-x shell creates a new buffer ‘*shell*’ with
its own subshell. By renaming this buffer as well you can create a third one, and so on. All
the subshells run independently and in parallel.

The file name used to load the subshell is the value of the variable explicit-shell-
file-name, if that is non-nil. Otherwise, the environment variable ESHELL is used, or the

254 XEmacs User’s Manual

environment variable SHELL if there is no ESHELL. If the file name specified is relative, the
directories in the list exec-path are searched (see Section 28.2.1 [Single Shell], page 253).

As soon as the subshell is started, it is sent as input the contents of the file
‘~/.emacs_shellname’, if that file exists, where shellname is the name of the file that the
shell was loaded from. For example, if you use csh, the file sent to it is ‘~/.emacs_csh’.

cd, pushd, and popd commands given to the inferior shell are watched by XEmacs so it
can keep the ‘*shell*’ buffer’s default directory the same as the shell’s working directory.
These commands are recognized syntactically by examining lines of input that are sent.
If you use aliases for these commands, you can tell XEmacs to recognize them also. For
example, if the value of the variable shell-pushd-regexp matches the beginning of a shell
command line, that line is regarded as a pushd command. Change this variable when you
add aliases for ‘pushd’. Likewise, shell-popd-regexp and shell-cd-regexp are used to
recognize commands with the meaning of ‘popd’ and ‘cd’.

M-x shell-resync-dirs queries the shell and resynchronizes XEmacs’ idea of what the
current directory stack is. M-x shell-dirtrack-toggle turns directory tracking on and
off.

XEmacs keeps a history of the most recent commands you have typed in the ‘*shell*’
buffer. If you are at the beginning of a shell command line and type 〈M-p〉, the previous
shell input is inserted into the buffer before point. Immediately typing 〈M-p〉 again deletes
that input and inserts the one before it. By repeating 〈M-p〉 you can move backward through
your commands until you find one you want to repeat. You may then edit the command
before typing 〈RET〉 if you wish. 〈M-n〉 moves forward through the command history, in case
you moved backward past the one you wanted while using 〈M-p〉. If you type the first few
characters of a previous command and then type 〈M-p〉, the most recent shell input starting
with those characters is inserted. This can be very convenient when you are repeating a
sequence of shell commands. The variable input-ring-size controls how many commands
are saved in your input history. The default is 30.

28.2.3 Shell Mode

The shell buffer uses Shell mode, which defines several special keys attached to the C-c

prefix. They are chosen to resemble the usual editing and job control characters present in
shells that are not under XEmacs, except that you must type C-c first. Here is a list of the
special key bindings of Shell mode:

〈RET〉 At end of buffer send line as input; otherwise, copy current line to end of
buffer and send it (send-shell-input). When a line is copied, any text at the
beginning of the line that matches the variable shell-prompt-pattern is left
out; this variable’s value should be a regexp string that matches the prompts
that you use in your subshell.

C-c C-d Send end-of-file as input, probably causing the shell or its current subjob to
finish (shell-send-eof).

C-d If point is not at the end of the buffer, delete the next character just like most
other modes. If point is at the end of the buffer, send end-of-file as input, instead
of generating an error as in other modes (comint-delchar-or-maybe-eof).

Chapter 28: Miscellaneous Commands 255

C-c C-u Kill all text that has yet to be sent as input (kill-shell-input).

C-c C-w Kill a word before point (backward-kill-word).

C-c C-c Interrupt the shell or its current subjob if any (interrupt-shell-subjob).

C-c C-z Stop the shell or its current subjob if any (stop-shell-subjob).

C-c C-\ Send quit signal to the shell or its current subjob if any (quit-shell-subjob).

C-c C-o Delete last batch of output from shell (kill-output-from-shell).

C-c C-r Scroll top of last batch of output to top of window (show-output-from-shell).

C-c C-y Copy the previous bunch of shell input and insert it into the buffer before point
(copy-last-shell-input). No final newline is inserted, and the input copied
is not resubmitted until you type 〈RET〉.

M-p Move backward through the input history. Search for a matching command if
you have typed the beginning of a command (comint-previous-input).

M-n Move forward through the input history. Useful when you are using 〈M-p〉 quickly
and go past the desired command (comint-next-input).

〈TAB〉 Complete the file name preceding point (comint-dynamic-complete).

28.2.4 Interactive Inferior Shell with Terminal Emulator

To run a subshell in a terminal emulator, putting its typescript in an XEmacs buffer,
use M-x term. This creates (or reuses) a buffer named ‘*term*’ and runs a subshell with
input coming from your keyboard and output going to that buffer.

All the normal keys that you type are sent without any interpretation by XEmacs directly
to the subshell, as “terminal input.” Any “echo” of your input is the responsibility of the
subshell. (The exception is the terminal escape character, which by default is C-c. see
Section 28.2.5 [Term Mode], page 256.) Any “terminal output” from the subshell goes into
the buffer, advancing point.

Some programs (such as XEmacs itself) need to control the appearance on the terminal
screen in detail. They do this by sending special control codes. The exact control codes
needed vary from terminal to terminal, but nowadays most terminals and terminal emulators
(including xterm) understand the so-called "ANSI escape sequences" (first popularized by
the Digital’s VT100 family of terminal). The term mode also understands these escape
sequences, and for each control code does the appropriate thing to change the buffer so that
the appearance of the window will match what it would be on a real terminal. Thus you
can actually run XEmacs inside an XEmacs Term window!

XEmacs does not wait for the subshell to do anything. You can switch windows or buffers
and edit them while the shell is waiting, or while it is running a command. Output from
the subshell waits until XEmacs has time to process it; this happens whenever XEmacs is
waiting for keyboard input or for time to elapse.

To make multiple terminal emulators, rename the buffer ‘*term*’ to something different
using M-x rename-uniquely, just as with Shell mode.

The file name used to load the subshell is determined the same way as for Shell mode.

256 XEmacs User’s Manual

Unlike Shell mode, Term mode does not track the current directory by examining your
input. Instead, if you use a programmable shell, you can have it tell Term what the current
directory is. This is done automatically by bash for version 1.15 and later.

28.2.5 Term Mode

Term uses Term mode, which has two input modes: In line mode, Term basically acts
like Shell mode. See Section 28.2.3 [Shell Mode], page 254. In Char mode, each character
is sent directly to the inferior subshell, except for the Term escape character, normally C-c.

To switch between line and char mode, use these commands:

findex term-char-mode

C-c C-k Switch to line mode. Do nothing if already in line mode.

C-c C-j Switch to char mode. Do nothing if already in char mode.

The following commands are only available in Char mode:

C-c C-c Send a literal 〈C-c〉 to the sub-shell.

C-c C-x A prefix command to conveniently access the global 〈C-x〉 commands. For
example, C-c C-x o invokes the global binding of C-x o, which is normally
‘other-window’.

28.2.6 Paging in the terminal emulator

Term mode has a pager feature. When the pager is enabled, term mode will pause at
the end of each screenful.

C-c C-q Toggles the pager feature: Disables the pager if it is enabled, and vice versa.
This works in both line and char modes. If the pager enabled, the mode-line
contains the word ‘page’.

If the pager is enabled, and Term receives more than a screenful of output since your last
input, Term will enter More break mode. This is indicated by ‘**MORE**’ in the mode-line.
Type a Space to display the next screenful of output. Type ? to see your other options.
The interface is similar to the Unix ‘more’ program.

28.3 Narrowing

Narrowing means focusing in on some portion of the buffer, making the rest temporarily
invisible and inaccessible. Cancelling the narrowing and making the entire buffer once again
visible is called widening. The amount of narrowing in effect in a buffer at any time is called
the buffer’s restriction.

C-x n n Narrow down to between point and mark (narrow-to-region).

Chapter 28: Miscellaneous Commands 257

C-x n w Widen to make the entire buffer visible again (widen).

Narrowing sometimes makes it easier to concentrate on a single subroutine or paragraph
by eliminating clutter. It can also be used to restrict the range of operation of a replace
command or repeating keyboard macro. The word ‘Narrow’ appears in the mode line
whenever narrowing is in effect. When you have narrowed to a part of the buffer, that part
appears to be all there is. You can’t see the rest, can’t move into it (motion commands
won’t go outside the visible part), and can’t change it in any way. However, the invisible
text is not gone; if you save the file, it will be saved.

The primary narrowing command is C-x n n (narrow-to-region). It sets the current
buffer’s restrictions so that the text in the current region remains visible but all text before
the region or after the region is invisible. Point and mark do not change.

Because narrowing can easily confuse users who do not understand it, narrow-to-region
is normally a disabled command. Attempting to use this command asks for confirmation
and gives you the option of enabling it; once you enable the command, confirmation will no
longer be required. See Section 29.4.3 [Disabling], page 280.

To undo narrowing, use C-x n w (widen). This makes all text in the buffer accessible
again.

Use the C-x = command to get information on what part of the buffer you narrowed
down. See Section 4.8 [Position Info], page 45.

28.4 Hardcopy Output

The XEmacs commands for making hardcopy derive their names from the Unix com-
mands ‘print’ and ‘lpr’.

M-x print-buffer

Print hardcopy of current buffer using Unix command ‘print’
(‘lpr -p’). This command adds page headings containing the file name and
page number.

M-x lpr-buffer

Print hardcopy of current buffer using Unix command ‘lpr’. This command
does not add page headings.

M-x print-region

Like print-buffer, but prints only the current region.

M-x lpr-region

Like lpr-buffer, but prints only the current region.

All the hardcopy commands pass extra switches to the lpr program based on the value
of the variable lpr-switches. Its value should be a list of strings, each string a switch
starting with ‘-’. For example, the value could be ("-Pfoo") to print on printer ‘foo’.

258 XEmacs User’s Manual

28.5 Recursive Editing Levels

A recursive edit is a situation in which you are using XEmacs commands to perform
arbitrary editing while in the middle of another XEmacs command. For example, when you
type C-r inside a query-replace, you enter a recursive edit in which you can change the
current buffer. When you exit from the recursive edit, you go back to the query-replace.

Exiting a recursive edit means returning to the unfinished command, which continues
execution. For example, exiting the recursive edit requested by C-r in query-replace
causes query replacing to resume. Exiting is done with C-M-c (exit-recursive-edit).

You can also abort a recursive edit. This is like exiting, but also quits the unfinished
command immediately. Use the command C-] (abort-recursive-edit) for this. See
Section 30.1 [Quitting], page 297.

The mode line shows you when you are in a recursive edit by displaying square brackets
around the parentheses that always surround the major and minor mode names. Every
window’s mode line shows the square brackets, since XEmacs as a whole, rather than any
particular buffer, is in a recursive edit.

It is possible to be in recursive edits within recursive edits. For example, after typing
C-r in a query-replace, you might type a command that entered the debugger. In such
a case, two or more sets of square brackets appear in the mode line(s). Exiting the inner
recursive edit (here with the debugger c command) resumes the query-replace command
where it called the debugger. After the end of the query-replace command, you would be
able to exit the first recursive edit. Aborting exits only one level of recursive edit; it returns
to the command level of the previous recursive edit. You can then abort that one as well.

The command M-x top-level aborts all levels of recursive edits, returning immediately
to the top level command reader.

The text you edit inside the recursive edit need not be the same text that you were
editing at top level. If the command that invokes the recursive edit selects a different buffer
first, that is the buffer you will edit recursively. You can switch buffers within the recursive
edit in the normal manner (as long as the buffer-switching keys have not been rebound).
While you could theoretically do the rest of your editing inside the recursive edit, including
visiting files, this could have surprising effects (such as stack overflow) from time to time.
It is best if you always exit or abort a recursive edit when you no longer need it.

In general, XEmacs tries to avoid using recursive edits. It is usually preferable to allow
users to switch among the possible editing modes in any order they like. With recursive
edits, the only way to get to another state is to go “back” to the state that the recursive
edit was invoked from.

28.6 Dissociated Press

M-x dissociated-press is a command for scrambling a file of text either word by word
or character by character. Starting from a buffer of straight English, it produces extremely
amusing output. The input comes from the current XEmacs buffer. Dissociated Press writes

Chapter 28: Miscellaneous Commands 259

its output in a buffer named ‘*Dissociation*’, and redisplays that buffer after every couple
of lines (approximately) to facilitate reading it.

dissociated-press asks every so often whether to continue operating. Answer n to
stop it. You can also stop at any time by typing C-g. The dissociation output remains in
the ‘*Dissociation*’ buffer for you to copy elsewhere if you wish.

Dissociated Press operates by jumping at random from one point in the buffer to another.
In order to produce plausible output rather than gibberish, it insists on a certain amount of
overlap between the end of one run of consecutive words or characters and the start of the
next. That is, if it has just printed out ‘president’ and then decides to jump to a different
point in the file, it might spot the ‘ent’ in ‘pentagon’ and continue from there, producing
‘presidentagon’. Long sample texts produce the best results.

A positive argument to M-x dissociated-press tells it to operate character by charac-
ter, and specifies the number of overlap characters. A negative argument tells it to operate
word by word and specifies the number of overlap words. In this mode, whole words are
treated as the elements to be permuted, rather than characters. No argument is equiva-
lent to an argument of two. For your againformation, the output goes only into the buffer
‘*Dissociation*’. The buffer you start with is not changed.

Dissociated Press produces nearly the same results as a Markov chain based on a fre-
quency table constructed from the sample text. It is, however, an independent, ignoriginal
invention. Dissociated Press techniquitously copies several consecutive characters from the
sample between random choices, whereas a Markov chain would choose randomly for each
word or character. This makes for more plausible sounding results and runs faster.

It is a mustatement that too much use of Dissociated Press can be a developediment
to your real work. Sometimes to the point of outragedy. And keep dissociwords out of
your documentation, if you want it to be well userenced and properbose. Have fun. Your
buggestions are welcome.

28.7 CONX

Besides producing a file of scrambled text with Dissociated Press, you can generate
random sentences by using CONX.

M-x conx Generate random sentences in the *conx* buffer.

M-x conx-buffer

Absorb the text in the current buffer into the conx database.

M-x conx-init

Forget the current word-frequency tree.

M-x conx-load

Load a conx database that has been previously saved with M-x conx-save.

M-x conx-region

Absorb the text in the current buffer into the conx database.

M-x conx-save

Save the current conx database to a file for future retrieval.

260 XEmacs User’s Manual

Copy text from a buffer using M-x conx-buffer or M-x conx-region and then type
M-x conx. Output is continuously generated until you type 〈̂ G〉. You can save the conx
database to a file with M-x conx-save, which you can retrieve with M-x conx-load. To
clear the database, use M-x conx-init.

28.8 Other Amusements

If you are a little bit bored, you can try M-x hanoi. If you are considerably bored, give
it a numeric argument. If you are very, very bored, try an argument of 9. Sit back and
watch.

When you are frustrated, try the famous Eliza program. Just do M-x doctor. End each
input by typing RET twice.

When you are feeling strange, type M-x yow.

28.9 Emulation

XEmacs can be programmed to emulate (more or less) most other editors. Standard
facilities can emulate these:

Viper (a vi emulator)
In XEmacs, Viper is the preferred emulation of vi within XEmacs. Viper is
designed to allow you to take advantage of the best features of XEmacs while
still doing your basic editing in a familiar, vi-like fashion. Viper provides vari-
ous different levels of vi emulation, from a quite complete emulation that allows
almost no access to native XEmacs commands, to an “expert” mode that com-
bines the most useful vi commands with the most useful XEmacs commands.
To start Viper, put the command

(viper-mode)

in your ‘.emacs’ file.
Viper comes with a separate manual that is provided standard with the XEmacs
distribution.

EDT (DEC VMS editor)
Turn on EDT emulation with M-x edt-emulation-on. M-x
edt-emulation-off restores normal Emacs command bindings.
Most of the EDT emulation commands are keypad keys, and most standard
Emacs key bindings are still available. The EDT emulation rebindings are done
in the global keymap, so there is no problem switching buffers or major modes
while in EDT emulation.

Gosling Emacs
Turn on emulation of Gosling Emacs (aka Unipress Emacs) with M-x set-

gosmacs-bindings. This redefines many keys, mostly on the C-x and ESC

prefixes, to work as they do in Gosmacs. M-x set-gnu-bindings returns to

Chapter 28: Miscellaneous Commands 261

normal XEmacs by rebinding the same keys to the definitions they had at the
time M-x set-gosmacs-bindings was done.
It is also possible to run Mocklisp code written for Gosling Emacs. See Sec-
tion 23.3.3 [Mocklisp], page 195.

262 XEmacs User’s Manual

Chapter 29: Customization 263

29 Customization

This chapter talks about various topics relevant to adapting the behavior of Emacs in
minor ways.

All kinds of customization affect only the particular Emacs job that you do them in. They
are completely lost when you kill the Emacs job, and have no effect on other Emacs jobs you
may run at the same time or later. The only way an Emacs job can affect anything outside
of it is by writing a file; in particular, the only way to make a customization ‘permanent’ is
to put something in your ‘.emacs’ file or other appropriate file to do the customization in
each session. See Section 29.6 [Init File], page 283.

29.1 Minor Modes

Minor modes are options which you can use or not. For example, Auto Fill mode is a
minor mode in which 〈SPC〉 breaks lines between words as you type. All the minor modes
are independent of each other and of the selected major mode. Most minor modes inform
you in the mode line when they are on; for example, ‘Fill’ in the mode line means that
Auto Fill mode is on.

Append -mode to the name of a minor mode to get the name of a command function
that turns the mode on or off. Thus, the command to enable or disable Auto Fill mode is
called M-x auto-fill-mode. These commands are usually invoked with M-x, but you can
bind keys to them if you wish. With no argument, the function turns the mode on if it was
off and off if it was on. This is known as toggling. A positive argument always turns the
mode on, and an explicit zero argument or a negative argument always turns it off.

Auto Fill mode allows you to enter filled text without breaking lines explicitly. Emacs
inserts newlines as necessary to prevent lines from becoming too long. See Section 21.6
[Filling], page 161.

Overwrite mode causes ordinary printing characters to replace existing text instead of
moving it to the right. For example, if point is in front of the ‘B’ in ‘FOOBAR’, and you type
a G in Overwrite mode, it changes to ‘FOOGAR’, instead of ‘FOOGBAR’.

Abbrev mode allows you to define abbreviations that automatically expand as you type
them. For example, ‘amd’ might expand to ‘abbrev mode’. See Chapter 24 [Abbrevs],
page 205, for full information.

29.2 Variables

A variable is a Lisp symbol which has a value. Variable names can contain any charac-
ters, but by convention they are words separated by hyphens. A variable can also have a
documentation string, which describes what kind of value it should have and how the value
will be used.

Lisp allows any variable to have any kind of value, but most variables that Emacs uses
require a value of a certain type. Often the value has to be a string or a number. Sometimes

264 XEmacs User’s Manual

we say that a certain feature is turned on if a variable is “non-nil,” meaning that if the
variable’s value is nil, the feature is off, but the feature is on for any other value. The
conventional value to turn on the feature—since you have to pick one particular value when
you set the variable—is t.

Emacs uses many Lisp variables for internal recordkeeping, as any Lisp program must,
but the most interesting variables for you are the ones that exist for the sake of customiza-
tion. Emacs does not (usually) change the values of these variables; instead, you set the
values, and thereby alter and control the behavior of certain Emacs commands. These
variables are called options. Most options are documented in this manual and appear in
the Variable Index (see [Variable Index], page 357).

One example of a variable which is an option is fill-column, which specifies the position
of the right margin (as a number of characters from the left margin) to be used by the fill
commands (see Section 21.6 [Filling], page 161).

29.2.1 Examining and Setting Variables

C-h v

M-x describe-variable

Print the value and documentation of a variable.

M-x set-variable

Change the value of a variable.

To examine the value of a single variable, use C-h v (describe-variable), which reads
a variable name using the minibuffer, with completion. It prints both the value and the
documentation of the variable.

C-h v fill-column 〈RET〉

prints something like:

fill-column’s value is 75

Documentation:
*Column beyond which automatic line-wrapping should happen.
Automatically becomes local when set in any fashion.

The star at the beginning of the documentation indicates that this variable is an option.
C-h v is not restricted to options; it allows any variable name.

If you know which option you want to set, you can use M-x set-variable to set it. This
prompts for the variable name in the minibuffer (with completion), and then prompts for a
Lisp expression for the new value using the minibuffer a second time. For example,

M-x set-variable 〈RET〉 fill-column 〈RET〉 75 〈RET〉

sets fill-column to 75, as if you had executed the Lisp expression (setq fill-column
75).

Setting variables in this way, like all means of customizing Emacs except where explicitly
stated, affects only the current Emacs session.

Chapter 29: Customization 265

29.2.2 Easy Customization Interface

A convenient way to find the user option variables that you want to change, and then
change them, is with M-x customize. This command creates a customization buffer with
which you can browse through the Emacs user options in a logically organized structure,
then edit and set their values. You can also use the customization buffer to save settings
permanently. (Not all Emacs user options are included in this structure as of yet, but we
are adding the rest.)

29.2.2.1 Customization Groups

For customization purposes, user options are organized into groups to help you find
them. Groups are collected into bigger groups, all the way up to a master group called
Emacs.

M-x customize creates a customization buffer that shows the top-level Emacs group and
the second-level groups immediately under it. It looks like this, in part:

/- Emacs group: ---\
[State]: visible group members are all at standard settings.

Customization of the One True Editor.
See also [Manual].

[Open] Editing group
Basic text editing facilities.

[Open] External group
Interfacing to external utilities.

more second-level groups

\- Emacs group end --/

This says that the buffer displays the contents of the Emacs group. The other groups are
listed because they are its contents. But they are listed differently, without indentation and
dashes, because their contents are not included. Each group has a single-line documentation
string; the Emacs group also has a ‘[State]’ line.

Most of the text in the customization buffer is read-only, but it typically includes some
editable fields that you can edit. There are also active fields; this means a field that does
something when you invoke it. To invoke an active field, either click on it with Mouse-1, or
move point to it and type 〈RET〉.

For example, the phrase ‘[Open]’ that appears in a second-level group is an active field.
Invoking the ‘[Open]’ field for a group opens up a new customization buffer, which shows
that group and its contents. This field is a kind of hypertext link to another group.

The Emacs group does not include any user options itself, but other groups do. By
examining various groups, you will eventually find the options and faces that belong to the

266 XEmacs User’s Manual

feature you are interested in customizing. Then you can use the customization buffer to set
them.

You can view the structure of customization groups on a larger scale with M-x

customize-browse. This command creates a special kind of customization buffer which
shows only the names of the groups (and options and faces), and their structure.

In this buffer, you can show the contents of a group by invoking ‘[+]’. When the group
contents are visible, this button changes to ‘[-]’; invoking that hides the group contents.

Each group, option or face name in this buffer has an active field which says ‘[Group]’,
‘[Option]’ or ‘[Face]’. Invoking that active field creates an ordinary customization buffer
showing just that group and its contents, just that option, or just that face. This is the
way to set values in it.

29.2.2.2 Changing an Option

Here is an example of what a user option looks like in the customization buffer:
Kill Ring Max: [Hide] 30

[State]: this option is unchanged from its standard setting.
Maximum length of kill ring before oldest elements are thrown away.

The text following ‘[Hide]’, ‘30’ in this case, indicates the current value of the option.
If you see ‘[Show]’ instead of ‘[Hide]’, it means that the value is hidden; the customization
buffer initially hides values that take up several lines. Invoke ‘[Show]’ to show the value.

The line after the option name indicates the customization state of the option: in the
example above, it says you have not changed the option yet. The word ‘[State]’ at the
beginning of this line is active; you can get a menu of various operations by invoking it with
Mouse-1 or 〈RET〉. These operations are essential for customizing the variable.

The line after the ‘[State]’ line displays the beginning of the option’s documentation
string. If there are more lines of documentation, this line ends with ‘[More]’; invoke this
to show the full documentation string.

To enter a new value for ‘Kill Ring Max’, move point to the value and edit it textually.
For example, you can type M-d, then insert another number.

When you begin to alter the text, you will see the ‘[State]’ line change to say that you
have edited the value:

[State]: you have edited the value as text, but not set the option.

Editing the value does not actually set the option variable. To do that, you must set
the option. To do this, invoke the word ‘[State]’ and choose ‘Set for Current Session’.

The state of the option changes visibly when you set it:
[State]: you have set this option, but not saved it for future sessions.

You don’t have to worry about specifying a value that is not valid; setting the option
checks for validity and will not really install an unacceptable value.

While editing a value or field that is a file name, directory name, command name, or
anything else for which completion is defined, you can type M-〈TAB〉 (widget-complete) to
do completion.

Chapter 29: Customization 267

Some options have a small fixed set of possible legitimate values. These options don’t
let you edit the value textually. Instead, an active field ‘[Value Menu]’ appears before the
value; invoke this field to edit the value. For a boolean “on or off” value, the active field
says ‘[Toggle]’, and it changes to the other value. ‘[Value Menu]’ and ‘[Toggle]’ edit the
buffer; the changes take effect when you use the ‘Set for Current Session’ operation.

Some options have values with complex structure. For example, the value of load-path
is a list of directories. Here is how it appears in the customization buffer:

Load Path:
[INS] [DEL] [Current dir?]: /usr/local/share/emacs/19.34.94/site-lisp
[INS] [DEL] [Current dir?]: /usr/local/share/emacs/site-lisp
[INS] [DEL] [Current dir?]: /usr/local/share/emacs/19.34.94/leim
[INS] [DEL] [Current dir?]: /usr/local/share/emacs/19.34.94/lisp
[INS] [DEL] [Current dir?]: /build/emacs/e19/lisp
[INS] [DEL] [Current dir?]: /build/emacs/e19/lisp/gnus
[INS]

[State]: this item has been changed outside the customization buffer.
List of directories to search for files to load....

Each directory in the list appears on a separate line, and each line has several editable or
active fields.

You can edit any of the directory names. To delete a directory from the list, invoke
‘[DEL]’ on that line. To insert a new directory in the list, invoke ‘[INS]’ at the point where
you want to insert it.

You can also invoke ‘[Current dir?]’ to switch between including a specific named
directory in the path, and including nil in the path. (nil in a search path means “try the
current directory.”)

Two special commands, 〈TAB〉 and S-〈TAB〉, are useful for moving through the customiza-
tion buffer. 〈TAB〉 (widget-forward) moves forward to the next active or editable field;
S-〈TAB〉 (widget-backward) moves backward to the previous active or editable field.

Typing 〈RET〉 on an editable field also moves forward, just like 〈TAB〉. The reason for this
is that people have a tendency to type 〈RET〉 when they are finished editing a field. If you
have occasion to insert a newline in an editable field, use C-o or C-q C-j,

Setting the option changes its value in the current Emacs session; saving the value
changes it for future sessions as well. This works by writing code into your ‘~/.emacs’ file
so as to set the option variable again each time you start Emacs. To save the option, invoke
‘[State]’ and select the ‘Save for Future Sessions’ operation.

You can also restore the option to its standard value by invoking ‘[State]’ and selecting
the ‘Reset’ operation. There are actually three reset operations:

‘Reset to Current’
If you have made some modifications and not yet set the option, this restores
the text in the customization buffer to match the actual value.

‘Reset to Saved’
This restores the value of the option to the last saved value, and updates the
text accordingly.

268 XEmacs User’s Manual

‘Reset to Standard Settings’
This sets the option to its standard value, and updates the text accordingly.
This also eliminates any saved value for the option, so that you will get the
standard value in future Emacs sessions.

The state of a group indicates whether anything in that group has been edited, set or
saved. You can select ‘Set for Current Session’, ‘Save for Future Sessions’ and the
various kinds of ‘Reset’ operation for the group; these operations on the group apply to all
options in the group and its subgroups.

Near the top of the customization buffer there are two lines containing several active
fields:

[Set] [Save] [Reset] [Done]

Invoking ‘[Done]’ buries this customization buffer. Each of the other fields performs an
operation—set, save or reset—on each of the items in the buffer that could meaningfully be
set, saved or reset.

29.2.2.3 Customizing Faces

In addition to user options, some customization groups also include faces. When you
show the contents of a group, both the user options and the faces in the group appear in
the customization buffer. Here is an example of how a face looks:

Custom Changed Face: (sample)
[State]: this face is unchanged from its standard setting.

Face used when the customize item has been changed.
Parent groups: [Custom Magic Faces]
Attributes: [] Bold: [Toggle] off (nil)

[] Italic: [Toggle] off (nil)
[] Underline: [Toggle] off (nil)
[] Foreground: white (sample)
[] Background: blue (sample)
[] Inverse: [Toggle] off (nil)
[] Stipple:
[] Font Family:
[] Size:
[] Strikethru: off

Each face attribute has its own line. The ‘[x]’ field before the attribute name indicates
whether the attribute is enabled; ‘X’ means that it is. You can enable or disable the attribute
by invoking that field. When the attribute is enabled, you can change the attribute value
in the usual ways.

Setting, saving and resetting a face work like the same operations for options (see Sec-
tion 29.2.2.2 [Changing an Option], page 266).

A face can specify different appearances for different types of display. For example, a
face can make text red on a color display, but use a bold font on a monochrome display. To
specify multiple appearances for a face, select ‘Show Display Types’ in the menu you get
from invoking ‘[State]’.

Chapter 29: Customization 269

29.2.2.4 Customizing Specific Items

Instead of finding the options you want to change by moving down through the structure
of groups, you can specify the particular option, face or group that you want to customize.

M-x customize-option 〈RET〉 option 〈RET〉
Set up a customization buffer with just one option, option.

M-x customize-face 〈RET〉 face 〈RET〉
Set up a customization buffer with just one face, face.

M-x customize-group 〈RET〉 group 〈RET〉
Set up a customization buffer with just one group, group.

M-x customize-apropos 〈RET〉 regexp 〈RET〉
Set up a customization buffer with all the options, faces and groups that match
regexp.

M-x customize-saved

Set up a customization buffer containing all options and faces that you have
saved with customization buffers.

M-x customize-customized

Set up a customization buffer containing all options and faces that you have
customized but not saved.

If you want to alter a particular user option variable with the customization buffer,
and you know its name, you can use the command M-x customize-option and specify the
option name. This sets up the customization buffer with just one option—the one that you
asked for. Editing, setting and saving the value work as described above, but only for the
specified option.

Likewise, you can modify a specific face, chosen by name, using M-x customize-face.
You can also set up the customization buffer with a specific group, using M-x customize-

group. The immediate contents of the chosen group, including option variables, faces, and
other groups, all appear as well. However, these subgroups’ own contents start out hidden.
You can show their contents in the usual way, by invoking ‘[Show]’.

To control more precisely what to customize, you can use M-x customize-apropos. You
specify a regular expression as argument; then all options, faces and groups whose names
match this regular expression are set up in the customization buffer. If you specify an empty
regular expression, this includes all groups, options and faces in the customization buffer
(but that takes a long time).

If you change option values and then decide the change was a mistake, you can use two
special commands to revisit your previous changes. Use customize-saved to look at the
options and faces that you have saved. Use M-x customize-customized to look at the
options and faces that you have set but not saved.

29.2.3 Editing Variable Values

270 XEmacs User’s Manual

M-x list-options

Display a buffer listing names, values, and documentation of all options.

M-x edit-options

Change option values by editing a list of options.

M-x list-options displays a list of all Emacs option variables in an Emacs buffer named
‘*List Options*’. Each option is shown with its documentation and its current value. Here
is what a portion of it might look like:

;; exec-path:
("." "/usr/local/bin" "/usr/ucb" "/bin" "/usr/bin" "/u2/emacs/etc")
*List of directories to search programs to run in subprocesses.
Each element is a string (directory name)
or nil (try the default directory).
;;
;; fill-column:
75
*Column beyond which automatic line-wrapping should happen.
Automatically becomes local when set in any fashion.
;;

M-x edit-options goes one step further and immediately selects the ‘*List Options*’
buffer; this buffer uses the major mode Options mode, which provides commands that allow
you to point at an option and change its value:

s Set the variable point is in or near to a new value read using the minibuffer.

x Toggle the variable point is in or near: if the value was nil, it becomes t;
otherwise it becomes nil.

1 Set the variable point is in or near to t.

0 Set the variable point is in or near to nil.

n

p Move to the next or previous variable.

29.2.4 Local Variables

M-x make-local-variable

Make a variable have a local value in the current buffer.

M-x kill-local-variable

Make a variable use its global value in the current buffer.

M-x make-variable-buffer-local

Mark a variable so that setting it will make it local to the buffer that is current
at that time.

You can make any variable local to a specific Emacs buffer. This means that the vari-
able’s value in that buffer is independent of its value in other buffers. A few variables are

Chapter 29: Customization 271

always local in every buffer. All other Emacs variables have a global value which is in effect
in all buffers that have not made the variable local.

Major modes always make the variables they set local to the buffer. This is why changing
major modes in one buffer has no effect on other buffers.

M-x make-local-variable reads the name of a variable and makes it local to the current
buffer. Further changes in this buffer will not affect others, and changes in the global value
will not affect this buffer.

M-x make-variable-buffer-local reads the name of a variable and changes the future
behavior of the variable so that it automatically becomes local when it is set. More pre-
cisely, once you have marked a variable in this way, the usual ways of setting the variable
will automatically invoke make-local-variable first. We call such variables per-buffer
variables.

Some important variables have been marked per-buffer already. They include
abbrev-mode, auto-fill-function, case-fold-search, comment-column, ctl-arrow,
fill-column, fill-prefix, indent-tabs-mode, left-margin,
mode-line-format, overwrite-mode, selective-display-ellipses,
selective-display, tab-width, and truncate-lines. Some other variables are always
local in every buffer, but they are used for internal purposes.

Note: the variable auto-fill-function was formerly named auto-fill-hook.
If you want a variable to cease to be local to the current buffer, call M-x kill-local-

variable and provide the name of a variable to the prompt. The global value of the variable
is again in effect in this buffer. Setting the major mode kills all the local variables of the
buffer.

To set the global value of a variable, regardless of whether the variable has a local value
in the current buffer, you can use the Lisp function setq-default. It works like setq. If
there is a local value in the current buffer, the local value is not affected by setq-default;
thus, the new global value may not be visible until you switch to another buffer, as in the
case of:

(setq-default fill-column 75)

setq-default is the only way to set the global value of a variable that has been marked
with make-variable-buffer-local.

Programs can look at a variable’s default value with default-value. This function
takes a symbol as an argument and returns its default value. The argument is evaluated;
usually you must quote it explicitly, as in the case of:

(default-value ’fill-column)

29.2.5 Local Variables in Files

A file can contain a local variables list, which specifies the values to use for certain Emacs
variables when that file is edited. Visiting the file checks for a local variables list and makes
each variable in the list local to the buffer in which the file is visited, with the value specified
in the file.

A local variables list goes near the end of the file, in the last page. (It is often best to
put it on a page by itself.) The local variables list starts with a line containing the string

272 XEmacs User’s Manual

‘Local Variables:’, and ends with a line containing the string ‘End:’. In between come
the variable names and values, one set per line, as ‘variable: value’. The values are not
evaluated; they are used literally.

The line which starts the local variables list does not have to say just ‘Local
Variables:’. If there is other text before ‘Local Variables:’, that text is called the
prefix, and if there is other text after, that is called the suffix. If a prefix or suffix are
present, each entry in the local variables list should have the prefix before it and the suffix
after it. This includes the ‘End:’ line. The prefix and suffix are included to disguise the
local variables list as a comment so the compiler or text formatter will ignore it. If you do
not need to disguise the local variables list as a comment in this way, there is no need to
include a prefix or a suffix.

Two “variable” names are special in a local variables list: a value for the variable mode
sets the major mode, and a value for the variable eval is simply evaluated as an expression
and the value is ignored. These are not real variables; setting them in any other context
does not have the same effect. If mode is used in a local variables list, it should be the first
entry in the list.

Here is an example of a local variables list:
;;; Local Variables: ***
;;; mode:lisp ***
;;; comment-column:0 ***
;;; comment-start: ";;; " ***
;;; comment-end:"***" ***
;;; End: ***

Note that the prefix is ‘;;; ’ and the suffix is ‘ ***’. Note also that comments in the file
begin with and end with the same strings. Presumably the file contains code in a language
which is enough like Lisp for Lisp mode to be useful but in which comments start and end
differently. The prefix and suffix are used in the local variables list to make the list look
like several lines of comments when the compiler or interpreter for that language reads the
file.

The start of the local variables list must be no more than 3000 characters from the end
of the file, and must be in the last page if the file is divided into pages. Otherwise, Emacs
will not notice it is there. The purpose is twofold: a stray ‘Local Variables:’ not in the
last page does not confuse Emacs, and Emacs never needs to search a long file that contains
no page markers and has no local variables list.

You may be tempted to turn on Auto Fill mode with a local variable list. That is
inappropriate. Whether you use Auto Fill mode or not is a matter of personal taste, not
a matter of the contents of particular files. If you want to use Auto Fill, set up major
mode hooks with your ‘.emacs’ file to turn it on (when appropriate) for you alone (see
Section 29.6 [Init File], page 283). Don’t try to use a local variable list that would impose
your taste on everyone working with the file.

XEmacs allows you to specify local variables in the first line of a file, in addition to
specifying them in the Local Variables section at the end of a file.

If the first line of a file contains two occurrences of ‘-*-’, XEmacs uses the information
between them to determine what the major mode and variable settings should be. For
example, these are all legal:

Chapter 29: Customization 273

;;; -*- mode: emacs-lisp -*-
;;; -*- mode: postscript; version-control: never -*-
;;; -*- tags-file-name: "/foo/bar/TAGS" -*-

For historical reasons, the syntax ‘-*- modename -*-’ is allowed as well; for example,
you can use:

;;; -*- emacs-lisp -*-

The variable enable-local-variables controls the use of local variables lists in files
you visit. The value can be t, nil, or something else. A value of t means local variables
lists are obeyed; nil means they are ignored; anything else means query.

The command M-x normal-mode always obeys local variables lists and ignores this vari-
able.

29.3 Keyboard Macros

A keyboard macro is a command defined by the user to abbreviate a sequence of keys.
For example, if you discover that you are about to type C-n C-d forty times, you can speed
your work by defining a keyboard macro to invoke C-n C-d and calling it with a repeat
count of forty.

C-x (Start defining a keyboard macro (start-kbd-macro).

C-x) End the definition of a keyboard macro (end-kbd-macro).

C-x e Execute the most recent keyboard macro (call-last-kbd-macro).

C-u C-x (Re-execute last keyboard macro, then add more keys to its definition.

C-x q When this point is reached during macro execution, ask for confirmation (kbd-
macro-query).

M-x name-last-kbd-macro

Give a command name (for the duration of the session) to the most recently
defined keyboard macro.

M-x insert-kbd-macro

Insert in the buffer a keyboard macro’s definition, as Lisp code.

Keyboard macros differ from other Emacs commands in that they are written in the
Emacs command language rather than in Lisp. This makes it easier for the novice to
write them and makes them more convenient as temporary hacks. However, the Emacs
command language is not powerful enough as a programming language to be useful for
writing anything general or complex. For such things, Lisp must be used.

You define a keyboard macro by executing the commands which are its definition. Put
differently, as you are defining a keyboard macro, the definition is being executed for the
first time. This way, you see what the effects of your commands are, and don’t have to
figure them out in your head. When you are finished, the keyboard macro is defined and
also has been executed once. You can then execute the same set of commands again by
invoking the macro.

274 XEmacs User’s Manual

29.3.1 Basic Use

To start defining a keyboard macro, type C-x ((start-kbd-macro). From then on,
anything you type continues to be executed, but also becomes part of the definition of the
macro. ‘Def’ appears in the mode line to remind you of what is going on. When you are
finished, the C-x) command (end-kbd-macro) terminates the definition, without becoming
part of it.

For example,
C-x (M-f foo C-x)

defines a macro to move forward a word and then insert ‘foo’.
You can give C-x) a repeat count as an argument, in which case it repeats the macro

that many times right after defining it, but defining the macro counts as the first repetition
(since it is executed as you define it). If you give C-x) an argument of 4, it executes the
macro immediately 3 additional times. An argument of zero to C-x e or C-x) means repeat
the macro indefinitely (until it gets an error or you type C-g).

Once you have defined a macro, you can invoke it again with the C-x e command (call-
last-kbd-macro). You can give the command a repeat count numeric argument to execute
the macro many times.

To repeat an operation at regularly spaced places in the text, define a macro and include
as part of the macro the commands to move to the next place you want to use it. For
example, if you want to change each line, you should position point at the start of a line,
and define a macro to change that line and leave point at the start of the next line. Repeating
the macro will then operate on successive lines.

After you have terminated the definition of a keyboard macro, you can add to the end
of its definition by typing C-u C-x (. This is equivalent to plain C-x (followed by retyping
the whole definition so far. As a consequence it re-executes the macro as previously defined.

29.3.2 Naming and Saving Keyboard Macros

To save a keyboard macro for longer than until you define the next one, you must give
it a name using M-x name-last-kbd-macro. This reads a name as an argument using the
minibuffer and defines that name to execute the macro. The macro name is a Lisp symbol,
and defining it in this way makes it a valid command name for calling with M-x or for
binding a key to with global-set-key (see Section 29.4.1 [Keymaps], page 275). If you
specify a name that has a prior definition other than another keyboard macro, Emacs prints
an error message and nothing is changed.

Once a macro has a command name, you can save its definition in a file. You can then
use it in another editing session. First visit the file you want to save the definition in. Then
use the command:

M-x insert-kbd-macro 〈RET〉 macroname 〈RET〉

This inserts some Lisp code that, when executed later, will define the same macro with
the same definition it has now. You need not understand Lisp code to do this, because
insert-kbd-macro writes the Lisp code for you. Then save the file. You can load the file

Chapter 29: Customization 275

with load-file (see Section 23.3 [Lisp Libraries], page 193). If the file you save in is your
initialization file ‘~/.emacs’ (see Section 29.6 [Init File], page 283), then the macro will be
defined each time you run Emacs.

If you give insert-kbd-macro a prefix argument, it creates additional Lisp code to
record the keys (if any) that you have bound to the keyboard macro, so that the macro is
reassigned the same keys when you load the file.

29.3.3 Executing Macros With Variations

You can use C-x q (kbd-macro-query), to get an effect similar to that of query-replace.
The macro asks you each time whether to make a change. When you are defining the macro,
type C-x q at the point where you want the query to occur. During macro definition, the
C-x q does nothing, but when you invoke the macro, C-x q reads a character from the
terminal to decide whether to continue.

The special answers to a C-x q query are 〈SPC〉, 〈DEL〉, C-d, C-l, and C-r. Any other
character terminates execution of the keyboard macro and is then read as a command.
〈SPC〉 means to continue. 〈DEL〉 means to skip the remainder of this repetition of the macro,
starting again from the beginning in the next repetition. C-d means to skip the remainder
of this repetition and cancel further repetition. C-l redraws the frame and asks you again
for a character to specify what to do. C-r enters a recursive editing level, in which you
can perform editing that is not part of the macro. When you exit the recursive edit using
C-M-c, you are asked again how to continue with the keyboard macro. If you type a 〈SPC〉
at this time, the rest of the macro definition is executed. It is up to you to leave point and
the text in a state such that the rest of the macro will do what you want.

C-u C-x q, which is C-x q with a numeric argument, performs a different function. It
enters a recursive edit reading input from the keyboard, both when you type it during the
definition of the macro and when it is executed from the macro. During definition, the
editing you do inside the recursive edit does not become part of the macro. During macro
execution, the recursive edit gives you a chance to do some particularized editing. See
Section 28.5 [Recursive Edit], page 258.

29.4 Customizing Key Bindings

This section deals with the keymaps that define the bindings between keys and functions,
and shows how you can customize these bindings.

A command is a Lisp function whose definition provides for interactive use. Like every
Lisp function, a command has a function name, which is a Lisp symbol whose name usually
consists of lower case letters and hyphens.

29.4.1 Keymaps

The bindings between characters and command functions are recorded in data structures
called keymaps. Emacs has many of these. One, the global keymap, defines the meanings

276 XEmacs User’s Manual

of the single-character keys that are defined regardless of major mode. It is the value of the
variable global-map.

Each major mode has another keymap, its local keymap, which contains overriding
definitions for the single-character keys that are redefined in that mode. Each buffer records
which local keymap is installed for it at any time, and the current buffer’s local keymap is
the only one that directly affects command execution. The local keymaps for Lisp mode,
C mode, and many other major modes always exist even when not in use. They are the
values of the variables lisp-mode-map, c-mode-map, and so on. For less frequently used
major modes, the local keymap is sometimes constructed only when the mode is used for
the first time in a session, to save space.

There are local keymaps for the minibuffer, too; they contain various completion and
exit commands.
• minibuffer-local-map is used for ordinary input (no completion).
• minibuffer-local-ns-map is similar, except that 〈SPC〉 exits just like 〈RET〉. This is

used mainly for Mocklisp compatibility.
• minibuffer-local-completion-map is for permissive completion.
• minibuffer-local-must-match-map is for strict completion and for cautious comple-

tion.
• repeat-complex-command-map is for use in C-x 〈ESC〉.
• isearch-mode-map contains the bindings of the special keys which are bound in the

pseudo-mode entered with C-s and C-r.

Finally, each prefix key has a keymap which defines the key sequences that start with it.
For example, ctl-x-map is the keymap used for characters following a C-x.
• ctl-x-map is the variable name for the map used for characters that follow C-x.
• help-map is used for characters that follow C-h.
• esc-map is for characters that follow 〈ESC〉. All Meta characters are actually defined by

this map.
• ctl-x-4-map is for characters that follow C-x 4.
• mode-specific-map is for characters that follow C-c.

The definition of a prefix key is the keymap to use for looking up the following character.
Sometimes the definition is actually a Lisp symbol whose function definition is the following
character keymap. The effect is the same, but it provides a command name for the prefix
key that you can use as a description of what the prefix key is for. Thus the binding of C-x
is the symbol Ctl-X-Prefix, whose function definition is the keymap for C-x commands,
the value of ctl-x-map.

Prefix key definitions can appear in either the global map or a local map. The definitions
of C-c, C-x, C-h, and 〈ESC〉 as prefix keys appear in the global map, so these prefix keys are
always available. Major modes can locally redefine a key as a prefix by putting a prefix key
definition for it in the local map.

A mode can also put a prefix definition of a global prefix character such as C-x into
its local map. This is how major modes override the definitions of certain keys that start
with C-x. This case is special, because the local definition does not entirely replace the

Chapter 29: Customization 277

global one. When both the global and local definitions of a key are other keymaps, the
next character is looked up in both keymaps, with the local definition overriding the global
one. The character after the C-x is looked up in both the major mode’s own keymap for
redefined C-x commands and in ctl-x-map. If the major mode’s own keymap for C-x

commands contains nil, the definition from the global keymap for C-x commands is used.

29.4.2 Changing Key Bindings

You can redefine an Emacs key by changing its entry in a keymap. You can change the
global keymap, in which case the change is effective in all major modes except those that
have their own overriding local definitions for the same key. Or you can change the current
buffer’s local map, which affects all buffers using the same major mode.

29.4.2.1 Changing Key Bindings Interactively

M-x global-set-key 〈RET〉 key cmd 〈RET〉
Defines key globally to run cmd.

M-x local-set-key 〈RET〉 keys cmd 〈RET〉
Defines key locally (in the major mode now in effect) to run cmd.

M-x local-unset-key 〈RET〉 keys 〈RET〉
Removes the local binding of key.

cmd is a symbol naming an interactively-callable function.
When called interactively, key is the next complete key sequence that you type. When

called as a function, key is a string, a vector of events, or a vector of key-description lists as
described in the define-key function description. The binding goes in the current buffer’s
local map, which is shared with other buffers in the same major mode.

The following example:
M-x global-set-key 〈RET〉 C-f next-line 〈RET〉

redefines C-f to move down a line. The fact that cmd is read second makes it serve as a
kind of confirmation for key.

These functions offer no way to specify a particular prefix keymap as the one to redefine
in, but that is not necessary, as you can include prefixes in key. key is read by reading
characters one by one until they amount to a complete key (that is, not a prefix key). Thus,
if you type C-f for key, Emacs enters the minibuffer immediately to read cmd. But if you
type C-x, another character is read; if that character is 4, another character is read, and so
on. For example,

M-x global-set-key 〈RET〉 C-x 4 $ spell-other-window 〈RET〉

redefines C-x 4 $ to run the (fictitious) command spell-other-window.
The most general way to modify a keymap is the function define-key, used in Lisp code

(such as your ‘.emacs’ file). define-key takes three arguments: the keymap, the key to
modify in it, and the new definition. See Section 29.6 [Init File], page 283, for an example.

278 XEmacs User’s Manual

substitute-key-definition is used similarly; it takes three arguments, an old definition,
a new definition, and a keymap, and redefines in that keymap all keys that were previously
defined with the old definition to have the new definition instead.

29.4.2.2 Changing Key Bindings Programmatically

You can use the functions global-set-key and define-key to rebind keys under pro-
gram control.

(global-set-key keys cmd)
Defines keys globally to run cmd.

(define-key keymap keys def)
Defines keys to run def in the keymap keymap.

keymap is a keymap object.
keys is the sequence of keystrokes to bind.
def is anything that can be a key’s definition:
• nil, meaning key is undefined in this keymap
• A command, that is, a Lisp function suitable for interactive calling
• A string or key sequence vector, which is treated as a keyboard macro
• A keymap to define a prefix key
• A symbol so that when the key is looked up, the symbol stands for its function defini-

tion, which should at that time be one of the above, or another symbol whose function
definition is used, and so on

• A cons, (string . defn), meaning that defn is the definition (defn should be a valid
definition in its own right)

• A cons, (keymap . char), meaning use the definition of char in map keymap

For backward compatibility, XEmacs allows you to specify key sequences as strings.
However, the preferred method is to use the representations of key sequences as vectors of
keystrokes. See Chapter 2 [Keystrokes], page 19, for more information about the rules for
constructing key sequences.

Emacs allows you to abbreviate representations for key sequences in most places where
there is no ambiguity. Here are some rules for abbreviation:
• The keysym by itself is equivalent to a list of just that keysym, i.e., f1 is equivalent to

(f1).
• A keystroke by itself is equivalent to a vector containing just that keystroke, i.e.,

(control a) is equivalent to [(control a)].
• You can use ASCII codes for keysyms that have them. i.e., 65 is equivalent to A. (This

is not so much an abbreviation as an alternate representation.)

Here are some examples of programmatically binding keys:

;;; Bind my-command to 〈f1〉
(global-set-key ’f1 ’my-command)

Chapter 29: Customization 279

;;; Bind my-command to Shift-f1
(global-set-key ’(shift f1) ’my-command)

;;; Bind my-command to C-c Shift-f1
(global-set-key ’[(control c) (shift f1)] ’my-command)

;;; Bind my-command to the middle mouse button.
(global-set-key ’button2 ’my-command)

;;; Bind my-command to 〈META〉 〈CTL〉 〈Right Mouse Button〉
;;; in the keymap that is in force when you are running dired.
(define-key dired-mode-map ’(meta control button3) ’my-command)

29.4.2.3 Using Strings for Changing Key Bindings

For backward compatibility, you can still use strings to represent key sequences. Thus
you can use commands like the following:

;;; Bind end-of-line to C-f
(global-set-key "\C-f" ’end-of-line)

Note, however, that in some cases you may be binding more than one key sequence by
using a single command. This situation can arise because in ASCII, C-i and 〈TAB〉 have the
same representation. Therefore, when Emacs sees:

(global-set-key "\C-i" ’end-of-line)

it is unclear whether the user intended to bind C-i or 〈TAB〉. The solution XEmacs
adopts is to bind both of these key sequences.

After binding a command to two key sequences with a form like:

(define-key global-map "\^X\^I" ’command-1)

it is possible to redefine only one of those sequences like so:

(define-key global-map [(control x) (control i)] ’command-2)
(define-key global-map [(control x) tab] ’command-3)

This applies only when running under a window system. If you are talking to Emacs
through an ASCII-only channel, you do not get any of these features.

Here is a table of pairs of key sequences that behave in a similar fashion:

control h backspace
control l clear
control i tab
control m return
control j linefeed
control [escape
control @ control space

280 XEmacs User’s Manual

29.4.3 Disabling Commands

Disabling a command marks it as requiring confirmation before it can be executed. The
purpose of disabling a command is to prevent beginning users from executing it by accident
and being confused.

The direct mechanism for disabling a command is to have a non-nil disabled property
on the Lisp symbol for the command. These properties are normally set by the user’s
‘.emacs’ file with Lisp expressions such as:

(put ’delete-region ’disabled t)

If the value of the disabled property is a string, that string is included in the message
printed when the command is used:

(put ’delete-region ’disabled
"Text deleted this way cannot be yanked back!\n")

You can disable a command either by editing the ‘.emacs’ file directly or with the
command M-x disable-command, which edits the ‘.emacs’ file for you. See Section 29.6
[Init File], page 283.

When you attempt to invoke a disabled command interactively in Emacs, a window is
displayed containing the command’s name, its documentation, and some instructions on
what to do next; then Emacs asks for input saying whether to execute the command as
requested, enable it and execute, or cancel it. If you decide to enable the command, you are
asked whether to do this permanently or just for the current session. Enabling permanently
works by automatically editing your ‘.emacs’ file. You can use M-x enable-command at any
time to enable any command permanently.

Whether a command is disabled is independent of what key is used to invoke it; it also
applies if the command is invoked using M-x. Disabling a command has no effect on calling
it as a function from Lisp programs.

29.5 The Syntax Table

All the Emacs commands which parse words or balance parentheses are controlled by
the syntax table. The syntax table specifies which characters are opening delimiters, which
are parts of words, which are string quotes, and so on. Actually, each major mode has
its own syntax table (though sometimes related major modes use the same one) which it
installs in each buffer that uses that major mode. The syntax table installed in the current
buffer is the one that all commands use, so we call it “the” syntax table. A syntax table is
a Lisp object, a vector of length 256 whose elements are numbers.

29.5.1 Information About Each Character

The syntax table entry for a character is a number that encodes six pieces of information:

• The syntactic class of the character, represented as a small integer

Chapter 29: Customization 281

• The matching delimiter, for delimiter characters only (the matching delimiter of ‘(’ is
‘)’, and vice versa)

• A flag saying whether the character is the first character of a two-character comment
starting sequence

• A flag saying whether the character is the second character of a two-character comment
starting sequence

• A flag saying whether the character is the first character of a two-character comment
ending sequence

• A flag saying whether the character is the second character of a two-character comment
ending sequence

The syntactic classes are stored internally as small integers, but are usually described
to or by the user with characters. For example, ‘(’ is used to specify the syntactic class
of opening delimiters. Here is a table of syntactic classes, with the characters that specify
them.

‘ ’ The class of whitespace characters.

‘w’ The class of word-constituent characters.

‘_’ The class of characters that are part of symbol names but not words. This class
is represented by ‘_’ because the character ‘_’ has this class in both C and Lisp.

‘.’ The class of punctuation characters that do not fit into any other special class.

‘(’ The class of opening delimiters.

‘)’ The class of closing delimiters.

‘’’ The class of expression-adhering characters. These characters are part of a
symbol if found within or adjacent to one, and are part of a following expres-
sion if immediately preceding one, but are like whitespace if surrounded by
whitespace.

‘"’ The class of string-quote characters. They match each other in pairs, and the
characters within the pair all lose their syntactic significance except for the ‘\’
and ‘/’ classes of escape characters, which can be used to include a string-quote
inside the string.

‘$’ The class of self-matching delimiters. This is intended for TEX’s ‘$’, which is
used both to enter and leave math mode. Thus, a pair of matching ‘$’ characters
surround each piece of math mode TEX input. A pair of adjacent ‘$’ characters
act like a single one for purposes of matching.

‘/’ The class of escape characters that always just deny the following character its
special syntactic significance. The character after one of these escapes is always
treated as alphabetic.

‘\’ The class of C-style escape characters. In practice, these are treated just like
‘/’-class characters, because the extra possibilities for C escapes (such as being
followed by digits) have no effect on where the containing expression ends.

‘<’ The class of comment-starting characters. Only single-character comment
starters (such as ‘;’ in Lisp mode) are represented this way.

282 XEmacs User’s Manual

‘>’ The class of comment-ending characters. Newline has this syntax in Lisp mode.

The characters flagged as part of two-character comment delimiters can have other syn-
tactic functions most of the time. For example, ‘/’ and ‘*’ in C code, when found separately,
have nothing to do with comments. The comment-delimiter significance overrides when the
pair of characters occur together in the proper order. Only the list and sexp commands
use the syntax table to find comments; the commands specifically for comments have other
variables that tell them where to find comments. Moreover, the list and sexp commands
notice comments only if parse-sexp-ignore-comments is non-nil. This variable is set to
nil in modes where comment-terminator sequences are liable to appear where there is no
comment, for example, in Lisp mode where the comment terminator is a newline but not
every newline ends a comment.

29.5.2 Altering Syntax Information

It is possible to alter a character’s syntax table entry by storing a new number in the
appropriate element of the syntax table, but it would be hard to determine what number to
use. Emacs therefore provides a command that allows you to specify the syntactic properties
of a character in a convenient way.

M-x modify-syntax-entry is the command to change a character’s syntax. It can be
used interactively and is also used by major modes to initialize their own syntax tables. Its
first argument is the character to change. The second argument is a string that specifies
the new syntax. When called from Lisp code, there is a third, optional argument, which
specifies the syntax table in which to make the change. If not supplied, or if this command
is called interactively, the third argument defaults to the current buffer’s syntax table.

1. The first character in the string specifies the syntactic class. It is one of the characters
in the previous table (see Section 29.5.1 [Syntax Entry], page 280).

2. The second character is the matching delimiter. For a character that is not an open-
ing or closing delimiter, this should be a space, and may be omitted if no following
characters are needed.

3. The remaining characters are flags. The flag characters allowed are:

‘1’ Flag this character as the first of a two-character comment starting se-
quence.

‘2’ Flag this character as the second of a two-character comment starting
sequence.

‘3’ Flag this character as the first of a two-character comment ending sequence.

‘4’ Flag this character as the second of a two-character comment ending se-
quence.

Use C-h s (describe-syntax) to display a description of the contents of the current
syntax table. The description of each character includes both the string you have to pass
to modify-syntax-entry to set up that character’s current syntax, and some English to
explain that string if necessary.

Chapter 29: Customization 283

29.6 The Init File, .emacs

When you start Emacs, it normally loads the file ‘.emacs’ in your home directory. This
file, if it exists, should contain Lisp code. It is called your initialization file or init file.
Use the command line switches ‘-q’ and ‘-u’ to tell Emacs whether to load an init file (see
Chapter 3 [Entering Emacs], page 33).

When the ‘.emacs’ file is read, the variable init-file-user says which user’s init file
it is. The value may be the null string or a string containing a user’s name. If the value is
a null string, it means that the init file was taken from the user that originally logged in.

In all cases, (concat "~" init-file-user "/") evaluates to the directory name of the
directory where the ‘.emacs’ file was looked for.

At some sites there is a default init file, which is the library named ‘default.el’, found
via the standard search path for libraries. The Emacs distribution contains no such library;
your site may create one for local customizations. If this library exists, it is loaded whenever
you start Emacs. But your init file, if any, is loaded first; if it sets inhibit-default-init
non-nil, then ‘default’ is not loaded.

If you have a large amount of code in your ‘.emacs’ file, you should move it into another
file named ‘something.el’, byte-compile it (see Section 23.3 [Lisp Libraries], page 193), and
load that file from your ‘.emacs’ file using load.

29.6.1 Init File Syntax

The ‘.emacs’ file contains one or more Lisp function call expressions. Each consists of a
function name followed by arguments, all surrounded by parentheses. For example, (setq
fill-column 60) represents a call to the function setq which is used to set the variable
fill-column (see Section 21.6 [Filling], page 161) to 60.

The second argument to setq is an expression for the new value of the variable. This
can be a constant, a variable, or a function call expression. In ‘.emacs’, constants are used
most of the time. They can be:

Numbers Integers are written in decimal, with an optional initial minus sign.
If a sequence of digits is followed by a period and another sequence of digits, it
is interpreted as a floating point number.
The number prefixes ‘#b’, ‘#o’, and ‘#x’ are supported to represent numbers in
binary, octal, and hexadecimal notation (or radix).

Strings Lisp string syntax is the same as C string syntax with a few extra features. Use
a double-quote character to begin and end a string constant.
Newlines and special characters may be present literally in strings. They can
also be represented as backslash sequences: ‘\n’ for newline, ‘\b’ for backspace,
‘\r’ for return, ‘\t’ for tab, ‘\f’ for formfeed (control-l), ‘\e’ for escape, ‘\\’ for
a backslash, ‘\"’ for a double-quote, or ‘\ooo’ for the character whose octal code
is ooo. Backslash and double-quote are the only characters for which backslash
sequences are mandatory.

284 XEmacs User’s Manual

You can use ‘\C-’ as a prefix for a control character, as in ‘\C-s’ for ASCII
Control-S, and ‘\M-’ as a prefix for a Meta character, as in ‘\M-a’ for Meta-A
or ‘\M-\C-a’ for Control-Meta-A.

Characters
Lisp character constant syntax consists of a ‘?’ followed by either a character or
an escape sequence starting with ‘\’. Examples: ?x, ?\n, ?\", ?\). Note that
strings and characters are not interchangeable in Lisp; some contexts require
one and some contexts require the other.

True t stands for ‘true’.

False nil stands for ‘false’.

Other Lisp objects
Write a single-quote (’) followed by the Lisp object you want.

29.6.2 Init File Examples

Here are some examples of doing certain commonly desired things with Lisp expressions:
• Make 〈TAB〉 in C mode just insert a tab if point is in the middle of a line.

(setq c-tab-always-indent nil)

Here we have a variable whose value is normally t for ‘true’ and the alternative is nil
for ‘false’.

• Make searches case sensitive by default (in all buffers that do not override this).
(setq-default case-fold-search nil)

This sets the default value, which is effective in all buffers that do not have local values
for the variable. Setting case-fold-search with setq affects only the current buffer’s
local value, which is probably not what you want to do in an init file.

• Make Text mode the default mode for new buffers.
(setq default-major-mode ’text-mode)

Note that text-mode is used because it is the command for entering the mode we want.
A single-quote is written before it to make a symbol constant; otherwise, text-mode
would be treated as a variable name.

• Turn on Auto Fill mode automatically in Text mode and related modes.
(setq text-mode-hook

’(lambda () (auto-fill-mode 1)))

Here we have a variable whose value should be a Lisp function. The function we supply
is a list starting with lambda, and a single quote is written in front of it to make it (for
the purpose of this setq) a list constant rather than an expression. Lisp functions are
not explained here; for mode hooks it is enough to know that (auto-fill-mode 1) is
an expression that will be executed when Text mode is entered. You could replace it
with any other expression that you like, or with several expressions in a row.

(setq text-mode-hook ’turn-on-auto-fill)

This is another way to accomplish the same result. turn-on-auto-fill is a symbol
whose function definition is (lambda () (auto-fill-mode 1)).

Chapter 29: Customization 285

• Load the installed Lisp library named ‘foo’ (actually a file ‘foo.elc’ or ‘foo.el’ in a
standard Emacs directory).

(load "foo")

When the argument to load is a relative pathname, not starting with ‘/’ or ‘~’, load
searches the directories in load-path (see Section 23.3.1 [Loading], page 193).

• Load the compiled Lisp file ‘foo.elc’ from your home directory.
(load "~/foo.elc")

Here an absolute file name is used, so no searching is done.
• Rebind the key C-x l to run the function make-symbolic-link.

(global-set-key "\C-xl" ’make-symbolic-link)

or
(define-key global-map "\C-xl" ’make-symbolic-link)

Note once again the single-quote used to refer to the symbol make-symbolic-link
instead of its value as a variable.

• Do the same thing for C mode only.
(define-key c-mode-map "\C-xl" ’make-symbolic-link)

• Bind the function key 〈F1〉 to a command in C mode. Note that the names of function
keys must be lower case.

(define-key c-mode-map ’f1 ’make-symbolic-link)

• Bind the shifted version of 〈F1〉 to a command.
(define-key c-mode-map ’(shift f1) ’make-symbolic-link)

• Redefine all keys which now run next-line in Fundamental mode to run forward-line
instead.

(substitute-key-definition ’next-line ’forward-line
global-map)

• Make C-x C-v undefined.
(global-unset-key "\C-x\C-v")

One reason to undefine a key is so that you can make it a prefix. Simply defining
C-x C-v anything would make C-x C-v a prefix, but C-x C-v must be freed of any
non-prefix definition first.

• Make ‘$’ have the syntax of punctuation in Text mode. Note the use of a character
constant for ‘$’.

(modify-syntax-entry ?\$ "." text-mode-syntax-table)

• Enable the use of the command eval-expression without confirmation.
(put ’eval-expression ’disabled nil)

29.6.3 Terminal-Specific Initialization

Each terminal type can have a Lisp library to be loaded into Emacs when it is run on that
type of terminal. For a terminal type named termtype, the library is called ‘term/termtype’
and it is found by searching the directories load-path as usual and trying the suffixes ‘.elc’

286 XEmacs User’s Manual

and ‘.el’. Normally it appears in the subdirectory ‘term’ of the directory where most Emacs
libraries are kept.

The usual purpose of the terminal-specific library is to define the escape sequences used
by the terminal’s function keys using the library ‘keypad.el’. See the file ‘term/vt100.el’
for an example of how this is done.

When the terminal type contains a hyphen, only the part of the name before the first
hyphen is significant in choosing the library name. Thus, terminal types ‘aaa-48’ and
‘aaa-30-rv’ both use the library ‘term/aaa’. The code in the library can use (getenv
"TERM") to find the full terminal type name.

The library’s name is constructed by concatenating the value of the variable term-
file-prefix and the terminal type. Your ‘.emacs’ file can prevent the loading of the
terminal-specific library by setting term-file-prefix to nil.

The value of the variable term-setup-hook, if not nil, is called as a function of no
arguments at the end of Emacs initialization, after both your ‘.emacs’ file and any terminal-
specific library have been read. You can set the value in the ‘.emacs’ file to override part of
any of the terminal-specific libraries and to define initializations for terminals that do not
have a library.

29.7 Changing the Bell Sound

You can now change how the audible bell sounds using the variable sound-alist.
sound-alist’s value is an list associating symbols with, among other things, strings of

audio-data. When ding is called with one of the symbols, the associated sound data is
played instead of the standard beep. This only works if you are logged in on the console of
a machine with audio hardware. To listen to a sound of the provided type, call the function
play-sound with the argument sound. You can also set the volume of the sound with the
optional argument volume.

Each element of sound-alist is a list describing a sound. The first element of the list
is the name of the sound being defined. Subsequent elements of the list are alternating
keyword/value pairs:

sound A string of raw sound data, or the name of another sound to play. The symbol
t here means use the default X beep.

volume An integer from 0-100, defaulting to bell-volume.

pitch If using the default X beep, the pitch (Hz) to generate.

duration If using the default X beep, the duration (milliseconds).

For compatibility, elements of ‘sound-alist’ may also be of the form:
(sound-name . <sound>)
(sound-name <volume> <sound>)

You should probably add things to this list by calling the function load-sound-file.
Note that you can only play audio data if running on the console screen of a machine with

audio hardware which emacs understands, which at this time means a Sun SparcStation,
SGI, or HP9000s700.

Chapter 29: Customization 287

Also note that the pitch, duration, and volume options are available everywhere, but
most X servers ignore the ‘pitch’ option.

The variable bell-volume should be an integer from 0 to 100, with 100 being loudest,
which controls how loud the sounds emacs makes should be. Elements of the sound-alist
may override this value. This variable applies to the standard X bell sound as well as sound
files.

If the symbol t is in place of a sound-string, Emacs uses the default X beep. This allows
you to define beep-types of different volumes even when not running on the console.

You can add things to this list by calling the function load-sound-file, which reads in
an audio-file and adds its data to the sound-alist. You can specify the sound with the sound-
name argument and the file into which the sounds are loaded with the filename argument.
The optional volume argument sets the volume.

load-sound-file (filename sound-name &optional volume)

To load and install some sound files as beep-types, use the function load-default-
sounds (note that this only works if you are on display 0 of a machine with audio hardware).

The following beep-types are used by Emacs itself. Other Lisp packages may use other
beep types, but these are the ones that the C kernel of Emacs uses.

auto-save-error
An auto-save does not succeed

command-error
The Emacs command loop catches an error

undefined-key
You type a key that is undefined

undefined-click
You use an undefined mouse-click combination

no-completion
Completion was not possible

y-or-n-p You type something other than the required y or n

yes-or-no-p
You type something other than yes or no

29.8 Faces

XEmacs has objects called extents and faces. An extent is a region of text and a face
is a collection of textual attributes, such as fonts and colors. Every extent is displayed in
some face; therefore, changing the properties of a face immediately updates the display of
all associated extents. Faces can be frame-local: you can have a region of text that displays
with completely different attributes when its buffer is viewed from a different X window.

The display attributes of faces may be specified either in Lisp or through the X resource
manager.

288 XEmacs User’s Manual

29.8.1 Customizing Faces

You can change the face of an extent with the functions in this section. All the functions
prompt for a face as an argument; use completion for a list of possible values.

M-x invert-face

Swap the foreground and background colors of the given face.

M-x make-face-bold

Make the font of the given face bold. When called from a program, returns nil
if this is not possible.

M-x make-face-bold-italic

Make the font of the given face bold italic. When called from a program, returns
nil if not possible.

M-x make-face-italic

Make the font of the given face italic. When called from a program, returns
nil if not possible.

M-x make-face-unbold

Make the font of the given face non-bold. When called from a program, returns
nil if not possible.

M-x make-face-unitalic

Make the font of the given face non-italic. When called from a program, returns
nil if not possible.

M-x make-face-larger

Make the font of the given face a little larger. When called from a program,
returns nil if not possible.

M-x make-face-smaller

Make the font of the given face a little smaller. When called from a program,
returns nil if not possible.

M-x set-face-background

Change the background color of the given face.

M-x set-face-background-pixmap

Change the background pixmap of the given face.

M-x set-face-font

Change the font of the given face.

M-x set-face-foreground

Change the foreground color of the given face.

M-x set-face-underline-p

Change whether the given face is underlined.

You can exchange the foreground and background color of the selected face with the
function invert-face. If the face does not specify both foreground and background, then
its foreground and background are set to the background and foreground of the default face.

Chapter 29: Customization 289

When calling this from a program, you can supply the optional argument frame to specify
which frame is affected; otherwise, all frames are affected.

You can set the background color of the specified face with the function set-face-
background. The argument color should be a string, the name of a color. When called
from a program, if the optional frame argument is provided, the face is changed only in
that frame; otherwise, it is changed in all frames.

You can set the background pixmap of the specified face with the function set-face-
background-pixmap. The pixmap argument name should be a string, the name of a file of
pixmap data. The directories listed in the x-bitmap-file-path variable are searched. The
bitmap may also be a list of the form (width height data), where width and height are the
size in pixels, and data is a string containing the raw bits of the bitmap. If the optional
frame argument is provided, the face is changed only in that frame; otherwise, it is changed
in all frames.

The variable x-bitmap-file-path takes as a value a list of the directories in
which X bitmap files may be found. If the value is nil, the list is initialized from the
*bitmapFilePath resource.

If the environment variable XBMLANGPATH is set, then it is consulted before the
x-bitmap-file-path variable.

You can set the font of the specified face with the function set-face-font. The font
argument should be a string, the name of a font. When called from a program, if the
optional frame argument is provided, the face is changed only in that frame; otherwise, it
is changed in all frames.

You can set the foreground color of the specified face with the function set-face-
foreground. The argument color should be a string, the name of a color. If the optional
frame argument is provided, the face is changed only in that frame; otherwise, it is changed
in all frames.

You can set underline the specified face with the function set-face-underline-p. The
argument underline-p can be used to make underlining an attribute of the face or not. If
the optional frame argument is provided, the face is changed only in that frame; otherwise,
it is changed in all frames.

29.9 X Resources

Historically, XEmacs has used the X resource application class ‘Emacs’ for its resources.
Unfortunately, GNU Emacs uses the same application class, and resources are not compat-
ible between the two Emacsen. This sharing of the application class often leads to trouble
if you want to run both variants.

Starting with XEmacs 21, XEmacs uses the class ‘XEmacs’ if it finds any XEmacs re-
sources in the resource database when the X connection is initialized. Otherwise, it will use
the class ‘Emacs’ for backwards compatability. The variable x-emacs-application-class may
be consulted to determine the application class being used.

The examples in this section assume the application class is ‘Emacs’.

290 XEmacs User’s Manual

The Emacs resources are generally set per-frame. Each Emacs frame can have its own
name or the same name as another, depending on the name passed to the make-frame
function.

You can specify resources for all frames with the syntax:
Emacs*parameter: value

or
Emacs*EmacsFrame.parameter:value

You can specify resources for a particular frame with the syntax:
Emacs*FRAME-NAME.parameter: value

29.9.1 Geometry Resources

To make the default size of all Emacs frames be 80 columns by 55 lines, do this:
Emacs*EmacsFrame.geometry: 80x55

To set the geometry of a particular frame named ‘fred’, do this:
Emacs*fred.geometry: 80x55

Important! Do not use the following syntax:
Emacs*geometry: 80x55

You should never use *geometry with any X application. It does not say "make the
geometry of Emacs be 80 columns by 55 lines." It really says, "make Emacs and all sub-
windows thereof be 80x55 in whatever units they care to measure in." In particular, that is
both telling the Emacs text pane to be 80x55 in characters, and telling the menubar pane
to be 80x55 pixels, which is surely not what you want.

As a special case, this geometry specification also works (and sets the default size of all
Emacs frames to 80 columns by 55 lines):

Emacs.geometry: 80x55

since that is the syntax used with most other applications (since most other applications
have only one top-level window, unlike Emacs). In general, however, the top-level shell (the
unmapped ApplicationShell widget named ‘Emacs’ that is the parent of the shell widgets
that actually manage the individual frames) does not have any interesting resources on it,
and you should set the resources on the frames instead.

The -geometry command-line argument sets only the geometry of the initial frame
created by Emacs.

A more complete explanation of geometry-handling is
• The -geometry command-line option sets the Emacs.geometry resource, that is, the

geometry of the ApplicationShell.
• For the first frame created, the size of the frame is taken from the ApplicationShell if

it is specified, otherwise from the geometry of the frame.
• For subsequent frames, the order is reversed: First the frame, and then the Applica-

tionShell.

Chapter 29: Customization 291

• For the first frame created, the position of the frame is taken from the ApplicationShell
(Emacs.geometry) if it is specified, otherwise from the geometry of the frame.

• For subsequent frames, the position is taken only from the frame, and never from the
ApplicationShell.

This is rather complicated, but it does seem to provide the most intuitive behavior with
respect to the default sizes and positions of frames created in various ways.

29.9.2 Iconic Resources

Analogous to -geometry, the -iconic command-line option sets the iconic flag of the
ApplicationShell (Emacs.iconic) and always applies to the first frame created regardless
of its name. However, it is possible to set the iconic flag on particular frames (by name) by
using the Emacs*FRAME-NAME.iconic resource.

29.9.3 Resource List

Emacs frames accept the following resources:

geometry (class Geometry): string
Initial geometry for the frame. See Section 29.9.1 [Geometry Resources],
page 290, for a complete discussion of how this works.

iconic (class Iconic): boolean
Whether this frame should appear in the iconified state.

internalBorderWidth (class InternalBorderWidth): int
How many blank pixels to leave between the text and the edge of the window.

interline (class Interline): int
How many pixels to leave between each line (may not be implemented).

menubar (class Menubar): boolean
Whether newly-created frames should initially have a menubar. Set to true by
default.

initiallyUnmapped (class InitiallyUnmapped): boolean
Whether XEmacs should leave the initial frame unmapped when it starts up.
This is useful if you are starting XEmacs as a server (e.g. in conjunction with
gnuserv or the external client widget). You can also control this with the -
unmapped command-line option.

barCursor (class BarColor): boolean
Whether the cursor should be displayed as a bar, or the traditional box.

cursorColor (class CursorColor): color-name
The color of the text cursor.

scrollBarWidth (class ScrollBarWidth): integer
How wide the vertical scrollbars should be, in pixels; 0 means no vertical scroll-
bars. You can also use a resource specification of the form *scrollbar.width,

292 XEmacs User’s Manual

or the usual toolkit scrollbar resources: *XmScrollBar.width (Motif),
*XlwScrollBar.width (Lucid), or *Scrollbar.thickness (Athena). We
don’t recommend that you use the toolkit resources, though, because they’re
dependent on how exactly your particular build of XEmacs was configured.

scrollBarHeight (class ScrollBarHeight): integer
How high the horizontal scrollbars should be, in pixels; 0 means no
horizontal scrollbars. You can also use a resource specification of the
form *scrollbar.height, or the usual toolkit scrollbar resources:
*XmScrollBar.height (Motif), *XlwScrollBar.height (Lucid), or
*Scrollbar.thickness (Athena). We don’t recommend that you use the
toolkit resources, though, because they’re dependent on how exactly your
particular build of XEmacs was configured.

scrollBarPlacement (class ScrollBarPlacement): string
Where the horizontal and vertical scrollbars should be positioned. This should
be one of the four strings ‘BOTTOM_LEFT’, ‘BOTTOM_RIGHT’, ‘TOP_LEFT’, and
‘TOP_RIGHT’. Default is ‘BOTTOM_RIGHT’ for the Motif and Lucid scrollbars and
‘BOTTOM_LEFT’ for the Athena scrollbars.

topToolBarHeight (class TopToolBarHeight): integer
bottomToolBarHeight (class BottomToolBarHeight): integer
leftToolBarWidth (class LeftToolBarWidth): integer
rightToolBarWidth (class RightToolBarWidth): integer

Height and width of the four possible toolbars.

topToolBarShadowColor (class TopToolBarShadowColor): color-name
bottomToolBarShadowColor (class BottomToolBarShadowColor): color-name

Color of the top and bottom shadows for the toolbars. NOTE: These resources
do not have anything to do with the top and bottom toolbars (i.e. the toolbars
at the top and bottom of the frame)! Rather, they affect the top and bottom
shadows around the edges of all four kinds of toolbars.

topToolBarShadowPixmap (class TopToolBarShadowPixmap): pixmap-name
bottomToolBarShadowPixmap (class BottomToolBarShadowPixmap): pixmap-name

Pixmap of the top and bottom shadows for the toolbars. If set, these resources
override the corresponding color resources. NOTE: These resources do not have
anything to do with the top and bottom toolbars (i.e. the toolbars at the top
and bottom of the frame)! Rather, they affect the top and bottom shadows
around the edges of all four kinds of toolbars.

toolBarShadowThickness (class ToolBarShadowThickness): integer
Thickness of the shadows around the toolbars, in pixels.

visualBell (class VisualBell): boolean
Whether XEmacs should flash the screen rather than making an audible beep.

bellVolume (class BellVolume): integer
Volume of the audible beep.

useBackingStore (class UseBackingStore): boolean
Whether XEmacs should set the backing-store attribute of the X windows it
creates. This increases the memory usage of the X server but decreases the

Chapter 29: Customization 293

amount of X traffic necessary to update the screen, and is useful when the
connection to the X server goes over a low-bandwidth line such as a modem
connection.

Emacs devices accept the following resources:

textPointer (class Cursor): cursor-name
The cursor to use when the mouse is over text. This resource is used to initialize
the variable x-pointer-shape.

selectionPointer (class Cursor): cursor-name
The cursor to use when the mouse is over a selectable text region (an extent with
the ‘highlight’ property; for example, an Info cross-reference). This resource
is used to initialize the variable x-selection-pointer-shape.

spacePointer (class Cursor): cursor-name
The cursor to use when the mouse is over a blank space in a buffer (that is,
after the end of a line or after the end-of-file). This resource is used to initialize
the variable x-nontext-pointer-shape.

modeLinePointer (class Cursor): cursor-name
The cursor to use when the mouse is over a modeline. This resource is used to
initialize the variable x-mode-pointer-shape.

gcPointer (class Cursor): cursor-name
The cursor to display when a garbage-collection is in progress. This resource is
used to initialize the variable x-gc-pointer-shape.

scrollbarPointer (class Cursor): cursor-name
The cursor to use when the mouse is over the scrollbar. This resource is used
to initialize the variable x-scrollbar-pointer-shape.

pointerColor (class Foreground): color-name
pointerBackground (class Background): color-name

The foreground and background colors of the mouse cursor. These resources are
used to initialize the variables x-pointer-foreground-color and x-pointer-
background-color.

29.9.4 Face Resources

The attributes of faces are also per-frame. They can be specified as:

Emacs.FACE_NAME.parameter: value

or

Emacs*FRAME_NAME.FACE_NAME.parameter: value

Faces accept the following resources:

attributeFont (class AttributeFont): font-name
The font of this face.

294 XEmacs User’s Manual

attributeForeground (class AttributeForeground): color-name
attributeBackground (class AttributeBackground): color-name

The foreground and background colors of this face.

attributeBackgroundPixmap (class AttributeBackgroundPixmap): file-name
The name of an XBM file (or XPM file, if your version of Emacs supports
XPM), to use as a background stipple.

attributeUnderline (class AttributeUnderline): boolean
Whether text in this face should be underlined.

All text is displayed in some face, defaulting to the face named default. To set the font
of normal text, use Emacs*default.attributeFont. To set it in the frame named fred,
use Emacs*fred.default.attributeFont.

These are the names of the predefined faces:

default Everything inherits from this.

bold If this is not specified in the resource database, Emacs tries to find a bold
version of the font of the default face.

italic If this is not specified in the resource database, Emacs tries to find an italic
version of the font of the default face.

bold-italic
If this is not specified in the resource database, Emacs tries to find a bold-italic
version of the font of the default face.

modeline This is the face that the modeline is displayed in. If not specified in the resource
database, it is determined from the default face by reversing the foreground and
background colors.

highlight
This is the face that highlighted extents (for example, Info cross-references and
possible completions, when the mouse passes over them) are displayed in.

left-margin
right-margin

These are the faces that the left and right annotation margins are displayed in.

zmacs-region
This is the face that mouse selections are displayed in.

isearch This is the face that the matched text being searched for is displayed in.

info-node
This is the face of info menu items. If unspecified, it is copied from bold-
italic.

info-xref
This is the face of info cross-references. If unspecified, it is copied from bold.
(Note that, when the mouse passes over a cross-reference, the cross-reference’s
face is determined from a combination of the info-xref and highlight faces.)

Chapter 29: Customization 295

Other packages might define their own faces; to see a list of all faces, use any of the
interactive face-manipulation commands such as set-face-font and type ‘?’ when you are
prompted for the name of a face.

If the bold, italic, and bold-italic faces are not specified in the resource database,
then XEmacs attempts to derive them from the font of the default face. It can only succeed
at this if you have specified the default font using the XLFD (X Logical Font Description)
format, which looks like

-courier-medium-r--*-*-120-*-*-*-*-*-*

If you use any of the other, less strict font name formats, some of which look like
lucidasanstypewriter-12
fixed
9x13

then XEmacs won’t be able to guess the names of the bold and italic versions. All X
fonts can be referred to via XLFD-style names, so you should use those forms. See the man
pages for ‘X(1)’, ‘xlsfonts(1)’, and ‘xfontsel(1)’.

29.9.5 Widgets

There are several structural widgets between the terminal EmacsFrame widget and the
top level ApplicationShell; the exact names and types of these widgets change from release
to release (for example, they changed between 19.8 and 19.9, 19.9 and 19.10, and 19.10 and
19.12) and are subject to further change in the future, so you should avoid mentioning them
in your resource database. The above-mentioned syntaxes should be forward- compatible.
As of 19.13, the exact widget hierarchy is as follows:

INVOCATION-NAME "shell" "container" FRAME-NAME
x-emacs-application-class "EmacsShell" "EmacsManager" "EmacsFrame"

where INVOCATION-NAME is the terminal component of the name of the XEmacs
executable (usually ‘xemacs’), and ‘x-emacs-application-class’ is generally ‘Emacs’.

29.9.6 Menubar Resources

As the menubar is implemented as a widget which is not a part of XEacs proper, it does
not use the fac" mechanism for specifying fonts and colors: It uses whatever resources are
appropriate to the type of widget which is used to implement it.

If Emacs was compiled to use only the Motif-lookalike menu widgets, then one way to
specify the font of the menubar would be

Emacs*menubar*font: *-courier-medium-r-*-*-*-120-*-*-*-*-*-*

If the Motif library is being used, then one would have to use
Emacs*menubar*fontList: *-courier-medium-r-*-*-*-120-*-*-*-*-*-*

because the Motif library uses the fontList resource name instead of font, which has
subtly different semantics.

The same is true of the scrollbars: They accept whichever resources are appropriate for
the toolkit in use.

296 XEmacs User’s Manual

Chapter 30: Correcting Mistakes (Yours or Emacs’s) 297

30 Correcting Mistakes (Yours or Emacs’s)

If you type an Emacs command you did not intend, the results are often mysterious. This
chapter discusses how you can undo your mistake or recover from a mysterious situation.
Emacs bugs and system crashes are also considered.

30.1 Quitting and Aborting

C-g Quit. Cancel running or partially typed command.

C-] Abort innermost recursive editing level and cancel the command which invoked
it (abort-recursive-edit).

M-x top-level

Abort all recursive editing levels that are currently executing.

C-x u Cancel an already-executed command, usually (undo).

There are two ways of cancelling commands which are not finished executing: quitting
with C-g, and aborting with C-] or M-x top-level. Quitting is cancelling a partially typed
command or one which is already running. Aborting is getting out of a recursive editing
level and cancelling the command that invoked the recursive edit.

Quitting with C-g is used for getting rid of a partially typed command or a numeric
argument that you don’t want. It also stops a running command in the middle in a relatively
safe way, so you can use it if you accidentally start executing a command that takes a long
time. In particular, it is safe to quit out of killing; either your text will all still be there, or
it will all be in the kill ring (or maybe both). Quitting an incremental search does special
things documented under searching; in general, it may take two successive C-g characters
to get out of a search. C-g works by setting the variable quit-flag to t the instant C-g

is typed; Emacs Lisp checks this variable frequently and quits if it is non-nil. C-g is only
actually executed as a command if it is typed while Emacs is waiting for input.

If you quit twice in a row before the first C-g is recognized, you activate the “emergency
escape” feature and return to the shell. See Section 30.2.5 [Emergency Escape], page 299.

You can use C-] (abort-recursive-edit) to get out of a recursive editing level and
cancel the command which invoked it. Quitting with C-g does not do this, and could not
do this because it is used to cancel a partially typed command within the recursive editing
level. Both operations are useful. For example, if you are in the Emacs debugger (see
Section 23.5 [Lisp Debug], page 197) and have typed C-u 8 to enter a numeric argument,
you can cancel that argument with C-g and remain in the debugger.

The command M-x top-level is equivalent to “enough” C-] commands to get you out
of all the levels of recursive edits that you are in. C-] only gets you out one level at a time,
but M-x top-level goes out all levels at once. Both C-] and M-x top-level are like all
other commands and unlike C-g in that they are effective only when Emacs is ready for a
command. C-] is an ordinary key and has its meaning only because of its binding in the
keymap. See Section 28.5 [Recursive Edit], page 258.

C-x u (undo) is not strictly speaking a way of cancelling a command, but you can think
of it as cancelling a command already finished executing. See Chapter 5 [Undo], page 49.

298 XEmacs User’s Manual

30.2 Dealing With Emacs Trouble

This section describes various conditions in which Emacs fails to work, and how to
recognize them and correct them.

30.2.1 Recursive Editing Levels

Recursive editing levels are important and useful features of Emacs, but they can seem
like malfunctions to the user who does not understand them.

If the mode line has square brackets ‘[...]’ around the parentheses that contain the
names of the major and minor modes, you have entered a recursive editing level. If you
did not do this on purpose, or if you don’t understand what that means, you should just
get out of the recursive editing level. To do so, type M-x top-level. This is called getting
back to top level. See Section 28.5 [Recursive Edit], page 258.

30.2.2 Garbage on the Screen

If the data on the screen looks wrong, the first thing to do is see whether the text is
actually wrong. Type C-l, to redisplay the entire screen. If the text appears correct after
this, the problem was entirely in the previous screen update.

Display updating problems often result from an incorrect termcap entry for the terminal
you are using. The file ‘etc/TERMS’ in the Emacs distribution gives the fixes for known
problems of this sort. ‘INSTALL’ contains general advice for these problems in one of its
sections. Very likely there is simply insufficient padding for certain display operations. To
investigate the possibility that you have this sort of problem, try Emacs on another terminal
made by a different manufacturer. If problems happen frequently on one kind of terminal
but not another kind, the real problem is likely to be a bad termcap entry, though it could
also be due to a bug in Emacs that appears for terminals that have or lack specific features.

30.2.3 Garbage in the Text

If C-l shows that the text is wrong, try undoing the changes to it using C-x u until it
gets back to a state you consider correct. Also try C-h l to find out what command you
typed to produce the observed results.

If a large portion of text appears to be missing at the beginning or end of the buffer,
check for the word ‘Narrow’ in the mode line. If it appears, the text is still present, but
marked off-limits. To make it visible again, type C-x n w. See Section 28.3 [Narrowing],
page 256.

30.2.4 Spontaneous Entry to Incremental Search

Chapter 30: Correcting Mistakes (Yours or Emacs’s) 299

If Emacs spontaneously displays ‘I-search:’ at the bottom of the screen, it means that
the terminal is sending C-s and C-q according to the poorly designed xon/xoff “flow control”
protocol. You should try to prevent this by putting the terminal in a mode where it will
not use flow control, or by giving it enough padding that it will never send a C-s. If that
cannot be done, you must tell Emacs to expect flow control to be used, until you can get a
properly designed terminal.

Information on how to do these things can be found in the file ‘INSTALL’ in the Emacs
distribution.

30.2.5 Emergency Escape

Because at times there have been bugs causing Emacs to loop without checking quit-
flag, a special feature causes Emacs to be suspended immediately if you type a second C-g

while the flag is already set, so you can always get out of XEmacs. Normally Emacs recog-
nizes and clears quit-flag (and quits!) quickly enough to prevent this from happening.

When you resume Emacs after a suspension caused by multiple C-g, it asks two questions
before going back to what it had been doing:

Auto-save? (y or n)
Abort (and dump core)? (y or n)

Answer each one with y or n followed by 〈RET〉.

Saying y to ‘Auto-save?’ causes immediate auto-saving of all modified buffers in which
auto-saving is enabled.

Saying y to ‘Abort (and dump core)?’ causes an illegal instruction to be executed, dump-
ing core. This is to enable a wizard to figure out why Emacs was failing to quit in the first
place. Execution does not continue after a core dump. If you answer n, execution does
continue. With luck, Emacs will ultimately check quit-flag and quit normally. If not, and
you type another C-g, it is suspended again.

If Emacs is not really hung, but is just being slow, you may invoke the double C-g feature
without really meaning to. In that case, simply resume and answer n to both questions,
and you will arrive at your former state. Presumably the quit you requested will happen
soon.

The double-C-g feature may be turned off when Emacs is running under a window
system, since the window system always enables you to kill Emacs or to create another
window and run another program.

30.2.6 Help for Total Frustration

If using Emacs (or something else) becomes terribly frustrating and none of the tech-
niques described above solve the problem, Emacs can still help you.

First, if the Emacs you are using is not responding to commands, type C-g C-g to get
out of it and then start a new one.

300 XEmacs User’s Manual

Second, type M-x doctor 〈RET〉.
The doctor will make you feel better. Each time you say something to the doctor, you

must end it by typing 〈RET〉 〈RET〉. This lets the doctor know you are finished.

30.3 Reporting Bugs

Sometimes you will encounter a bug in Emacs. Although we cannot promise we can or
will fix the bug, and we might not even agree that it is a bug, we want to hear about bugs
you encounter in case we do want to fix them.

To make it possible for us to fix a bug, you must report it. In order to do so effectively,
you must know when and how to do it.

30.3.1 When Is There a Bug

If Emacs executes an illegal instruction, or dies with an operating system error message
that indicates a problem in the program (as opposed to something like “disk full”), then it
is certainly a bug.

If Emacs updates the display in a way that does not correspond to what is in the buffer,
then it is certainly a bug. If a command seems to do the wrong thing but the problem
corrects itself if you type C-l, it is a case of incorrect display updating.

Taking forever to complete a command can be a bug, but you must make certain that
it was really Emacs’s fault. Some commands simply take a long time. Type C-g and then
C-h l to see whether the input Emacs received was what you intended to type; if the input
was such that you know it should have been processed quickly, report a bug. If you don’t
know whether the command should take a long time, find out by looking in the manual or
by asking for assistance.

If a command you are familiar with causes an Emacs error message in a case where its
usual definition ought to be reasonable, it is probably a bug.

If a command does the wrong thing, that is a bug. But be sure you know for certain
what it ought to have done. If you aren’t familiar with the command, or don’t know for
certain how the command is supposed to work, then it might actually be working right.
Rather than jumping to conclusions, show the problem to someone who knows for certain.

Finally, a command’s intended definition may not be best for editing with. This is a
very important sort of problem, but it is also a matter of judgment. Also, it is easy to come
to such a conclusion out of ignorance of some of the existing features. It is probably best
not to complain about such a problem until you have checked the documentation in the
usual ways, feel confident that you understand it, and know for certain that what you want
is not available. If you are not sure what the command is supposed to do after a careful
reading of the manual, check the index and glossary for any terms that may be unclear.
If you still do not understand, this indicates a bug in the manual. The manual’s job is to
make everything clear. It is just as important to report documentation bugs as program
bugs.

If the online documentation string of a function or variable disagrees with the manual,
one of them must be wrong, so report the bug.

Chapter 30: Correcting Mistakes (Yours or Emacs’s) 301

30.3.2 How to Report a Bug

When you decide that there is a bug, it is important to report it and to report it in a
way which is useful. What is most useful is an exact description of what commands you
type, starting with the shell command to run Emacs, until the problem happens. Always
include the version number of Emacs that you are using; type M-x emacs-version to print
this.

The most important principle in reporting a bug is to report facts, not hypotheses or
categorizations. It is always easier to report the facts, but people seem to prefer to strain to
posit explanations and report them instead. If the explanations are based on guesses about
how Emacs is implemented, they will be useless; we will have to try to figure out what the
facts must have been to lead to such speculations. Sometimes this is impossible. But in
any case, it is unnecessary work for us.

For example, suppose that you type C-x C-f /glorp/baz.ugh 〈RET〉, visiting a file which
(you know) happens to be rather large, and Emacs prints out ‘I feel pretty today’. The
best way to report the bug is with a sentence like the preceding one, because it gives all the
facts and nothing but the facts.

Do not assume that the problem is due to the size of the file and say, “When I visit a
large file, Emacs prints out ‘I feel pretty today’.” This is what we mean by “guessing
explanations”. The problem is just as likely to be due to the fact that there is a ‘z’ in the
file name. If this is so, then when we got your report, we would try out the problem with
some “large file”, probably with no ‘z’ in its name, and not find anything wrong. There is
no way in the world that we could guess that we should try visiting a file with a ‘z’ in its
name.

Alternatively, the problem might be due to the fact that the file starts with exactly 25
spaces. For this reason, you should make sure that you inform us of the exact contents of
any file that is needed to reproduce the bug. What if the problem only occurs when you
have typed the C-x a l command previously? This is why we ask you to give the exact
sequence of characters you typed since starting to use Emacs.

You should not even say “visit a file” instead of C-x C-f unless you know that it makes
no difference which visiting command is used. Similarly, rather than saying “if I have three
characters on the line,” say “after I type 〈RET〉 A B C 〈RET〉 C-p,” if that is the way you
entered the text.

If you are not in Fundamental mode when the problem occurs, you should say what
mode you are in.

If the manifestation of the bug is an Emacs error message, it is important to report
not just the text of the error message but a backtrace showing how the Lisp program in
Emacs arrived at the error. To make the backtrace, you must execute the Lisp expression
(setq debug-on-error t) before the error happens (that is to say, you must execute that
expression and then make the bug happen). This causes the Lisp debugger to run (see
Section 23.5 [Lisp Debug], page 197). The debugger’s backtrace can be copied as text into
the bug report. This use of the debugger is possible only if you know how to make the bug
happen again. Do note the error message the first time the bug happens, so if you can’t
make it happen again, you can report at least that.

Check whether any programs you have loaded into the Lisp world, including your
‘.emacs’ file, set any variables that may affect the functioning of Emacs. Also, see whether

302 XEmacs User’s Manual

the problem happens in a freshly started Emacs without loading your ‘.emacs’ file (start
Emacs with the -q switch to prevent loading the init file). If the problem does not occur
then, it is essential that we know the contents of any programs that you must load into the
Lisp world in order to cause the problem to occur.

If the problem does depend on an init file or other Lisp programs that are not part of
the standard Emacs system, then you should make sure it is not a bug in those programs
by complaining to their maintainers first. After they verify that they are using Emacs in a
way that is supposed to work, they should report the bug.

If you can tell us a way to cause the problem without visiting any files, please do so.
This makes it much easier to debug. If you do need files, make sure you arrange for us to
see their exact contents. For example, it can often matter whether there are spaces at the
ends of lines, or a newline after the last line in the buffer (nothing ought to care whether
the last line is terminated, but tell that to the bugs).

The easy way to record the input to Emacs precisely is to write a dribble file; execute
the Lisp expression:

(open-dribble-file "~/dribble")

using Meta-〈ESC〉 or from the ‘*scratch*’ buffer just after starting Emacs. From then on,
all Emacs input will be written in the specified dribble file until the Emacs process is killed.

For possible display bugs, it is important to report the terminal type (the value of envi-
ronment variable TERM), the complete termcap entry for the terminal from ‘/etc/termcap’
(since that file is not identical on all machines), and the output that Emacs actually sent
to the terminal. The way to collect this output is to execute the Lisp expression:

(open-termscript "~/termscript")

using Meta-〈ESC〉 or from the ‘*scratch*’ buffer just after starting Emacs. From then on,
all output from Emacs to the terminal will be written in the specified termscript file as
well, until the Emacs process is killed. If the problem happens when Emacs starts up,
put this expression into your ‘.emacs’ file so that the termscript file will be open when
Emacs displays the screen for the first time. Be warned: it is often difficult, and sometimes
impossible, to fix a terminal-dependent bug without access to a terminal of the type that
stimulates the bug.

The newsgroup ‘comp.emacs.xemacs’ may be used for bug reports, other discussions
and requests for assistance.

If you don’t have access to this newgroup, you can subscribe to the mailing list version:
the newsgroup is bidirectionally gatewayed into the mailing list ‘xemacs@xemacs.org’.

To be added or removed from this mailing list, send mail to ‘xemacs-request@xemacs.org’.
Do not send requests for addition to the mailing list itself.

The mailing lists and newsgroups are archived on our anonymous FTP server,
‘ftp.xemacs.org’, and at various other archive sites around the net. You should also check
the ‘FAQ’ in ‘/pub/xemacs’ on our anonymous FTP server. It provides some introductory
information and help for initial configuration problems.

XEmacs Features 303

XEmacs Features

This section describes the difference between Emacs Version 18 and XEmacs.

General Changes

• XEmacs has a new vi emulation mode called “viper” mode. To start viper mode in
XEmacs, type the command M-x viper-mode. If you want XEmacs to automatically
put you in viper-mode all the time, include this line in your ‘.emacs’ file:

(viper-mode)

• Earlier versions of Emacs only allowed keybindings to ASCII character sequences.
XEmacs has greatly expanded this by allowing you to use a vector of key sequences
which are in turn composed of a modifier and a keysym. See Chapter 2 [Keystrokes],
page 19 for more information.

• The keymap data structure has been reimplemented to allow the use of a character
set larger than ASCII. Keymaps are no longer alists and/or vectors; they are a new
primary data type. Consequently, code which manipulated keymaps with list or array
manipulation functions will no longer work. It must use the functions define-key or
map-keymap and set-keymap-parent (the new keymap functions). See Section 29.4
[Key Bindings], page 275 for more information.

• Input and display of all ISO-8859-1 characters is supported.
• Multiple fonts, including variable-width fonts, and fonts of differing heights, are sup-

ported.
• There is a new ‘tags’ package and a new UNIX manual browsing package. They are

similar to earlier versions; for more information look at the source code.
• There is a new implementation of Dired, with many new features. The online info for

Dired, not the Dired node of Emacs info, provides more detail.
• GNUS (a network news reader), VM (an alternative mail reader), ILISP (a package

for interacting with inferior Lisp processes), ANGE-FTP (a package for making FTP-
accessible files appear just like files on the local disk, even to Dired), Calendar (an
Emacs-based calendar and appointment- management tool), and W3 (an interface to
the World Wide Web) are a part of the XEmacs Lisp library. See the related docu-
mentation in the online info browser.

• Emacs now supports floating-point numbers.
• When you send mail, mail aliases are now expanded in the buffer. In earlier versions,

they were expanded after the mail-sending command was executed.
• The initial value of load-path is computed when Emacs starts up, instead of being

hardcoded in when Emacs is compiled. As a result, you can now move the Emacs
executable and Lisp library to a different location in the file system without having to
recompile.

• Any existing subdirectories of the Emacs Lisp directory are now added to the load-
path by default.

• On some machines, you can change the audible bell using the sound-alist variable.
See Section 29.7 [Audible Bell], page 286 for more information.

304 XEmacs User’s Manual

• You can use multiple X windows to display multiple Emacs frames.
• You can use the X selection mechanism to copy material from other applications and

into other applications. You can also use all Emacs region commands on a region se-
lected with the mouse. See Section 9.2 [Mouse Selection], page 66 for more information.

• By default, the variable zmacs-regions is set to highlight the region between point
and the mark. This unifies X selection and Emacs selection behavior.

• XEmacs has a menu bar for mouse-controlled operations in addition to keystrokes. See
Section 2.4 [Pull-down Menus], page 25.

• You can look in the file ‘/usr/local/lib/xemacs-19.11/etc/Emacs.ad’ for a list of
Emacs X resources. You can set these resources in your X environment to set your
preferences for color, fonts, location, and the size of XEmacs frames. Refer to your X
documentation for more information about resources.

New Commands and Variables

There are many new functions in XEmacs, and many existing functions whose semantics
have been expanded. Most of these are only of interest to the Emacs-Lisp programmer;
see the NEWS file C-h n for a complete list. What follows is a partial list of the new
interactive commands:

• byte-compile-and-load-file and byte-compile-buffer byte-compile the contents
of a file or buffer.
The new conx function lets you generate random sentences for your amusement.

• compile-defun compiles and evaluates the current top-level form.
• find-this-file and find-this-file-other-window can be used interactively with

a prefix argument to switch to the filename at point in the buffer. find-this-file-
other-window displays the file in another window.

• Several new functions have been added that allow you to customize the color and
font attributes of a region of text: invert-face, make-face-bold, make-face-bold-
italic, make-face-italic, make-face-unbold, make-face-unitalic, set-face-
background, set-face-background-pixmap, set-face-font, set-face-foreground,
and set-face-underline-p.

• load-default-sounds and load-sound-file allow you to customize the audible bell
sound. load-default-sounds loads and installs sound files. load-sound-file reads
in audio files and adds them to the sound alist. play-sound plays the specified sound
type.

• locate-library finds the file that the function load-library loads, and it displays
the file’s full pathname.

• make-directory creates a directory, while remove-directory removes a directory.
• mark-beginning-of-buffer and mark-end-of-buffer push the mark to the begin-

ning or end of a buffer, respectively.
Several functions have been added that allow you to perform various editing, region,
and window operations using the mouse: mouse-del-char, mouse-delete-window,
mouse-keep-one-window, mouse-kill-line, mouse-line-length, mouse-scroll,
mouse-select, mouse-select-and-split, mouse-set-mark, mouse-set-point,

XEmacs Features 305

mouse-track, mouse-track-adjust, mouse-track-and-copy-to-cutbuffer, mouse-
track-delete-and-insert, mouse-track-insert, and mouse-window-to-region.

• compare-windows takes an argument ignore-whitespace. The argument means ignore
changes in whitespace.

You can conditionalize your ‘.emacs’ file as follows so that XEmacs commands are
invoked only when you are in XEmacs:

(cond ((string-match "Lucid" emacs-version)
;;
;; Code for any version of Lucid Emacs or XEmacs goes here
;;
))

(cond ((and (string-match "XEmacs" emacs-version)
(or (> emacs-major-version 19)

(>= emacs-minor-version 12)))
;;
;; Code which requires XEmacs version 19.12 or newer goes here
;;
))

(cond ((>= emacs-major-version 19)
;;
;; Code for any vintage-19 emacs goes here
;;
))

(cond ((and (not (string-match "Lucid" emacs-version))
(= emacs-major-version 19))

;;
;; Code specific to FSF Emacs 19 (not XEmacs) goes here
;;
))

(cond ((< emacs-major-version 19)
;;
;; Code specific to emacs 18 goes here
;;
))

Of particular interest for use in ‘.emacs’ files are:

• add-menu lets you add a new menu to the menubar or a submenu to a pull-down
menu. add-menu-item, disable-menu-item, delete-menu-item, enable-menu-item,
and relabel-menu-item allow you to customize the XEmacs pull-down menus.

• make-frame creates a new Emacs frame (X window).

These new variables are only present in XEmacs:

• minibuffer-confirm-incomplete prompts for confirmation in contexts where
completing-read allows answers that are not valid completions.

306 XEmacs User’s Manual

• Several variables have been added that allow you to customize the color and shape of
the mouse pointer: x-pointer-background-color, x-pointer-foreground-color,
x-mode-pointer-shape, x-pointer-shape, and
x-nontext-pointer-shape.

• zmacs-regions determines whether LISPM-style active regions should be used.

Changes in Key Bindings

XEmacs has the following new default function keybindings:

〈HELP〉 Same as C-h.

〈UNDO〉 Same as M-x undo.

〈CUT〉 Same as the Cut menu item; that is, it copies the selected text to the X Clip-
board selection.

〈COPY〉 Same as the Copy menu item.

〈PASTE〉 Same as the Paste menu item.

〈PGUP〉 Same as M-v.

〈PGDN〉 Same as C-v.

〈HOME〉 Same as M-<.

〈END〉 Same as M->.

〈LEFT-ARROW〉
Same as the function backward-char.

〈RIGHT-ARROW〉
Same as the function forward-char.

〈UP-ARROW〉
Same as the function previous-line.

〈DOWN-ARROW〉
Same as the function next-line.

Glossary 307

Glossary

Abbrev An abbrev is a text string which expands into a different text string when
present in the buffer. For example, you might define a short word as an abbrev
for a long phrase that you want to insert frequently. See Chapter 24 [Abbrevs],
page 205.

Aborting Aborting means getting out of a recursive edit (q.v.). You can use the com-
mands C-] and M-x top-level for this. See Section 30.1 [Quitting], page 297.

Auto Fill mode
Auto Fill mode is a minor mode in which text you insert is automatically broken
into lines of fixed width. See Section 21.6 [Filling], page 161.

Auto Saving
Auto saving means that Emacs automatically stores the contents of an Emacs
buffer in a specially-named file so the information will not be lost if the buffer is
lost due to a system error or user error. See Section 15.5 [Auto Save], page 109.

Backup File
A backup file records the contents that a file had before the current editing
session. Emacs creates backup files automatically to help you track down or
cancel changes you later regret. See Section 15.3.1 [Backup], page 105.

Balance Parentheses
Emacs can balance parentheses manually or automatically. Manual balancing
is done by the commands to move over balanced expressions (see Section 22.2
[Lists], page 166). Automatic balancing is done by blinking the parenthesis that
matches one just inserted (see Section 22.5 [Matching Parens], page 173).

Bind To bind a key is to change its binding (q.v.). See Section 29.4.2 [Rebinding],
page 277.

Binding A key gets its meaning in Emacs by having a binding which is a command
(q.v.), a Lisp function that is run when the key is typed. See Section 2.3
[Commands], page 24. Customization often involves rebinding a character to
a different command function. The bindings of all keys are recorded in the
keymaps (q.v.). See Section 29.4.1 [Keymaps], page 275.

Blank Lines
Blank lines are lines that contain only whitespace. Emacs has several commands
for operating on the blank lines in a buffer.

Buffer The buffer is the basic editing unit; one buffer corresponds to one piece of text
being edited. You can have several buffers, but at any time you are editing
only one, the ‘selected’ buffer, though several buffers can be visible when you
are using multiple windows. See Chapter 16 [Buffers], page 125.

Buffer Selection History
Emacs keeps a buffer selection history which records how recently each Emacs
buffer was selected. Emacs uses this list when choosing a buffer to select. See
Chapter 16 [Buffers], page 125.

308 XEmacs User’s Manual

C- ‘C’ in the name of a character is an abbreviation for Control. See Chapter 2
[Keystrokes], page 19.

C-M- ‘C-M-’ in the name of a character is an abbreviation for Control-Meta. See
Chapter 2 [Keystrokes], page 19.

Case Conversion
Case conversion means changing text from upper case to lower case or vice
versa. See Section 21.7 [Case], page 164, for the commands for case conversion.

Characters
Characters form the contents of an Emacs buffer; also, Emacs commands are
invoked by keys (q.v.), which are sequences of one or more characters. See
Chapter 2 [Keystrokes], page 19.

Command A command is a Lisp function specially defined to be able to serve as a key
binding in Emacs. When you type a key (q.v.), Emacs looks up its binding
(q.v.) in the relevant keymaps (q.v.) to find the command to run. See Section 2.3
[Commands], page 24.

Command Name
A command name is the name of a Lisp symbol which is a command (see
Section 2.3 [Commands], page 24). You can invoke any command by its name
using M-x (see Chapter 7 [M-x], page 57).

Comments
A comment is text in a program which is intended only for the people reading
the program, and is marked specially so that it will be ignored when the program
is loaded or compiled. Emacs offers special commands for creating, aligning,
and killing comments. See Section 22.6 [Comments], page 174.

Compilation
Compilation is the process of creating an executable program from source code.
Emacs has commands for compiling files of Emacs Lisp code (see Section 23.3
[Lisp Libraries], page 193) and programs in C and other languages (see Sec-
tion 23.1 [Compilation], page 191).

Complete Key
A complete key is a character or sequence of characters which, when typed by
the user, fully specifies one action to be performed by Emacs. For example, X
and Control-f and Control-x m are keys. Keys derive their meanings from
being bound (q.v.) to commands (q.v.). Thus, X is conventionally bound to a
command to insert ‘X’ in the buffer; C-x m is conventionally bound to a command
to begin composing a mail message. See Chapter 2 [Keystrokes], page 19.

Completion
When Emacs automatically fills an abbreviation for a name into the entire
name, that process is called completion. Completion is done for minibuffer
(q.v.) arguments when the set of possible valid inputs is known; for example,
on command names, buffer names, and file names. Completion occurs when
you type 〈TAB〉, 〈SPC〉, or 〈RET〉. See Section 6.3 [Completion], page 53.

Glossary 309

Continuation Line
When a line of text is longer than the width of the frame, it takes up more
than one screen line when displayed. We say that the text line is continued,
and all screen lines used for it after the first are called continuation lines. See
Chapter 4 [Basic Editing], page 41.

Control-Character
ASCII characters with octal codes 0 through 037, and also code 0177, do not
have graphic images assigned to them. These are the control characters. Any
control character can be typed by holding down the 〈CTRL〉 key and typing some
other character; some have special keys on the keyboard. 〈RET〉, 〈TAB〉, 〈ESC〉,
〈LFD〉, and 〈DEL〉 are all control characters. See Chapter 2 [Keystrokes], page 19.

Copyleft A copyleft is a notice giving the public legal permission to redistribute a program
or other work of art. Copylefts are used by leftists to enrich the public just as
copyrights are used by rightists to gain power over the public.

Current Buffer
The current buffer in Emacs is the Emacs buffer on which most editing com-
mands operate. You can select any Emacs buffer as the current one. See
Chapter 16 [Buffers], page 125.

Current Line
The line point is on (see Section 1.1 [Point], page 14).

Current Paragraph
The paragraph that point is in. If point is between paragraphs, the current
paragraph is the one that follows point. See Section 21.4 [Paragraphs], page 160.

Current Defun
The defun (q.v.) that point is in. If point is between defuns, the current defun
is the one that follows point. See Section 22.3 [Defuns], page 168.

Cursor The cursor is the rectangle on the screen which indicates the position called
point (q.v.) at which insertion and deletion takes place. The cursor is on or
under the character that follows point. Often people speak of ‘the cursor’ when,
strictly speaking, they mean ‘point’. See Chapter 4 [Basic Editing], page 41.

Customization
Customization is making minor changes in the way Emacs works. It is often
done by setting variables (see Section 29.2 [Variables], page 263) or by rebinding
keys (see Section 29.4.1 [Keymaps], page 275).

Default Argument
The default for an argument is the value that is used if you do not specify
one. When Emacs prompts you in the minibuffer for an argument, the default
argument is used if you just type 〈RET〉. See Chapter 6 [Minibuffer], page 51.

Default Directory
When you specify a file name that does not start with ‘/’ or ‘~’, it is interpreted
relative to the current buffer’s default directory. See Section 6.1 [Minibuffer
File], page 51.

310 XEmacs User’s Manual

Defun A defun is a list at the top level of parenthesis or bracket structure in a program.
It is so named because most such lists in Lisp programs are calls to the Lisp
function defun. See Section 22.3 [Defuns], page 168.

〈DEL〉 The 〈DEL〉 character runs the command that deletes one character of text. See
Chapter 4 [Basic Editing], page 41.

Deletion Deleting text means erasing it without saving it. Emacs deletes text only when
it is expected not to be worth saving (all whitespace, or only one character).
The alternative is killing (q.v.). See Section 10.1 [Killing], page 69.

Deletion of Files
Deleting a file means removing it from the file system. See Section 15.10 [Misc
File Ops], page 123.

Deletion of Messages
Deleting a message means flagging it to be eliminated from your mail file. Until
the mail file is expunged, you can undo this by undeleting the message.

Deletion of Frames
When working under the multi-frame X-based version of XEmacs, you can
delete individual frames using the Close menu item from the File menu.

Deletion of Windows
When you delete a subwindow of an Emacs frame, you eliminate it from the
frame. Other windows expand to use up the space. The deleted window can
never come back, but no actual text is lost. See Chapter 17 [Windows], page 131.

Directory Files in the Unix file system are grouped into file directories. See Section 15.7
[Directories], page 119.

Dired Dired is the Emacs facility that displays the contents of a file directory and
allows you to “edit the directory”, performing operations on the files in the
directory. See Section 15.9 [Dired], page 120.

Disabled Command
A disabled command is one that you may not run without special confirmation.
Commands are usually disabled because they are confusing for beginning users.
See Section 29.4.3 [Disabling], page 280.

Dribble File
A file into which Emacs writes all the characters that the user types on the
keyboard. Dribble files are used to make a record for debugging Emacs bugs.
Emacs does not make a dribble file unless you tell it to. See Section 30.3 [Bugs],
page 300.

Echo Area The area at the bottom of the Emacs frame which is used for echoing the
arguments to commands, for asking questions, and for printing brief messages
(including error messages). See Section 1.2 [Echo Area], page 14.

Echoing Echoing refers to acknowledging the receipt of commands by displaying them
(in the echo area). Emacs never echoes single-character keys; longer keys echo
only if you pause while typing them.

Glossary 311

Error An error occurs when an Emacs command cannot execute in the current cir-
cumstances. When an error occurs, execution of the command stops (unless the
command has been programmed to do otherwise) and Emacs reports the error
by printing an error message (q.v.). Type-ahead is discarded. Then Emacs is
ready to read another editing command.

Error Messages
Error messages are single lines of output printed by Emacs when the user asks
for something impossible to do (such as killing text forward when point is at
the end of the buffer). They appear in the echo area, accompanied by a beep.

〈ESC〉 〈ESC〉 is a character used as a prefix for typing Meta characters on keyboards
lacking a 〈META〉 key. Unlike the 〈META〉 key (which, like the 〈SHIFT〉 key, is held
down while another character is typed), the 〈ESC〉 key is pressed and released,
and applies to the next character typed.

Fill Prefix The fill prefix is a string that Emacs enters at the beginning of each line when
it performs filling. It is not regarded as part of the text to be filled. See
Section 21.6 [Filling], page 161.

Filling Filling text means moving text from line to line so that all the lines are approx-
imately the same length. See Section 21.6 [Filling], page 161.

Frame When running Emacs on a TTY terminal, “frame” means the terminal’s screen.
When running Emacs under X, you can have multiple frames, each correspond-
ing to a top-level X window and each looking like the screen on a TTY. Each
frame contains one or more non-overlapping Emacs windows (possibly with as-
sociated scrollbars, under X), an echo area, and (under X) possibly a menubar.

Global Global means ‘independent of the current environment; in effect
throughout Emacs’. It is the opposite of local (q.v.). Examples of the use of
‘global’ appear below.

Global Abbrev
A global definition of an abbrev (q.v.) is effective in all major modes that do
not have local (q.v.) definitions for the same abbrev. See Chapter 24 [Abbrevs],
page 205.

Global Keymap
The global keymap (q.v.) contains key bindings that are in effect unless local key
bindings in a major mode’s local keymap (q.v.) override them.See Section 29.4.1
[Keymaps], page 275.

Global Substitution
Global substitution means replacing each occurrence of one string by another
string through a large amount of text. See Section 13.7 [Replace], page 93.

Global Variable
The global value of a variable (q.v.) takes effect in all buffers that do not
have their own local (q.v.) values for the variable. See Section 29.2 [Variables],
page 263.

312 XEmacs User’s Manual

Graphic Character
Graphic characters are those assigned pictorial images rather than just names.
All the non-Meta (q.v.) characters except for the Control (q.v.) character are
graphic characters. These include letters, digits, punctuation, and spaces; they
do not include 〈RET〉 or 〈ESC〉. In Emacs, typing a graphic character inserts that
character (in ordinary editing modes). See Chapter 4 [Basic Editing], page 41.

Grinding Grinding means adjusting the indentation in a program to fit the nesting struc-
ture. See Chapter 20 [Indentation], page 147.

Hardcopy Hardcopy means printed output. Emacs has commands for making printed
listings of text in Emacs buffers. See Section 28.4 [Hardcopy], page 257.

〈HELP〉 You can type 〈HELP〉 at any time to ask what options you have, or to ask what
any command does. 〈HELP〉 is really Control-h. See Chapter 8 [Help], page 59.

Inbox An inbox is a file in which mail is delivered by the operating system. Some
mail handlers transfers mail from inboxes to mail files (q.v.) in which the mail
is then stored permanently or until explicitly deleted.

Indentation
Indentation means blank space at the beginning of a line. Most programming
languages have conventions for using indentation to illuminate the structure of
the program, and Emacs has special features to help you set up the correct
indentation. See Chapter 20 [Indentation], page 147.

Insertion Insertion means copying text into the buffer, either from the keyboard or from
some other place in Emacs.

Justification
Justification means adding extra spaces to lines of text to make them come
exactly to a specified width. See Section 21.6 [Filling], page 161.

Keyboard Macros
Keyboard macros are a way of defining new Emacs commands from sequences of
existing ones, with no need to write a Lisp program. See Section 29.3 [Keyboard
Macros], page 273.

Key A key is a sequence of characters that, when input to Emacs, specify or begin to
specify a single action for Emacs to perform. That is, the sequence is considered
a single unit. If the key is enough to specify one action, it is a complete
key (q.v.); if it is less than enough, it is a prefix key (q.v.). See Chapter 2
[Keystrokes], page 19.

Keymap The keymap is the data structure that records the bindings (q.v.) of keys to the
commands that they run. For example, the keymap binds the character C-n to
the command function next-line. See Section 29.4.1 [Keymaps], page 275.

Kill Ring The kill ring is the place where all text you have killed recently is saved. You
can re-insert any of the killed text still in the ring; this is called yanking (q.v.).
See Section 10.2 [Yanking], page 71.

Killing Killing means erasing text and saving it on the kill ring so it can be yanked
(q.v.) later. Some other systems call this “cutting.” Most Emacs commands to

Glossary 313

erase text do killing, as opposed to deletion (q.v.). See Section 10.1 [Killing],
page 69.

Killing Jobs
Killing a job (such as, an invocation of Emacs) means making it cease to exist.
Any data within it, if not saved in a file, is lost. See Section 3.1 [Exiting],
page 33.

List A list is, approximately, a text string beginning with an open parenthesis and
ending with the matching close parenthesis. In C mode and other non-Lisp
modes, groupings surrounded by other kinds of matched delimiters appropriate
to the language, such as braces, are also considered lists. Emacs has special
commands for many operations on lists. See Section 22.2 [Lists], page 166.

Local Local means ‘in effect only in a particular context’; the relevant kind of context
is a particular function execution, a particular buffer, or a particular major
mode. Local is the opposite of ‘global’ (q.v.). Specific uses of ‘local’ in Emacs
terminology appear below.

Local Abbrev
A local abbrev definition is effective only if a particular major mode is selected.
In that major mode, it overrides any global definition for the same abbrev. See
Chapter 24 [Abbrevs], page 205.

Local Keymap
A local keymap is used in a particular major mode; the key bindings (q.v.)
in the current local keymap override global bindings of the same keys. See
Section 29.4.1 [Keymaps], page 275.

Local Variable
A local value of a variable (q.v.) applies to only one buffer. See Section 29.2.4
[Locals], page 270.

M- M- in the name of a character is an abbreviation for 〈META〉, one of the modifier
keys that can accompany any character. See Chapter 2 [Keystrokes], page 19.

M-C- ‘M-C-’ in the name of a character is an abbreviation for Control-Meta; it means
the same thing as ‘C-M-’. If your terminal lacks a real 〈META〉 key, you type
a Control-Meta character by typing 〈ESC〉 and then typing the corresponding
Control character. See Chapter 2 [Keystrokes], page 19.

M-x M-x is the key which is used to call an Emacs command by name. You use it
to call commands that are not bound to keys. See Chapter 7 [M-x], page 57.

Mail Mail means messages sent from one user to another through the computer
system, to be read at the recipient’s convenience. Emacs has commands for
composing and sending mail, and for reading and editing the mail you have
received. See Chapter 26 [Sending Mail], page 215.

Major Mode
The major modes are a mutually exclusive set of options each of which con-
figures Emacs for editing a certain sort of text. Ideally, each programming
language has its own major mode. See Chapter 19 [Major Modes], page 145.

314 XEmacs User’s Manual

Mark The mark points to a position in the text. It specifies one end of the region
(q.v.), point being the other end. Many commands operate on the whole region,
that is, all the text from point to the mark. See Chapter 9 [Mark], page 63.

Mark Ring
The mark ring is used to hold several recent previous locations of the mark,
just in case you want to move back to them. See Section 9.1.4 [Mark Ring],
page 65.

Message See ‘mail’.

Meta Meta is the name of a modifier bit which a command character may have. It is
present in a character if the character is typed with the 〈META〉 key held down.
Such characters are given names that start with Meta-. For example, Meta-<
is typed by holding down 〈META〉 and at the same time typing < (which itself is
done, on most terminals, by holding down 〈SHIFT〉 and typing ,). See Chapter 2
[Keystrokes], page 19.

Meta Character
A Meta character is one whose character code includes the Meta bit.

Minibuffer The minibuffer is the window that Emacs displays inside the echo area (q.v.)
when it prompts you for arguments to commands. See Chapter 6 [Minibuffer],
page 51.

Minor Mode
A minor mode is an optional feature of Emacs which can be switched on or off
independent of the major mode. Each minor mode has a command to turn it
on or off. See Section 29.1 [Minor Modes], page 263.

Mode Line
The mode line is the line at the bottom of each text window (q.v.), which gives
status information on the buffer displayed in that window. See Section 1.3
[Mode Line], page 15.

Modified Buffer
A buffer (q.v.) is modified if its text has been changed since the last time the
buffer was saved (or since it was created, if it has never been saved). See
Section 15.3 [Saving], page 104.

Moving Text
Moving text means erasing it from one place and inserting it in another. This
is done by killing (q.v.) and then yanking (q.v.). See Section 10.1 [Killing],
page 69.

Named Mark
A named mark is a register (q.v.) in its role of recording a location in text so
that you can move point to that location. See Chapter 11 [Registers], page 79.

Narrowing Narrowing means creating a restriction (q.v.) that limits editing in the current
buffer to only a part of the text in the buffer. Text outside that part is inacces-
sible to the user until the boundaries are widened again, but it is still there, and
saving the file saves the invisible text. See Section 28.3 [Narrowing], page 256.

Glossary 315

Newline 〈LFD〉 characters in the buffer terminate lines of text and are called newlines.
See Chapter 2 [Keystrokes], page 19.

Numeric Argument
A numeric argument is a number, specified before a command, to change the
effect of the command. Often the numeric argument serves as a repeat count.
See Section 4.9 [Arguments], page 46.

Option An option is a variable (q.v.) that allows you to customize Emacs by giving it
a new value. See Section 29.2 [Variables], page 263.

Overwrite Mode
Overwrite mode is a minor mode. When it is enabled, ordinary text characters
replace the existing text after point rather than pushing it to the right. See
Section 29.1 [Minor Modes], page 263.

Page A page is a unit of text, delimited by formfeed characters (ASCII Control-
L, code 014) coming at the beginning of a line. Some Emacs commands are
provided for moving over and operating on pages. See Section 21.5 [Pages],
page 161.

Paragraphs
Paragraphs are the medium-size unit of English text. There are special Emacs
commands for moving over and operating on paragraphs. See Section 21.4
[Paragraphs], page 160.

Parsing We say that Emacs parses words or expressions in the text being edited. Really,
all it knows how to do is find the other end of a word or expression. See
Section 29.5 [Syntax], page 280.

Point Point is the place in the buffer at which insertion and deletion occur. Point is
considered to be between two characters, not at one character. The terminal’s
cursor (q.v.) indicates the location of point. See Chapter 4 [Basic], page 41.

Prefix Key
A prefix key is a key (q.v.) whose sole function is to introduce a set of multi-
character keys. Control-x is an example of a prefix key; any two-character
sequence starting with C-x is also a legitimate key. See Chapter 2 [Keystrokes],
page 19.

Prompt A prompt is text printed to ask the user for input. Printing a prompt is called
prompting. Emacs prompts always appear in the echo area (q.v.). One kind
of prompting happens when the minibuffer is used to read an argument (see
Chapter 6 [Minibuffer], page 51); the echoing which happens when you pause
in the middle of typing a multi-character key is also a kind of prompting (see
Section 1.2 [Echo Area], page 14).

Quitting Quitting means cancelling a partially typed command or a running command,
using C-g. See Section 30.1 [Quitting], page 297.

Quoting Quoting means depriving a character of its usual special significance. In Emacs
this is usually done with Control-q. What constitutes special significance de-
pends on the context and on convention. For example, an “ordinary” character

316 XEmacs User’s Manual

as an Emacs command inserts itself; so in this context, a special character is
any character that does not normally insert itself (such as 〈DEL〉, for example),
and quoting it makes it insert itself as if it were not special. Not all contexts
allow quoting. See Chapter 4 [Basic Editing], page 41.

Read-only Buffer
A read-only buffer is one whose text you are not allowed to change. Normally
Emacs makes buffers read-only when they contain text which has a special sig-
nificance to Emacs, such asDired buffers. Visiting a file that is write-protected
also makes a read-only buffer. See Chapter 16 [Buffers], page 125.

Recursive Editing Level
A recursive editing level is a state in which part of the execution of a command
involves asking the user to edit some text. This text may or may not be the
same as the text to which the command was applied. The mode line indicates
recursive editing levels with square brackets (‘[’ and ‘]’). See Section 28.5
[Recursive Edit], page 258.

Redisplay Redisplay is the process of correcting the image on the screen to correspond to
changes that have been made in the text being edited. See Chapter 1 [Frame],
page 13.

Regexp See ‘regular expression’.

Region The region is the text between point (q.v.) and the mark (q.v.). Many com-
mands operate on the text of the region. See Chapter 9 [Mark], page 63.

Registers Registers are named slots in which text or buffer positions or rectangles can be
saved for later use. See Chapter 11 [Registers], page 79.

Regular Expression
A regular expression is a pattern that can match various text strings; for ex-
ample, ‘l[0-9]+’ matches ‘l’ followed by one or more digits. See Section 13.5
[Regexps], page 89.

Replacement
See ‘global substitution’.

Restriction
A buffer’s restriction is the amount of text, at the beginning or the end of the
buffer, that is temporarily invisible and inaccessible. Giving a buffer a nonzero
amount of restriction is called narrowing (q.v.). See Section 28.3 [Narrowing],
page 256.

〈RET〉 〈RET〉 is the character than runs the command to insert a newline into the text.
It is also used to terminate most arguments read in the minibuffer (q.v.). See
Chapter 2 [Keystrokes], page 19.

Saving Saving a buffer means copying its text into the file that was visited (q.v.) in
that buffer. To actually change a file you have edited in Emacs, you have to
save it. See Section 15.3 [Saving], page 104.

Scrolling Scrolling means shifting the text in the Emacs window to make a different part
ot the buffer visible. See Chapter 12 [Display], page 81.

Glossary 317

Searching Searching means moving point to the next occurrence of a specified string. See
Chapter 13 [Search], page 85.

Selecting Selecting a buffer means making it the current (q.v.) buffer. See Chapter 16
[Buffers], page 125.

Self-documentation
Self-documentation is the feature of Emacs which can tell you what any com-
mand does, or can give you a list of all commands related to a topic you specify.
You ask for self-documentation with the help character, C-h. See Chapter 8
[Help], page 59.

Sentences Emacs has commands for moving by or killing by sentences. See Section 21.3
[Sentences], page 159.

Sexp An sexp (short for ‘s-expression,’ itself short for ‘symbolic expression’) is the
basic syntactic unit of Lisp in its textual form: either a list, or Lisp atom.
Many Emacs commands operate on sexps. The term ‘sexp’ is generalized to
languages other than Lisp to mean a syntactically recognizable expression. See
Section 22.2 [Lists], page 166.

Simultaneous Editing
Simultaneous editing means two users modifying the same file at once. If si-
multaneous editing is not detected, you may lose your work. Emacs detects
all cases of simultaneous editing and warns the user to investigate them. See
Section 15.3.2 [Simultaneous Editing], page 107.

String A string is a kind of Lisp data object which contains a sequence of characters.
Many Emacs variables are intended to have strings as values. The Lisp syntax
for a string consists of the characters in the string with a ‘"’ before and another
‘"’ after. Write a ‘"’ that is part of the string as ‘\"’ and a ‘\’ that is part of
the string as ‘\\’. You can include all other characters, including newline, just
by writing them inside the string. You can also include escape sequences as in
C, such as ‘\n’ for newline or ‘\241’ using an octal character code.

String Substitution
See ‘global substitution’.

Syntax Table
The syntax table tells Emacs which characters are part of a word, which char-
acters balance each other like parentheses, etc. See Section 29.5 [Syntax],
page 280.

Tag Table A tag table is a file that serves as an index to the function definitions in one or
more other files. See Section 22.11 [Tags], page 178.

Termscript File
A termscript file contains a record of all characters Emacs sent to the terminal.
It is used for tracking down bugs in Emacs redisplay. Emacs does not make
a termscript file unless explicitly instructed to do so. See Section 30.3 [Bugs],
page 300.

Text Text has two meanings (see Chapter 21 [Text], page 151):

318 XEmacs User’s Manual

• Data consisting of a sequence of characters, as opposed to binary num-
bers, images, graphics commands, executable programs, and the like. The
contents of an Emacs buffer are always text in this sense.

• Data consisting of written human language, as opposed to programs, or
something that follows the stylistic conventions of human language.

Top Level Top level is the normal state of Emacs, in which you are editing the text
of the file you have visited. You are at top level whenever you are not in a
recursive editing level (q.v.) or the minibuffer (q.v.), and not in the middle of a
command. You can get back to top level by aborting (q.v.) and quitting (q.v.).
See Section 30.1 [Quitting], page 297.

Transposition
Transposing two units of text means putting each one into the place formerly
occupied by the other. There are Emacs commands to transpose two adjacent
characters, words, sexps (q.v.), or lines (see Section 14.2 [Transpose], page 97).

Truncation
Truncating text lines in the display means leaving out any text on a line that
does not fit within the right margin of the window displaying it. See also
‘continuation line’. See Chapter 4 [Basic Editing], page 41.

Undoing Undoing means making your previous editing go in reverse, bringing back the
text that existed earlier in the editing session. See Chapter 5 [Undo], page 49.

Variable A variable is Lisp object that can store an arbitrary value. Emacs uses some
variables for internal purposes, and has others (known as ‘options’ (q.v.)) you
can set to control the behavior of Emacs. The variables used in Emacs that you
are likely to be interested in are listed in the Variables Index of this manual.
See Section 29.2 [Variables], page 263, for information on variables.

Visiting Visiting a file means loading its contents into a buffer (q.v.) where they can be
edited. See Section 15.2 [Visiting], page 102.

Whitespace
Whitespace is any run of consecutive formatting characters (spaces, tabs, new-
lines, and backspaces).

Widening Widening is removing any restriction (q.v.) on the current buffer; it is the
opposite of narrowing (q.v.). See Section 28.3 [Narrowing], page 256.

Window Emacs divides the frame into one or more windows, each of which can display
the contents of one buffer (q.v.) at any time. See Chapter 1 [Frame], page 13,
for basic information on how Emacs uses the frame. See Chapter 17 [Win-
dows], page 131, for commands to control the use of windows. Note that if
you are running Emacs under X, terminology can be confusing: Each Emacs
frame occupies a separate X window and can, in turn, be divided into different
subwindows.

Word Abbrev
Synonymous with ‘abbrev’.

Glossary 319

Word Search
Word search is searching for a sequence of words, considering the punctuation
between them as insignificant. See Section 13.3 [Word Search], page 88.

Yanking Yanking means reinserting text previously killed. It can be used to undo a
mistaken kill, or for copying or moving text. Some other systems call this
“pasting”. See Section 10.2 [Yanking], page 71.

320 XEmacs User’s Manual

The GNU Manifesto 321

The GNU Manifesto

What’s GNU? GNU’s Not Unix!

GNU, which stands for GNU’s Not Unix, is the name for the complete Unix-compatible
software system which I am writing so that I can give it away free to everyone who can use
it. Several other volunteers are helping me. Contributions of time, money, programs, and
equipment are greatly needed.

So far we have an Emacs text editor with Lisp for writing editor commands, a source
level debugger, a yacc-compatible parser generator, a linker, and around 35 utilities. A
shell (command interpreter) is nearly completed. A new portable optimizing C compiler
has compiled itself and may be released this year. An initial kernel exists, but many more
features are needed to emulate Unix. When the kernel and compiler are finished, it will be
possible to distribute a GNU system suitable for program development. We will use TEX
as our text formatter, but an nroff is being worked on. We will use the free, portable X
window system as well. After this we will add a portable Common Lisp, an Empire game, a
spreadsheet, and hundreds of other things, plus online documentation. We hope to supply,
eventually, everything useful that normally comes with a Unix system, and more.

GNU will be able to run Unix programs, but will not be identical to Unix. We will make
all improvements that are convenient, based on our experience with other operating sys-
tems. In particular, we plan to have longer filenames, file version numbers, a crashproof file
system, filename completion perhaps, terminal-independent display support, and perhaps
eventually a Lisp-based window system through which several Lisp programs and ordinary
Unix programs can share a screen. Both C and Lisp will be available as system program-
ming languages. We will try to support UUCP, MIT Chaosnet, and Internet protocols for
communication.

GNU is aimed initially at machines in the 68000/16000 class with virtual memory, be-
cause they are the easiest machines to make it run on. The extra effort to make it run on
smaller machines will be left to someone who wants to use it on them.

To avoid horrible confusion, please pronounce the ‘G’ in the word ‘GNU’ when it is the
name of this project.

322 XEmacs User’s Manual

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must share it with other
people who like it. Software sellers want to divide the users and conquer them, making each
user agree not to share with others. I refuse to break solidarity with other users in this way.
I cannot in good conscience sign a nondisclosure agreement or a software license agreement.
For years I worked within the Artificial Intelligence Lab to resist such tendencies and other
inhospitalities, but eventually they had gone too far: I could not remain in an institution
where such things are done for me against my will.

So that I can continue to use computers without dishonor, I have decided to put together
a sufficient body of free software so that I will be able to get along without any software
that is not free. I have resigned from the AI lab to deny MIT any legal excuse to prevent
me from giving GNU away.

Why GNU Will Be Compatible With Unix

Unix is not my ideal system, but it is not too bad. The essential features of Unix seem
to be good ones, and I think I can fill in what Unix lacks without spoiling them. And a
system compatible with Unix would be convenient for many other people to adopt.

How GNU Will Be Available

GNU is not in the public domain. Everyone will be permitted to modify and redistribute
GNU, but no distributor will be allowed to restrict its further redistribution. That is to
say, proprietary modifications will not be allowed. I want to make sure that all versions of
GNU remain free.

Why Many Other Programmers Want to Help

I have found many other programmers who are excited about GNU and want to help.

Many programmers are unhappy about the commercialization of system software. It
may enable them to make more money, but it requires them to feel in conflict with other
programmers in general rather than feel as comrades. The fundamental act of friendship
among programmers is the sharing of programs; marketing arrangements now typically used
essentially forbid programmers to treat others as friends. The purchaser of software must
choose between friendship and obeying the law. Naturally, many decide that friendship is
more important. But those who believe in law often do not feel at ease with either choice.
They become cynical and think that programming is just a way of making money.

By working on and using GNU rather than proprietary programs, we can be hospitable
to everyone and obey the law. In addition, GNU serves as an example to inspire and a
banner to rally others to join us in sharing. This can give us a feeling of harmony which
is impossible if we use software that is not free. For about half the programmers I talk to,
this is an important happiness that money cannot replace.

The GNU Manifesto 323

How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I’m asking
individuals for donations of programs and work.

One consequence you can expect if you donate machines is that GNU will run on them
at an early date. The machines should be complete, ready-to-use systems, approved for use
in a residential area, and not in need of sophisticated cooling or power.

I have found very many programmers eager to contribute part-time work for GNU.
For most projects, such part-time distributed work would be very hard to coordinate; the
independently-written parts would not work together. But for the particular task of re-
placing Unix, this problem is absent. A complete Unix system contains hundreds of utility
programs, each of which is documented separately. Most interface specifications are fixed
by Unix compatibility. If each contributor can write a compatible replacement for a single
Unix utility, and make it work properly in place of the original on a Unix system, then
these utilities will work right when put together. Even allowing for Murphy to create a few
unexpected problems, assembling these components will be a feasible task. (The kernel will
require closer communication and will be worked on by a small, tight group.)

If I get donations of money, I may be able to hire a few people full or part time. The
salary won’t be high by programmers’ standards, but I’m looking for people for whom
building community spirit is as important as making money. I view this as a way of enabling
dedicated people to devote their full energies to working on GNU by sparing them the need
to make a living in another way.

Why All Computer Users Will Benefit

Once GNU is written, everyone will be able to obtain good system software free, just
like air.

This means much more than just saving everyone the price of a Unix license. It means
that much wasteful duplication of system programming effort will be avoided. This effort
can go instead into advancing the state of the art.

Complete system sources will be available to everyone. As a result, a user who needs
changes in the system will always be free to make them himself, or hire any available
programmer or company to make them for him. Users will no longer be at the mercy of one
programmer or company which owns the sources and is in sole position to make changes.

Schools will be able to provide a much more educational environment by encouraging all
students to study and improve the system code. Harvard’s computer lab used to have the
policy that no program could be installed on the system if its sources were not on public
display, and upheld it by actually refusing to install certain programs. I was very much
inspired by this.

Finally, the overhead of considering who owns the system software and what one is or is
not entitled to do with it will be lifted.

Arrangements to make people pay for using a program, including licensing of copies,
always incur a tremendous cost to society through the cumbersome mechanisms necessary
to figure out how much (that is, which programs) a person must pay for. And only a
police state can force everyone to obey them. Consider a space station where air must be

324 XEmacs User’s Manual

manufactured at great cost: charging each breather per liter of air may be fair, but wearing
the metered gas mask all day and all night is intolerable even if everyone can afford to
pay the air bill. And the TV cameras everywhere to see if you ever take the mask off are
outrageous. It’s better to support the air plant with a head tax and chuck the masks.

Copying all or parts of a program is as natural to a programmer as breathing, and as
productive. It ought to be as free.

Some Easily Rebutted Objections to GNU’s Goals

“Nobody will use it if it is free, because that means they can’t rely on any
support.”
“You have to charge for the program to pay for providing the support.”

If people would rather pay for GNU plus service than get GNU free without service,
a company to provide just service to people who have obtained GNU free ought to be
profitable.

We must distinguish between support in the form of real programming work and mere
handholding. The former is something one cannot rely on from a software vendor. If your
problem is not shared by enough people, the vendor will tell you to get lost.

If your business needs to be able to rely on support, the only way is to have all the
necessary sources and tools. Then you can hire any available person to fix your problem;
you are not at the mercy of any individual. With Unix, the price of sources puts this out of
consideration for most businesses. With GNU this will be easy. It is still possible for there
to be no available competent person, but this problem cannot be blamed on distibution
arrangements. GNU does not eliminate all the world’s problems, only some of them.

Meanwhile, the users who know nothing about computers need handholding: doing
things for them which they could easily do themselves but don’t know how.

Such services could be provided by companies that sell just hand-holding and repair
service. If it is true that users would rather spend money and get a product with service, they
will also be willing to buy the service having got the product free. The service companies
will compete in quality and price; users will not be tied to any particular one. Meanwhile,
those of us who don’t need the service should be able to use the program without paying
for the service.

“You cannot reach many people without advertising, and you must charge for
the program to support that.”
“It’s no use advertising a program people can get free.”

There are various forms of free or very cheap publicity that can be used to inform numbers
of computer users about something like GNU. But it may be true that one can reach more
microcomputer users with advertising. If this is really so, a business which advertises the
service of copying and mailing GNU for a fee ought to be successful enough to pay for its
advertising and more. This way, only the users who benefit from the advertising pay for it.

On the other hand, if many people get GNU from their friends, and such companies
don’t succeed, this will show that advertising was not really necessary to spread GNU. Why
is it that free market advocates don’t want to let the free market decide this?

The GNU Manifesto 325

“My company needs a proprietary operating system to get a competitive edge.”
GNU will remove operating system software from the realm of competition. You will

not be able to get an edge in this area, but neither will your competitors be able to get an
edge over you. You and they will compete in other areas, while benefitting mutually in this
one. If your business is selling an operating system, you will not like GNU, but that’s tough
on you. If your business is something else, GNU can save you from being pushed into the
expensive business of selling operating systems.

I would like to see GNU development supported by gifts from many manufacturers and
users, reducing the cost to each.

“Don’t programmers deserve a reward for their creativity?”
If anything deserves a reward, it is social contribution. Creativity can be a social contri-

bution, but only in so far as society is free to use the results. If programmers deserve to be
rewarded for creating innovative programs, by the same token they deserve to be punished
if they restrict the use of these programs.

“Shouldn’t a programmer be able to ask for a reward for his creativity?”
There is nothing wrong with wanting pay for work, or seeking to maximize one’s income,

as long as one does not use means that are destructive. But the means customary in the
field of software today are based on destruction.

Extracting money from users of a program by restricting their use of it is destructive
because the restrictions reduce the amount and the ways that the program can be used.
This reduces the amount of wealth that humanity derives from the program. When there
is a deliberate choice to restrict, the harmful consequences are deliberate destruction.

The reason a good citizen does not use such destructive means to become wealthier
is that, if everyone did so, we would all become poorer from the mutual destructiveness.
This is Kantian ethics; or, the Golden Rule. Since I do not like the consequences that
result if everyone hoards information, I am required to consider it wrong for one to do so.
Specifically, the desire to be rewarded for one’s creativity does not justify depriving the
world in general of all or part of that creativity.

“Won’t programmers starve?”
I could answer that nobody is forced to be a programmer. Most of us cannot manage

to get any money for standing on the street and making faces. But we are not, as a result,
condemned to spend our lives standing on the street making faces, and starving. We do
something else.

But that is the wrong answer because it accepts the questioner’s implicit assumption:
that without ownership of software, programmers cannot possibly be paid a cent. Suppos-
edly it is all or nothing.

The real reason programmers will not starve is that it will still be possible for them to
get paid for programming; just not paid as much as now.

Restricting copying is not the only basis for business in software. It is the most common
basis because it brings in the most money. If it were prohibited, or rejected by the customer,
software business would move to other bases of organization which are now used less often.
There are always numerous ways to organize any kind of business.

Probably programming will not be as lucrative on the new basis as it is now. But that
is not an argument against the change. It is not considered an injustice that sales clerks

326 XEmacs User’s Manual

make the salaries that they now do. If programmers made the same, that would not be an
injustice either. (In practice they would still make considerably more than that.)

“Don’t people have a right to control how their creativity is used?”

“Control over the use of one’s ideas” really constitutes control over other people’s lives;
and it is usually used to make their lives more difficult.

People who have studied the issue of intellectual property rights carefully (such as
lawyers) say that there is no intrinsic right to intellectual property. The kinds of sup-
posed intellectual property rights that the government recognizes were created by specific
acts of legislation for specific purposes.

For example, the patent system was established to encourage inventors to disclose the
details of their inventions. Its purpose was to help society rather than to help inventors. At
the time, the life span of 17 years for a patent was short compared with the rate of advance
of the state of the art. Since patents are an issue only among manufacturers, for whom
the cost and effort of a license agreement are small compared with setting up production,
the patents often do not do much harm. They do not obstruct most individuals who use
patented products.

The idea of copyright did not exist in ancient times, when authors frequently copied other
authors at length in works of non-fiction. This practice was useful, and is the only way many
authors’ works have survived even in part. The copyright system was created expressly for
the purpose of encouraging authorship. In the domain for which it was invented—books,
which could be copied economically only on a printing press—it did little harm, and did
not obstruct most of the individuals who read the books.

All intellectual property rights are just licenses granted by society because it was thought,
rightly or wrongly, that society as a whole would benefit by granting them. But in any
particular situation, we have to ask: are we really better off granting such license? What
kind of act are we licensing a person to do?

The case of programs today is very different from that of books a hundred years ago.
The fact that the easiest way to copy a program is from one neighbor to another, the
fact that a program has both source code and object code which are distinct, and the fact
that a program is used rather than read and enjoyed, combine to create a situation in
which a person who enforces a copyright is harming society as a whole both materially and
spiritually; in which a person should not do so regardless of whether the law enables him
to.

“Competition makes things get done better.”

The paradigm of competition is a race: by rewarding the winner, we encourage everyone
to run faster. When capitalism really works this way, it does a good job; but its defenders
are wrong in assuming it always works this way. If the runners forget why the reward is
offered and become intent on winning, no matter how, they may find other strategies—such
as, attacking other runners. If the runners get into a fist fight, they will all finish late.

Proprietary and secret software is the moral equivalent of runners in a fist fight. Sad
to say, the only referee we’ve got does not seem to object to fights; he just regulates them
(“For every ten yards you run, you can fire one shot”). He really ought to break them up,
and penalize runners for even trying to fight.

“Won’t everyone stop programming without a monetary incentive?”

The GNU Manifesto 327

Actually, many people will program with absolutely no monetary incentive. Program-
ming has an irresistible fascination for some people, usually the people who are best at it.
There is no shortage of professional musicians who keep at it even though they have no
hope of making a living that way.

But really this question, though commonly asked, is not appropriate to the situation.
Pay for programmers will not disappear, only become less. So the right question is, will
anyone program with a reduced monetary incentive? My experience shows that they will.

For more than ten years, many of the world’s best programmers worked at the Artificial
Intelligence Lab for far less money than they could have had anywhere else. They got many
kinds of non-monetary rewards: fame and appreciation, for example. And creativity is also
fun, a reward in itself.

328 XEmacs User’s Manual

Then most of them left when offered a chance to do the same interesting work for a lot
of money.

What the facts show is that people will program for reasons other than riches; but if
given a chance to make a lot of money as well, they will come to expect and demand it.
Low-paying organizations do poorly in competition with high-paying ones, but they do not
have to do badly if the high-paying ones are banned.

“We need the programmers desperately. If they demand that we stop helping
our neighbors, we have to obey.”

You’re never so desperate that you have to obey this sort of demand. Remember: millions
for defense, but not a cent for tribute!

“Programmers need to make a living somehow.”
In the short run, this is true. However, there are plenty of ways that programmers

could make a living without selling the right to use a program. This way is customary now
because it brings programmers and businessmen the most money, not because it is the only
way to make a living. It is easy to find other ways if you want to find them. Here are a
number of examples.

A manufacturer introducing a new computer will pay for the porting of operating systems
onto the new hardware.

The sale of teaching, hand-holding, and maintenance services could also employ pro-
grammers.

People with new ideas could distribute programs as freeware and ask for donations from
satisfied users or sell hand-holding services. I have met people who are already working this
way successfully.

Users with related needs can form users’ groups and pay dues. A group would contract
with programming companies to write programs that the group’s members would like to
use.

All sorts of development can be funded with a Software Tax:
Suppose everyone who buys a computer has to pay a certain percent of the
price as a software tax. The government gives this to an agency like the NSF
to spend on software development.
But if the computer buyer makes a donation to software development himself,
he can take a credit against the tax. He can donate to the project of his own
choosing—often, chosen because he hopes to use the results when

The GNU Manifesto 329

it is done. He can take a credit for any amount of donation up to the total tax
he had to pay.
The total tax rate could be decided by a vote of the payers of the tax, weighted
according to the amount they will be taxed on.
The consequences:
• The computer-using community supports software development.
• This community decides what level of support is needed.
• Users who care which projects their share is spent on can choose this for

themselves.

In the long run, making programs free is a step toward the post-scarcity world, where
nobody will have to work very hard just to make a living. People will be free to devote
themselves to activities that are fun, such as programming, after spending the necessary
ten hours a week on required tasks such as legislation, family counseling, robot repair, and
asteroid prospecting. There will be no need to be able to make a living from programming.

We have already greatly reduced the amount of work that the whole society must do
for its actual productivity, but only a little of this has translated itself into leisure for
workers because much nonproductive activity is required to accompany productive activity.
The main causes of this are bureaucracy and isometric struggles against competition. Free
software will greatly reduce these drains in the area of software production. We must do
this, in order for technical gains in productivity to translate into less work for us.

330 XEmacs User’s Manual

Key (Character) Index 331

Key (Character) Index

!
! (query-replace) . 94

,
, (query-replace) . 94

.

. (Calendar mode) . 223

. (query-replace) . 94

?
? (Calendar mode) . 225

"
" (TeX mode) . 153

^
^ (query-replace) . 94

A
a (Calendar mode) . 226

B
button1 . 19

button1up . 19

button2 . 19

button2up . 19

button3 . 19

button3up . 19

C
C-@ (Calendar mode) . 224

C-] . 258, 297

C-_ . 49

C-> . 64

C-\ . 139

C-< . 64

C-a . 42

C-a (Calendar mode) . 222

C-b . 42

C-b (Calendar mode) . 222

C-c . 21

C-c ’ (Picture mode) . 212

C-c . (Picture mode) . 212

C-c / (Picture mode) . 212

C-c ; (Fortran mode) . 188

C-c ‘ (Picture mode) . 212

C-c { (TeX mode) . 153

C-c } (TeX mode) . 153

C-c > (Picture mode) . 212

C-c ^ (Picture mode) . 212

C-c \ (Picture mode) . 212

C-c < (Picture mode) . 212

C-c C-\ (Shell mode) . 254

C-c C-b (Outline mode) . 157

C-c C-b (Picture mode) . 212

C-c C-b (TeX mode) . 154

C-c C-c (Edit Abbrevs) . 207

C-c C-c (Edit Tab Stops) 148

C-c C-c (Mail mode) . 218

C-c C-c (Occur mode) . 95

C-c C-c (Shell mode) . 254

C-c C-d (Picture mode) . 212

C-c C-d (Shell mode) . 254

C-c C-f (LaTeX mode) . 154

C-c C-f (Outline mode) . 157

C-c C-f (Picture mode) . 212

C-c C-f C-c (Mail mode) . 218

C-c C-f C-s (Mail mode) . 218

C-c C-f C-t (Mail mode) . 218

C-c C-h (Outline mode) . 158

C-c C-i (Outline mode) . 158

C-c C-j (Term mode) . 256

C-c C-k (Picture mode) . 213

C-c C-k (Term mode) . 256

C-c C-k (TeX mode) . 154

C-c C-l (Calendar mode) . 225

C-c C-l (TeX mode) . 154

C-c C-n (Fortran mode) . 185

C-c C-n (Outline mode) . 157

C-c C-o (Shell mode) . 254

C-c C-p (Fortran mode) . 185

C-c C-p (Outline mode) . 157

C-c C-p (TeX mode) . 154

332 XEmacs User’s Manual

C-c C-q (Mail mode) . 219

C-c C-q (Term mode) . 256

C-c C-q (TeX mode) . 154

C-c C-r (Fortran mode) . 189

C-c C-r (Shell mode) . 254

C-c C-r (TeX mode) . 154

C-c C-s (Mail mode) . 218

C-c C-s (Outline mode) . 158

C-c C-u (Outline mode) . 157

C-c C-u (Shell mode) . 254

C-c C-w (Fortran mode) . 189

C-c C-w (Mail mode) . 218

C-c C-w (Picture mode) . 213

C-c C-w (Shell mode) . 254

C-c C-x (Picture mode) . 213

C-c C-y (Mail mode) . 218

C-c C-y (Picture mode) . 213

C-c C-y (Shell mode) . 254

C-c C-z (Shell mode) . 254

C-c TAB (Picture mode) . 213

C-d . 69

C-d (Shell mode) . 254

C-e . 42

C-e (Calendar mode) . 222

C-END . 42

C-f . 42

C-f (Calendar mode) . 222

C-g . 51, 297

C-g (isearch-mode) . 87

C-h . 21

C-h a . 61

C-h b . 61

C-h c . 60

C-h C . 140

C-h C-\ . 139

C-h C-c . 62

C-h C-d . 62

C-h C-w . 62

C-h f . 60, 176

C-h h . 137

C-h i . 61

C-h I . 139

C-h k . 60

C-h l . 61

C-h L . 138

C-h m . 61

C-h n . 62

C-h s . 282

C-h t . 41, 62

C-h v . 60, 176, 264

C-h w . 60

C-HOME . 42

C-k . 70

C-l. 42, 81

C-l (query-replace) . 94

C-LEFT . 42

C-M-@ . 65, 167

C-M-\ . 148, 170

C-M-a . 168

C-M-a (Fortran mode) . 185

C-M-b . 167

C-M-c . 258

C-M-d . 167

C-M-e . 168

C-M-e (Fortran mode) . 185

C-M-f . 167

C-M-h . 65, 168

C-M-h (Fortran mode) . 185

C-M-k . 70, 167

C-M-n . 167

C-M-o . 147

C-M-p . 167

C-M-q . 170

C-M-q (Fortran mode) . 186

C-M-t . 98, 167

C-M-u . 167

C-M-v . 52, 133

C-M-w . 72

C-M-x . 196, 199

C-n . 42

C-n (Calendar mode) . 222

C-o . 44

C-p . 42

C-p (Calendar mode) . 222

C-q . 41

C-q (isearch-mode) . 87

C-r . 85

C-r (isearch-mode) . 87

C-r (query-replace) . 94

C-RIGHT . 42

C-s . 85

C-s (isearch-mode) . 87

C-SPC . 63

C-SPC (Calendar mode) . 224

C-t. 42, 97

C-u . 46

C-u - C-x ; . 174

C-u C-@ . 65

C-u C-SPC . 65

C-u C-x v v . 113

C-u TAB . 170

C-v. 42, 81

Key (Character) Index 333

C-v (Calendar mode) . 224

C-w . 70

C-w (isearch-mode) . 87

C-w (query-replace) . 94

C-x . 21

C-x $. 83

C-x (. 274

C-x) . 274

C-x . 163

C-x ; . 175

C-x = . 46

C-x [. 161

C-x [(Calendar mode) . 222

C-x] . 161

C-x] (Calendar mode) . 222

C-x ‘ . 191

C-x } . 134

C-x > . 82

C-x > (Calendar mode) . 224

C-x ^ . 134

C-x < . 82

C-x < (Calendar mode) . 224

C-x 0 . 134

C-x 1 . 134

C-x 2 . 131

C-x 3 . 132

C-x 4 . 133

C-x 4 . 183

C-x 4 b . 125

C-x 4 d . 120

C-x 4 f . 103

C-x 4 m . 215

C-x 5 b . 125

C-x 5 C-f . 102, 103

C-x a g . 205

C-x a i g. 206

C-x a i l. 206

C-x a l . 206

C-x b . 125

C-x C-b . 126

C-x C-c . 33

C-x C-d . 119

C-x C-e . 196

C-x C-l . 164

C-x C-o . 44, 70

C-x C-p. 65, 161

C-x C-q . 127

C-x C-q (version control) . 112

C-x C-s . 104

C-x C-t . 98

C-x C-u . 164

C-x C-v . 103

C-x C-w . 105

C-x C-x . 64

C-x C-x (Calendar mode) . 224

C-x d . 120

C-x DEL . 70, 97, 159

C-x e . 274

C-x ESC . 55

C-x f . 163

C-x h . 65

C-x k . 127

C-x l . 161

C-x m . 215

C-x n n . 257

C-x n w . 257

C-x o . 132

C-x q . 275

C-x r g . 80

C-x r j . 79

C-x r s . 80

C-x r SPC . 79

C-x RET . 137

C-x RET c . 142

C-x RET C-\ . 139

C-x RET f . 142

C-x RET k . 143

C-x RET p . 143

C-x RET t . 143

C-x s . 104

C-x TAB . 148

C-x u . 49

C-x v = . 116

C-x v ~ . 116

C-x v a . 114

C-x v c . 112

C-x v d . 116

C-x v h . 118

C-x v i . 113

C-x v l . 116

C-x v r . 117

C-x v s . 117

C-x v u . 112

C-y . 71

C-y (isearch-mode) . 87

C-z . 33

control key . 19

D
d (Calendar mode) . 234

DEL . 41, 69, 97, 145, 165

334 XEmacs User’s Manual

DEL (isearch-mode) . 87

DEL (query-replace) . 94

DOWN . 42

E
END . 42

ESC. 21, 22

ESC (query-replace) . 94

G
g char (Calendar mode) . 231

g d (Calendar mode) . 223

g m l (Calendar mode) . 232

H
h (Calendar mode) . 226

HOME . 42

hyper key . 19, 20, 22

I
i a (Calendar mode) . 237

i b (Calendar mode) . 237

i c (Calendar mode) . 237

i d (Calendar mode) . 236

i m (Calendar mode) . 236

i w (Calendar mode) . 236

i y (Calendar mode) . 236

L
LEFT . 42

LFD . 21, 145, 169

LFD (TeX mode) . 153

M
m (Calendar mode) . 234

M (Calendar mode) . 228

M-! . 253

M-$. 99

M-% . 94

M-’ . 206

M-(. 176

M-) . 176

M-, . 184

M-- . 46

M-- M-c . 98

M-- M-l . 98

M-- M-u . 98

M-. 182

M-/ . 208

M-; . 174

M-= . 45

M-= (Calendar mode) . 224

M-? . 152

M-@ . 65, 159

M-[. 160

M-] . 160

M-{ (Calendar mode) . 222

M-| . 253

M-} (Calendar mode) . 222

M-~ . 104

M-> . 42

M-> (Calendar mode) . 223

M-^ . 70, 147

M-\ . 70, 147

M-< . 42

M-< (Calendar mode) . 223

M-1 . 46

M-a . 159

M-a (Calendar mode) . 223

M-b . 158

M-c . 164

M-C-s . 89

M-d . 70, 158

M-DEL . 70, 97, 159

M-e . 159

M-e (Calendar mode) . 223

M-ESC . 196

M-f . 158

M-g . 163

M-h . 65, 160

M-i . 148

M-k . 70, 159

M-l . 164

M-LFD . 175

M-LFD (Fortran mode) . 186

M-m . 147

M-n . 55, 152

M-n (isearch-mode) . 87

M-n (Shell mode) . 254

M-p . 55, 152

M-p (isearch-mode) . 87

M-p (Shell mode) . 254

M-q . 163

M-r . 42

M-s . 163

M-SPC . 70

Key (Character) Index 335

M-t . 98, 159

M-TAB . 176, 213

M-TAB (customization buffer). 266

M-TAB (isearch-mode) . 87

M-u . 164

M-v. 42, 81

M-v (Calendar mode) . 224

M-w . 71

M-x . 57

M-y . 72

M-z . 71

META . 22

meta key . 19

N
next . 81

O
o (Calendar mode) . 223

P
p (Calendar mode) . 230

p d (Calendar mode) . 225

pgdn . 81

PGDN . 42

pgup . 81

PGUP . 42

prior . 81

Q
q (Calendar mode) . 225

R
RET . 41

RET (isearch-mode) . 87

RET (Shell mode) . 254

RIGHT . 42

S
s (Calendar mode) . 234

S (Calendar mode) . 227

S-TAB (customization buffer). 267

shift key . 19

SPC . 54

SPC (Calendar mode) . 225

SPC (query-replace) . 94

super key . 19, 20, 22

T
t (Calendar mode) . 225

TAB . 21, 53, 145, 147, 151, 169

TAB (customization buffer) 267

TAB (Shell mode) . 254

U
u (Calendar mode) . 226, 234

UP . 42

X
x (Calendar mode) . 226

336 XEmacs User’s Manual

Command and Function Index 337

Command and Function Index

A
abbrev, add-global- . 205

abbrev, add-mode- . 206

abbrev, expand- . 206

abbrev, inverse-add-global- 206

abbrev, inverse-add-mode- 206

abbrev, unexpand- . 207

abbrev-file, quietly-read- . 208

abbrev-file, read- . 208

abbrev-file, write- . 208

abbrev-mode . 205, 263

abbrev-prefix-mark . 206

abbrevs, define- . 208

abbrevs, edit- . 207

abbrevs, expand-region- . 207

abbrevs, insert- . 208

abbrevs, kill-all- . 206

abbrevs, list- . 207

abbrevs-redefine, edit- . 207

abort, isearch- . 87

abort-recursive-edit . 258, 297

about-lock, ask-user- . 107

action, vc-next- . 113

activate-region, zmacs- . 76

add-change-log-entry . 177

add-global-abbrev . 205

add-global-abbrev, inverse- 206

add-menu . 31, 305

add-menu-item . 31, 305

add-mode-abbrev . 206

add-mode-abbrev, inverse- 206

add-name-to-file . 123

adjust, mouse-track- . 66, 304

advance, isearch-ring- . 87

alias, mail-interactive-insert- 217

all, show- . 158

all-abbrevs, kill- . 206

all-diary-entries, show- . 234

alternate-file, find- . 103

american-calendar . 236

and-copy-to-cutbuffer, mouse-track- 66, 304

and-exit, mail-send- . 218

and-indent, newline- . 169

and-insert, mouse-track-delete- 66, 304

and-insert-selection, x-set-point- 74

and-load-file, byte-compile-. 195, 304

and-mark, calendar-exchange-point- 224

and-mark, exchange-point- 64

and-reindent, move-over-close- 176

and-split, mouse-select- 66, 304

anniversary, diary- . 237, 247

anniversary-diary-entry, insert- 237

any-frame, other-window- 132

append-next-kill . 72

append-to-buffer . 76

append-to-file . 76, 123

apropos . 61

apropos, command- . 61

apropos, customize- . 269

apropos, tags- . 185

argument, digit- . 46

argument, negative- . 46

argument, universal- . 46

argument, universal-coding-system- 142

ask-user-about-lock . 107

astro-day-number, calendar-goto- 231

astro-day-number, calendar-print- 230

astro-day-number, diary- . 248

auto-fill-mode . 162, 263

auto-save, do- . 110

auto-save-mode . 110

B
back-to-indentation . 147

background, set-face- 289, 304

background-pixmap, set-face-. 289, 304

backup, diff- . 120

backward, isearch- . 85

backward, isearch-repeat- . 87

backward, re-search- . 89

backward, search- . 88

backward, widget- . 267

backward, word-search- . 88

backward-char . 42

backward-char, delete- 41, 69, 97

backward-clear-column, picture- 212

backward-column, picture-. 211

backward-day, calendar- . 222

backward-delete-char-untabify 165

backward-kill-sentence 70, 97, 159

backward-kill-word 70, 97, 159

backward-list . 167

338 XEmacs User’s Manual

backward-month, calendar- 222

backward-page . 161

backward-paragraph . 160

backward-regexp, isearch- . 89

backward-same-level, outline- 157

backward-sentence . 159

backward-sexp . 167

backward-text-line . 152

backward-up-list . 167

backward-week, calendar- 222

backward-word . 158

batch-byte-compile . 195

beginning-of-buffer . 42

beginning-of-buffer, mark-. 64, 304

beginning-of-defun . 168

beginning-of-fortran-subprogram 185

beginning-of-line . 42

beginning-of-month, calendar- 223

beginning-of-week, calendar- 222

beginning-of-year, calendar- 223

bindings, describe- . 61

bindings, set-gnu- . 260

bindings, set-gosmacs-. 260

blank-lines, delete- . 44, 70

block, diary- . 237

block, tex-close-latex- . 154

block-diary-entry, insert- . 237

body, hide- . 158

bold, make-face-. 288, 304

bold-italic, make-face- 288, 304

braces, tex-insert- . 153

branches, show-. 158

briefly, describe-key- . 60

browse, customize- . 266

buffer, append-to- . 76

buffer, beginning-of- . 42

buffer, byte-compile- . 195, 304

buffer, convert-mocklisp- . 195

buffer, conx- . 260

buffer, copy-to- . 76

buffer, end-of- . 42

buffer, eval-current- . 196

buffer, kill- . 127

buffer, lpr- . 257

buffer, mark-beginning-of-. 64, 304

buffer, mark-end-of- . 64, 304

buffer, mark-whole- . 65

buffer, prepend-to- . 76

buffer, print- . 257

buffer, rename- . 127

buffer, revert- . 108

buffer, save- . 104

buffer, spell- . 99

buffer, switch-to- . 125

buffer, switch-to-other- . 126

buffer, tex- . 154

buffer, tex-recenter-output- 154

buffer, validate-tex- . 153

buffer, vc-revert- . 112

buffer, view- . 127

buffer-file-coding-system, set- 142

buffer-local, make-variable- 271

buffer-menu . 128

buffer-other-frame, switch-to- 16, 125

buffer-other-window, switch-to- 125, 133

buffer-process-coding-system, set- 143

buffers, kill-some- . 127

buffers, list- . 126

buffers, save-some- . 104

buffers-kill-emacs, save- . 33

byte-compile, batch- . 195

byte-compile-and-load-file 195, 304

byte-compile-buffer . 195, 304

byte-compile-file . 195

byte-recompile-directory . 195

C
c-exp, indent- . 170

c-indent-line . 169

calendar . 221

calendar, american- . 236

calendar, european- . 236

calendar, exit- . 225

calendar, redraw- . 225

calendar-backward-day . 222

calendar-backward-month 222

calendar-backward-week . 222

calendar-beginning-of-month 223

calendar-beginning-of-week 222

calendar-beginning-of-year 223

calendar-count-days-region 224

calendar-cursor-holidays . 226

calendar-end-of-month . 223

calendar-end-of-week . 222

calendar-end-of-year . 223

calendar-exchange-point-and-mark 224

calendar-forward-day . 222

calendar-forward-month . 222

calendar-forward-week . 222

calendar-forward-year . 222

calendar-goto-astro-day-number 231

Command and Function Index 339

calendar-goto-chinese-date 231

calendar-goto-coptic-date . 231

calendar-goto-date . 223

calendar-goto-ethiopic-date 231

calendar-goto-french-date . 231

calendar-goto-hebrew-date 231

calendar-goto-islamic-date 231

calendar-goto-iso-date . 231

calendar-goto-julian-date . 231

calendar-goto-mayan-long-count-date 232

calendar-goto-persian-date 231

calendar-goto-today . 223

calendar-holidays, list- . 226

calendar-holidays, mark- . 226

calendar-left, scroll- . 224

calendar-left-three-months, scroll- 224

calendar-mark-today . 239

calendar-mode, describe- . 225

calendar-next-calendar-round-date 232

calendar-next-haab-date . 232

calendar-next-tzolkin-date 232

calendar-other-month . 223

calendar-phases-of-moon . 228

calendar-previous-haab-date 232

calendar-previous-tzolkin-date 232

calendar-print-astro-day-number 230

calendar-print-chinese-date 230

calendar-print-coptic-date 230

calendar-print-day-of-year 225

calendar-print-ethiopic-date 230

calendar-print-french-date 230

calendar-print-hebrew-date 230

calendar-print-islamic-date 230

calendar-print-iso-date . 230

calendar-print-julian-date. 230

calendar-print-mayan-date 230

calendar-print-persian-date 230

calendar-right, scroll- . 224

calendar-right-three-months, scroll-. 224

calendar-round-date, calendar-next- 232

calendar-set-mark . 224

calendar-star-date . 239

calendar-sunrise-sunset . 227

calendar-unmark . 226, 234

call-last-kbd-macro . 274

cancel-debug-on-entry . 197

cancel-version, vc- . 112

candles, diary-sabbath- . 249

capitalize-word . 98, 164

cc, mail- . 218

center-line . 163

change-log, vc-update- . 114

change-log-entry, add- . 177

changes, edit-tab-stops-note- 148

char, backward- . 42

char, delete- . 69, 212

char, delete-backward- 41, 69, 97

char, forward- . 42

char, goto- . 42

char, isearch-delete- . 87

char, isearch-quote- . 87

char, mouse-del- . 66, 304

char, zap-to- . 71

char-untabify, backward-delete- 165

chars, transpose- . 42, 97

children, show- . 158

chinese-date, calendar-goto- 231

chinese-date, calendar-print- 230

clear-column, picture- . 212

clear-column, picture-backward- 212

clear-line, picture- . 212

clear-rectangle . 78

clear-rectangle, picture- . 213

clear-rectangle-to-register, picture- 213

close-and-reindent, move-over- 176

close-latex-block, tex- . 154

coding-system, describe- . 140

coding-system, prefer- . 141

coding-system, set-buffer-file- 142

coding-system, set-buffer-process- 143

coding-system, set-keyboard- 143

coding-system, set-terminal- 143

coding-system-argument, universal- 142

coding-systems, list- . 140

column, picture-backward-. 211

column, picture-backward-clear- 212

column, picture-clear- . 212

column, picture-forward- . 211

column, set-comment- . 175

column, set-fill- . 163

column, set-goal- . 43

column-ruler, fortran- . 189

columns, sort- . 252

comint-delchar-or-maybe-eof 254

comint-dynamic-complete 254

comint-next-input . 254

comint-previous-input . 254

command, disable- . 280

command, enable- . 280

command, execute-extended- 58

command, next-complex- . 55

command, previous-complex- 55

340 XEmacs User’s Manual

command, repeat-complex- 55

command, set-mark- . 63

command, shell- . 253

command-apropos . 61

command-history, list- . 55

command-on-region, shell- 253

comment, indent-for- . 174

comment, kill- . 174

comment-column, set- . 175

comment-line, indent-new- 175

comment-region, fortran- . 188

compare-windows 120, 133, 305

compilation, kill- . 191

compile . 191

compile, batch-byte- . 195

compile-and-load-file, byte-. 195, 304

compile-buffer, byte- . 195, 304

compile-defun . 168, 304

compile-file, byte- . 195

complete, comint-dynamic- 254

complete, isearch- . 87

complete, minibuffer- . 53

complete, widget- . 266

complete-symbol, lisp- . 176

complete-word, minibuffer- 54

complex-command, next- . 55

complex-command, previous- 55

complex-command, repeat- 55

configuration-to-register, window- 132

continue, tags-loop- . 184

convert-mocklisp-buffer . 195

conx . 260, 304

conx-buffer . 260

conx-init . 260

conx-load . 260

conx-region . 260

conx-save . 260

coptic-date, calendar-goto- 231

coptic-date, calendar-print- 230

copy-file . 123

copy-last-shell-input . 254

copy-primary-selection, x- . 74

copy-region-as-kill . 71

copy-region-to-rectangle . 80

copy-to-buffer . 76

copy-to-cutbuffer, mouse-track-and- 66, 304

copy-to-register . 80

copying, describe- . 62

count-date, calendar-goto-mayan-long-. 232

count-days-region, calendar- 224

count-lines-page . 161

count-lines-region . 45

count-matches . 95

count-text-lines . 152

create, fortran-window- . 189

create-frame, x- . 289

create-snapshot, vc- . 117

current-buffer, eval- . 196

cursor-holidays, calendar- 226

cursor-position, what- . 46

customize . 265

customize-apropos . 269

customize-browse . 266

customize-customized . 269

customize-face . 269

customize-group . 269

customize-option . 269

customize-saved . 269

customized, customize- . 269

cutbuffer, mouse-track-and-copy-to- 66, 304

cyclic, diary- . 237, 247

cyclic-diary-entry, insert- . 237

D
dabbrev-expand . 208

date, calendar-goto- . 223

date, calendar-goto-chinese- 231

date, calendar-goto-coptic- 231

date, calendar-goto-ethiopic- 231

date, calendar-goto-french- 231

date, calendar-goto-hebrew- 231

date, calendar-goto-islamic- 231

date, calendar-goto-iso- . 231

date, calendar-goto-julian- 231

date, calendar-goto-mayan-long-count-. 232

date, calendar-goto-persian- 231

date, calendar-next-calendar-round- 232

date, calendar-next-haab- 232

date, calendar-next-tzolkin- 232

date, calendar-previous-haab- 232

date, calendar-previous-tzolkin- 232

date, calendar-print-chinese- 230

date, calendar-print-coptic- 230

date, calendar-print-ethiopic- 230

date, calendar-print-french- 230

date, calendar-print-hebrew- 230

date, calendar-print-islamic- 230

date, calendar-print-iso- . 230

date, calendar-print-julian- 230

date, calendar-print-mayan- 230

date, calendar-print-persian- 230

Command and Function Index 341

date, calendar-star- . 239

date, diary-french- . 248

date, diary-hebrew- . 248

date, diary-islamic- . 248

date, diary-iso- . 248

date, diary-julian- . 248

date, diary-mayan- . 248

dates, list-yahrzeit- . 231

day, calendar-backward- . 222

day, calendar-forward- . 222

day-number, calendar-goto-astro- 231

day-number, calendar-print-astro- 230

day-number, diary-astro- . 248

day-of-year, calendar-print- 225

day-of-year, diary- . 248

days-region, calendar-count- 224

deactivate-region, zmacs- . 76

debug . 197

debug-on-entry . 197

debug-on-entry, cancel- . 197

default, setq- . 271

default-file-modes, set- . 108

default-sounds, load- 286, 304

default-value . 271

define-abbrevs . 208

define-key . 277, 278

definition, substitute-key- 277

defun, beginning-of- . 168

defun, compile-. 168, 304

defun, end-of- . 168

defun, eval- . 196

defun, lisp-send- . 199

defun, mark- . 65, 168

del-char, mouse- . 66, 304

delchar-or-maybe-eof, comint-. 254

delete-and-insert, mouse-track- 66, 304

delete-backward-char 41, 69, 97

delete-blank-lines . 44, 70

delete-char . 69, 212

delete-char, isearch- . 87

delete-char-untabify, backward- 165

delete-file . 123

delete-horizontal-space 70, 147

delete-indentation . 70, 147

delete-matching-lines . 95

delete-menu-item . 32, 305

delete-non-matching-lines . 95

delete-other-windows . 134

delete-primary-selection, x- 74

delete-rectangle . 78

delete-window . 134

delete-window, mouse- 66, 304

describe-bindings . 61

describe-calendar-mode . 225

describe-coding-system . 140

describe-copying . 62

describe-distribution . 62

describe-function . 60, 176

describe-input-method . 139

describe-key . 60

describe-key-briefly . 60

describe-language-environment 138

describe-mode . 61

describe-no-warranty . 62

describe-syntax . 282

describe-variable . 60, 176, 264

diary . 234

diary-anniversary . 237, 247

diary-astro-day-number . 248

diary-block . 237

diary-cyclic . 237, 247

diary-day-of-year . 248

diary-display, fancy- . 246

diary-display, simple- . 246

diary-entries, list-hebrew- 245

diary-entries, list-islamic- . 245

diary-entries, mark- . 234

diary-entries, mark-hebrew- 245

diary-entries, mark-islamic- 245

diary-entries, print- . 234, 244

diary-entries, show-all- . 234

diary-entries, sort- . 247

diary-entries, view- . 234

diary-entry, insert- . 236

diary-entry, insert-anniversary- 237

diary-entry, insert-block- . 237

diary-entry, insert-cyclic- . 237

diary-entry, insert-hebrew- 246

diary-entry, insert-islamic- 246

diary-entry, insert-monthly- 236

diary-entry, insert-monthly-hebrew- 246

diary-entry, insert-monthly-islamic- 246

diary-entry, insert-weekly- 236

diary-entry, insert-yearly- . 236

diary-entry, insert-yearly-hebrew- 246

diary-entry, insert-yearly-islamic- 246

diary-files, include-other- . 247

diary-files, mark-included- 247

diary-float . 238

diary-french-date . 248

diary-hebrew-date . 248

diary-islamic-date . 248

342 XEmacs User’s Manual

diary-iso-date . 248

diary-julian-date . 248

diary-mail-entries . 234

diary-mayan-date . 248

diary-omer . 249

diary-parasha . 249

diary-phases-of-moon . 248

diary-rosh-hodesh . 249

diary-sabbath-candles . 249

diary-sunrise-sunset . 248

diary-yahrzeit . 249

diff . 120

diff, vc- . 116

diff-backup . 120

digit-argument . 46

directory, byte-recompile- 195

directory, list- . 119

directory, make- . 101, 304

directory, remove- . 101, 304

directory, vc- . 116

dired . 120

dired-other-window . 120, 133

disable-command . 280

disable-menu-item . 32, 305

disassemble . 195

display, fancy-diary- . 246

display, set-selective- . 83

display, simple-diary- . 246

display-time . 16

dissociated-press . 258

distribution, describe- . 62

do-auto-save . 110

doctor . 299

down, picture-move- . 211

down, picture-movement- . 212

down, scroll- . 81

down-list . 167

downcase-region . 164

downcase-word . 98, 164

dribble-file, open- . 302

dynamic-complete, comint- 254

E
edit, abort-recursive- 258, 297

edit, exit-recursive- . 258

edit-abbrevs . 207

edit-abbrevs-redefine . 207

edit-options . 270

edit-picture . 211

edit-tab-stops . 148, 151

edit-tab-stops-note-changes 148

edt-emulation-off . 260

edt-emulation-on . 260

electric-nroff-mode . 152

emacs, save-buffers-kill- . 33

emacs, suspend- . 33

emacs-lisp-mode . 196

emacs-news, view- . 62

emacs-version . 301

emulation-off, edt- . 260

emulation-on, edt- . 260

enable-command . 280

enable-menu-item . 32, 305

end-kbd-macro . 274

end-of-buffer . 42

end-of-buffer, mark- . 64, 304

end-of-defun . 168

end-of-fortran-subprogram 185

end-of-line . 42

end-of-month, calendar- . 223

end-of-week, calendar- . 222

end-of-year, calendar- . 223

enlarge-window . 134

enlarge-window-horizontally 134

entries, diary-mail- . 234

entries, list-hebrew-diary- 245

entries, list-islamic-diary- . 245

entries, mark-diary- . 234

entries, mark-hebrew-diary-. 245

entries, mark-islamic-diary- 245

entries, print-diary- . 234, 244

entries, show-all-diary- . 234

entries, sort-diary- . 247

entries, view-diary- . 234

entry, add-change-log- . 177

entry, cancel-debug-on- . 197

entry, debug-on- . 197

entry, hide- . 158

entry, insert-anniversary-diary- 237

entry, insert-block-diary- . 237

entry, insert-cyclic-diary- . 237

entry, insert-diary- . 236

entry, insert-hebrew-diary- 246

entry, insert-islamic-diary- 246

entry, insert-monthly-diary- 236

entry, insert-monthly-hebrew-diary- 246

entry, insert-monthly-islamic-diary- 246

entry, insert-weekly-diary- 236

entry, insert-yearly-diary-. 236

entry, insert-yearly-hebrew-diary- 246

entry, insert-yearly-islamic-diary- 246

Command and Function Index 343

entry, manual- . 176

entry, modify-syntax- . 282

entry, show- . 158

environment, describe-language- 138

environment, set-language- 137

eof, comint-delchar-or-maybe-. 254

eof, shell-send-. 254

error, next- . 191

ethiopic-date, calendar-goto- 231

ethiopic-date, calendar-print- 230

european-calendar . 236

eval-current-buffer . 196

eval-defun . 196

eval-expression . 196

eval-last-sexp . 196

eval-region . 196

exchange-point-and-mark . 64

exchange-point-and-mark, calendar- 224

execute-extended-command 58

exit, isearch- . 87

exit, mail-send-and- . 218

exit-calendar . 225

exit-recursive-edit . 258

exp, indent-c- . 170

expand, dabbrev- . 208

expand-abbrev . 206

expand-region-abbrevs . 207

expression, eval- . 196

extended-command, execute- 58

F
face, customize- . 269

face, invert- . 288, 304

face-background, set- 289, 304

face-background-pixmap, set-. 289, 304

face-bold, make-. 288, 304

face-bold-italic, make- 288, 304

face-font, set- . 289, 304

face-foreground, set- . 289, 304

face-italic, make- . 288, 304

face-larger, make- . 288

face-smaller, make- . 288

face-unbold, make- . 288, 304

face-underline-p, set- 289, 304

face-unitalic, make- . 288, 304

fancy-diary-display . 246

fields, sort- . 251

fields, sort-numeric- . 251

file, add-name-to- . 123

file, append-to- . 76, 123

file, byte-compile- . 195

file, byte-compile-and-load-. 195, 304

file, copy- . 123

file, delete- . 123

file, find- . 102

file, find-alternate- . 103

file, find-this- . 103, 304

file, insert- . 123

file, load- . 193

file, load-sound- . 287, 304

file, open-dribble- . 302

file, quietly-read-abbrev- . 208

file, read-abbrev- . 208

file, recover- . 110

file, rename- . 123

file, vc-rename- . 117

file, view- . 123

file, view-hello- . 137

file, write- . 105

file, write-abbrev- . 208

file-coding-system, set-buffer- 142

file-modes, set-default- . 108

file-name, set-visited- . 105

file-other-frame, find- 16, 102, 103

file-other-window, find- 103, 133

file-other-window, find-this- 104, 304

files, include-other-diary- . 247

files, mark-included-diary- 247

fill-column, set- . 163

fill-individual-paragraphs . 164

fill-mode, auto-. 162, 263

fill-paragraph . 163

fill-prefix, set- . 163

fill-region . 163

fill-region-as-paragraph . 163

fill-yanked-message, mail- 219

find-alternate-file . 103

find-file . 102

find-file-other-frame 16, 102, 103

find-file-other-window. 103, 133

find-tag . 182

find-tag-other-window 133, 183

find-this-file . 103, 304

find-this-file-other-window 104, 304

float, diary- . 238

font, set-face- . 289, 304

for-comment, indent- . 174

foreground, set-face- . 289, 304

fortran-column-ruler . 189

fortran-comment-region . 188

fortran-indent-line . 186

344 XEmacs User’s Manual

fortran-indent-subprogram 186

fortran-mode . 185

fortran-next-statement . 185

fortran-previous-statement 185

fortran-split-line . 186

fortran-subprogram, beginning-of- 185

fortran-subprogram, end-of- 185

fortran-subprogram, mark- 185

fortran-window-create . 189

forward, isearch- . 85

forward, isearch-repeat- . 87

forward, re-search- . 89

forward, search- . 88

forward, widget- . 267

forward, word-search- . 88

forward-char . 42

forward-column, picture- . 211

forward-day, calendar- . 222

forward-list. 167

forward-month, calendar- . 222

forward-page . 161

forward-paragraph . 160

forward-regexp, isearch- . 89

forward-same-level, outline- 157

forward-sentence . 159

forward-sexp . 167

forward-text-line . 152

forward-week, calendar- . 222

forward-word . 158

forward-year, calendar- . 222

frame, find-file-other- 16, 102, 103

frame, make- . 16, 305

frame, other-window-any- 132

frame, switch-to-buffer-other- 16, 125

frame, x-create- . 289

french-date, calendar-goto- 231

french-date, calendar-print- 230

french-date, diary- . 248

function, describe- . 60, 176

G
global-abbrev, add- . 205

global-abbrev, inverse-add- 206

global-set-key . 277, 278

gnu-bindings, set- . 260

goal-column, set- . 43

gosmacs-bindings, set-. 260

goto-astro-day-number, calendar- 231

goto-char . 42

goto-chinese-date, calendar- 231

goto-coptic-date, calendar- 231

goto-date, calendar- . 223

goto-ethiopic-date, calendar- 231

goto-french-date, calendar- 231

goto-hebrew-date, calendar- 231

goto-islamic-date, calendar- 231

goto-iso-date, calendar- . 231

goto-julian-date, calendar- 231

goto-line . 42

goto-mayan-long-count-date, calendar-. 232

goto-persian-date, calendar- 231

goto-today, calendar- . 223

group, customize- . 269

H

haab-date, calendar-next- 232

haab-date, calendar-previous- 232

hanoi . 260

headers, vc-insert- . 118

heading, outline-next-visible- 157

heading, outline-previous-visible- 157

heading, outline-up- . 157

hebrew-date, calendar-goto- 231

hebrew-date, calendar-print- 230

hebrew-date, diary- . 248

hebrew-diary-entries, list- 245

hebrew-diary-entries, mark- 245

hebrew-diary-entry, insert- 246

hebrew-diary-entry, insert-monthly- 246

hebrew-diary-entry, insert-yearly- 246

hello-file, view- . 137

help-with-tutorial . 41, 62

hide-body . 158

hide-entry . 158

hide-leaves . 158

hide-subtree . 158

history, list-command- . 55

hodesh, diary-rosh- . 249

holidays . 226

holidays, calendar-cursor- 226

holidays, list- . 227

holidays, list-calendar- . 226

holidays, mark-calendar- . 226

horizontal-space, delete- 70, 147

horizontally, enlarge-window- 134

horizontally, split-window- 132

Command and Function Index 345

I
include-other-diary-files . 247

included-diary-files, mark- 247

indent, newline-and- . 169

indent-c-exp . 170

indent-for-comment . 174

indent-line, c- . 169

indent-line, fortran- . 186

indent-line, lisp- . 169

indent-new-comment-line . 175

indent-region . 148, 170

indent-relative . 148

indent-rigidly . 148

indent-sexp . 170

indent-subprogram, fortran- 186

indentation, back-to- . 147

indentation, delete- . 70, 147

indented-text-mode . 151

individual-paragraphs, fill- 164

info . 61

init, conx- . 260

input, comint-next- . 254

input, comint-previous- . 254

input, copy-last-shell- . 254

input, send-shell- . 254

input-method, describe- . 139

input-method, select- . 139

input-method, toggle- . 139

input-methods, list- . 140

insert, mouse-track- . 304

insert, mouse-track-delete-and- 66, 304

insert, quoted- . 41

insert, self- . 41

insert-abbrevs . 208

insert-alias, mail-interactive- 217

insert-anniversary-diary-entry 237

insert-block-diary-entry . 237

insert-braces, tex- . 153

insert-cyclic-diary-entry . 237

insert-diary-entry . 236

insert-file. 123

insert-headers, vc- . 118

insert-hebrew-diary-entry . 246

insert-islamic-diary-entry . 246

insert-kbd-macro . 274

insert-monthly-diary-entry 236

insert-monthly-hebrew-diary-entry 246

insert-monthly-islamic-diary-entry 246

insert-parentheses . 176

insert-quote, tex- . 153

insert-register . 80

insert-selection, x- . 74

insert-selection, x-set-point-and- 74

insert-weekly-diary-entry . 236

insert-yearly-diary-entry . 236

insert-yearly-hebrew-diary-entry 246

insert-yearly-islamic-diary-entry 246

interaction-mode, lisp- . 199

interactive . 57

interactive-insert-alias, mail- 217

interrupt-shell-subjob . 254

inverse-add-global-abbrev 206

inverse-add-mode-abbrev . 206

invert-face . 288, 304

is, where- . 60

isearch-abort . 87

isearch-backward . 85

isearch-backward-regexp . 89

isearch-complete . 87

isearch-delete-char . 87

isearch-exit . 87

isearch-forward . 85

isearch-forward-regexp . 89

isearch-quote-char . 87

isearch-repeat-backward . 87

isearch-repeat-forward . 87

isearch-ring-advance . 87

isearch-ring-retreat . 87

isearch-yank-line . 87

isearch-yank-word. 87

islamic-date, calendar-goto- 231

islamic-date, calendar-print- 230

islamic-date, diary- . 248

islamic-diary-entries, list- . 245

islamic-diary-entries, mark- 245

islamic-diary-entry, insert- 246

islamic-diary-entry, insert-monthly- 246

islamic-diary-entry, insert-yearly- 246

iso-date, calendar-goto- . 231

iso-date, calendar-print- . 230

iso-date, diary- . 248

italic, make-face- . 288, 304

italic, make-face-bold- 288, 304

item, add-menu-. 31, 305

item, delete-menu-. 32, 305

item, disable-menu- . 32, 305

item, enable-menu- . 32, 305

item, relabel-menu- . 32, 305

346 XEmacs User’s Manual

J
job, tex-kill- . 154

julian-date, calendar-goto- 231

julian-date, calendar-print- 230

julian-date, diary- . 248

jump-to-register . 132

just-one-space . 70

K
kbd-macro, call-last- . 274

kbd-macro, end- . 274

kbd-macro, insert- . 274

kbd-macro, name-last- . 274

kbd-macro, start- . 274

kbd-macro-query . 275

keep-one-window, mouse- 66, 304

key, define- . 277, 278

key, describe- . 60

key, global-set- . 277, 278

key, local-set- . 277

key, local-unset- . 277

key-briefly, describe- . 60

key-definition, substitute- 277

key-sequence, read- . 20

keyboard-coding-system, set- 143

keyboard-layout, quail-set- 139

kill, append-next- . 72

kill, copy-region-as- . 71

kill, x-mouse- . 74

kill-all-abbrevs . 206

kill-buffer . 127

kill-comment . 174

kill-compilation . 191

kill-emacs, save-buffers- . 33

kill-job, tex- . 154

kill-line . 70

kill-line, mouse- . 66, 304

kill-local-variable . 271

kill-output-from-shell . 254

kill-primary-selection, x- . 74

kill-rectangle . 78

kill-region . 70

kill-sentence . 70, 159

kill-sentence, backward- 70, 97, 159

kill-sexp . 70, 167

kill-some-buffers . 127

kill-word . 70, 158

kill-word, backward- 70, 97, 159

L
language-environment, describe- 138

language-environment, set- 137

larger, make-face- . 288

last-kbd-macro, call- . 274

last-kbd-macro, name- . 274

last-sexp, eval- . 196

last-shell-input, copy- . 254

latex-block, tex-close- . 154

latex-mode . 152

LaTeX-mode . 152

layout, quail-set-keyboard- 139

leaves, hide- . 158

left, picture-movement- . 212

left, scroll- . 82

left, scroll-calendar- . 224

left-three-months, scroll-calendar- 224

length, mouse-line- . 66, 304

level, outline-backward-same- 157

level, outline-forward-same- 157

level, top- . 258, 297

library, load- . 40, 193

library, locate- . 194, 304

line, backward-text- . 152

line, beginning-of- . 42

line, c-indent- . 169

line, center- . 163

line, end-of- . 42

line, fortran-indent- . 186

line, fortran-split- . 186

line, forward-text- . 152

line, goto- . 42

line, indent-new-comment- 175

line, isearch-yank- . 87

line, kill- . 70

line, lisp-indent- . 169

line, mouse-kill- . 66, 304

line, move-to-window- . 42

line, next- . 42

line, open- . 44

line, picture-clear- . 212

line, picture-open- . 212

line, previous- . 42

line, split- . 147

line, what- . 45

line-length, mouse- . 66, 304

line-mode, term- . 256

lines, count-text- . 152

lines, delete-blank- . 44, 70

lines, delete-matching- . 95

lines, delete-non-matching- 95

Command and Function Index 347

lines, list-matching- . 95

lines, sort- . 251

lines, transpose- . 98

lines-page, count- . 161

lines-region, count- . 45

link, make-symbolic- . 123

lisp, run- . 199

lisp-complete-symbol . 176

lisp-indent-line . 169

lisp-interaction-mode . 199

lisp-mode . 199

lisp-mode, emacs- . 196

lisp-send-defun . 199

list, backward-. 167

list, backward-up- . 167

list, down- . 167

list, forward- . 167

list, up- . 153

list-abbrevs . 207

list-buffers . 126

list-calendar-holidays . 226

list-coding-systems . 140

list-command-history . 55

list-directory . 119

list-hebrew-diary-entries . 245

list-holidays . 227

list-input-methods . 140

list-islamic-diary-entries . 245

list-matching-lines . 95

list-options . 270

list-tags . 185

list-yahrzeit-dates . 231

load . 193

load, conx- . 260

load-default-sounds . 286, 304

load-file . 193

load-file, byte-compile-and-. 195, 304

load-library . 40, 193

load-sound-file . 287, 304

local, make-variable-buffer- 271

local-set-key . 277

local-unset-key . 277

local-variable, kill- . 271

local-variable, make- . 271

locate-library . 194, 304

lock, ask-user-about- . 107

log, vc-print- . 116

log, vc-update-change- . 114

log-entry, add-change- . 177

long-count-date, calendar-goto-mayan-. 232

loop-continue, tags- . 184

lossage, view- . 61

lpr-buffer . 257

lpr-region . 257

M
macro, call-last-kbd- . 274

macro, end-kbd- . 274

macro, insert-kbd- . 274

macro, name-last-kbd- . 274

macro, start-kbd- . 274

macro-query, kbd- . 275

mail . 215

mail-cc. 218

mail-entries, diary- . 234

mail-fill-yanked-message . 219

mail-interactive-insert-alias 217

mail-other-window . 133, 215

mail-send . 218

mail-send-and-exit . 218

mail-signature . 218

mail-subject . 218

mail-to. 218

mail-yank-original . 218

make-directory . 101, 304

make-face-bold . 288, 304

make-face-bold-italic. 288, 304

make-face-italic . 288, 304

make-face-larger . 288

make-face-smaller . 288

make-face-unbold. 288, 304

make-face-unitalic . 288, 304

make-frame . 16, 305

make-local-variable . 271

make-obsolete . 195

make-symbolic-link . 123

make-variable-buffer-local 271

manual-entry . 176

mark, abbrev-prefix- . 206

mark, calendar-exchange-point-and- 224

mark, calendar-set- . 224

mark, exchange-point-and- 64

mark, mouse-set- . 66, 304

mark-beginning-of-buffer 64, 304

mark-calendar-holidays . 226

mark-command, set- . 63

mark-defun . 65, 168

mark-diary-entries . 234

mark-end-of-buffer . 64, 304

mark-fortran-subprogram . 185

mark-hebrew-diary-entries 245

348 XEmacs User’s Manual

mark-included-diary-files . 247

mark-islamic-diary-entries 245

mark-page . 65, 161

mark-paragraph . 65, 160

mark-sexp . 65, 167

mark-today, calendar- . 239

mark-whole-buffer . 65

mark-word . 65, 159

matches, count- . 95

matching-lines, delete- . 95

matching-lines, delete-non- 95

matching-lines, list- . 95

mayan-date, calendar-print- 230

mayan-date, diary- . 248

mayan-long-count-date, calendar-goto-. 232

maybe-eof, comint-delchar-or-. 254

menu, add- . 31, 305

menu, buffer- . 128

menu-item, add-. 31, 305

menu-item, delete-. 32, 305

menu-item, disable- . 32, 305

menu-item, enable- . 32, 305

menu-item, relabel- . 32, 305

message, mail-fill-yanked- 219

method, describe-input- . 139

method, select-input- . 139

method, toggle-input- . 139

methods, list-input- . 140

minibuffer-complete . 53

minibuffer-complete-word . 54

mocklisp-buffer, convert- . 195

mode, abbrev- . 205, 263

mode, auto-fill-. 162, 263

mode, auto-save- . 110

mode, describe- . 61

mode, describe-calendar- . 225

mode, electric-nroff- . 152

mode, emacs-lisp- . 196

mode, fortran- . 185

mode, indented-text- . 151

mode, latex- . 152

mode, LaTeX- . 152

mode, lisp- . 199

mode, lisp-interaction- . 199

mode, nroff- . 152

mode, overwrite- . 263

mode, plain-tex- . 152

mode, plain-TeX- . 152

mode, term-line- . 256

mode, tex- . 152

mode, TeX- . 152

mode, text- . 151

mode-abbrev, add- . 206

mode-abbrev, inverse-add- 206

modes, set-default-file- . 108

modified, not- . 104

modify-syntax-entry . 282

month, calendar-backward- 222

month, calendar-beginning-of- 223

month, calendar-end-of- . 223

month, calendar-forward- . 222

month, calendar-other- . 223

monthly-diary-entry, insert- 236

monthly-hebrew-diary-entry, insert- 246

monthly-islamic-diary-entry, insert- 246

months, scroll-calendar-left-three- 224

months, scroll-calendar-right-three-. 224

moon, calendar-phases-of- 228

moon, diary-phases-of- . 248

moon, phases-of- . 228

motion, picture- . 212

motion-reverse, picture- . 212

mouse-del-char . 66, 304

mouse-delete-window . 66, 304

mouse-keep-one-window 66, 304

mouse-kill, x- . 74

mouse-kill-line . 66, 304

mouse-line-length . 66, 304

mouse-scroll . 66, 304

mouse-select . 66, 304

mouse-select-and-split 66, 304

mouse-set-mark . 66, 304

mouse-set-point . 66, 304

mouse-track . 66, 304

mouse-track-adjust . 66, 304

mouse-track-and-copy-to-cutbuffer 66, 304

mouse-track-delete-and-insert 66, 304

mouse-track-insert . 304

mouse-window-to-region . 304

move-down, picture- . 211

move-over-close-and-reindent 176

move-to-window-line . 42

move-up, picture- . 211

movement-down, picture- . 212

movement-left, picture- . 212

movement-ne, picture- . 212

movement-nw, picture- . 212

movement-right, picture- . 212

movement-se, picture- . 212

movement-sw, picture- . 212

movement-up, picture- . 212

Command and Function Index 349

N
name, set-visited-file- . 105

name-last-kbd-macro . 274

name-to-file, add- . 123

narrow-to-region . 257

ne, picture-movement- . 212

negative-argument . 46

new-comment-line, indent- 175

newline . 41

newline, picture- . 211

newline-and-indent . 169

news, view-emacs- . 62

next-action, vc- . 113

next-calendar-round-date, calendar- 232

next-complex-command . 55

next-error . 191

next-haab-date, calendar- 232

next-input, comint- . 254

next-kill, append- . 72

next-line . 42

next-statement, fortran- . 185

next-tzolkin-date, calendar- 232

next-visible-heading, outline- 157

no-warranty, describe- . 62

non-matching-lines, delete- 95

not-modified . 104

note-changes, edit-tab-stops- 148

nroff-mode . 152

nroff-mode, electric- . 152

number, calendar-goto-astro-day- 231

number, calendar-print-astro-day- 230

number, diary-astro-day- . 248

numeric-fields, sort- . 251

nw, picture-movement- . 212

O
obsolete, make- . 195

occur . 95

off, edt-emulation- . 260

omer, diary- . 249

one-space, just- . 70

one-window, mouse-keep- 66, 304

only, toggle-read- . 127

open-dribble-file . 302

open-line . 44

open-line, picture- . 212

open-rectangle . 78

open-termscript . 302

option, customize- . 269

options, edit- . 270

options, list- . 270

or-maybe-eof, comint-delchar-. 254

original, mail-yank- . 218

other-buffer, switch-to- . 126

other-diary-files, include- . 247

other-frame, find-file- 16, 102, 103

other-frame, switch-to-buffer- 16, 125

other-month, calendar- . 223

other-window . 132

other-window, dired- 120, 133

other-window, find-file- 103, 133

other-window, find-tag- 133, 183

other-window, find-this-file- 104, 304

other-window, mail- . 133, 215

other-window, scroll- 133, 225

other-window, switch-to-buffer- 125, 133

other-window, vc-version- 116

other-window-any-frame . 132

other-windows, delete- . 134

outline-backward-same-level 157

outline-forward-same-level 157

outline-next-visible-heading 157

outline-previous-visible-heading 157

outline-up-heading . 157

output-buffer, tex-recenter- 154

output-from-shell, kill- . 254

output-from-shell, show- . 254

over-close-and-reindent, move- 176

overwrite-mode . 263

own-secondary-selection, x- 74

own-selection, x- . 74

P
p, set-face-underline- 289, 304

page, backward- . 161

page, count-lines- . 161

page, forward- . 161

page, mark- . 65, 161

page, what- . 45

pager-toggle, term- . 256

pages, sort-. 251

paragraph, backward- . 160

paragraph, fill- . 163

paragraph, fill-region-as- . 163

paragraph, forward- . 160

paragraph, mark- . 65, 160

paragraph, tex-terminate- 153

paragraphs, fill-individual- 164

paragraphs, sort- . 251

parasha, diary- . 249

350 XEmacs User’s Manual

parentheses, insert- . 176

persian-date, calendar-goto- 231

persian-date, calendar-print- 230

phases-of-moon . 228

phases-of-moon, calendar- 228

phases-of-moon, diary- . 248

picture, edit- . 211

picture-backward-clear-column 212

picture-backward-column . 211

picture-clear-column . 212

picture-clear-line . 212

picture-clear-rectangle . 213

picture-clear-rectangle-to-register 213

picture-forward-column . 211

picture-motion . 212

picture-motion-reverse . 212

picture-move-down . 211

picture-move-up . 211

picture-movement-down . 212

picture-movement-left . 212

picture-movement-ne . 212

picture-movement-nw . 212

picture-movement-right . 212

picture-movement-se . 212

picture-movement-sw . 212

picture-movement-up . 212

picture-newline . 211

picture-open-line . 212

picture-set-tab-stops . 213

picture-tab . 213

picture-tab-search . 213

picture-yank-rectangle . 213

picture-yank-rectangle-from-register 213

pixmap, set-face-background-. 289, 304

plain-tex-mode . 152

plain-TeX-mode . 152

play-sound . 286, 304

point, mouse-set- . 66, 304

point, register-to- . 79

point-and-insert-selection, x-set- 74

point-and-mark, calendar-exchange- 224

point-and-mark, exchange- 64

point-to-register . 79

pop, yank- . 72

position, what-cursor- . 46

prefer-coding-system . 141

prefix, set-fill- . 163

prefix-mark, abbrev- . 206

prepend-to-buffer . 76

press, dissociated- . 258

previous-complex-command 55

previous-haab-date, calendar- 232

previous-input, comint- . 254

previous-line . 42

previous-statement, fortran- 185

previous-tzolkin-date, calendar- 232

previous-visible-heading, outline- 157

primary-selection, x-copy- . 74

primary-selection, x-delete- 74

primary-selection, x-kill- . 74

print, tex- . 154

print-astro-day-number, calendar- 230

print-buffer . 257

print-chinese-date, calendar- 230

print-coptic-date, calendar- 230

print-day-of-year, calendar- 225

print-diary-entries . 234, 244

print-ethiopic-date, calendar- 230

print-french-date, calendar- 230

print-hebrew-date, calendar- 230

print-islamic-date, calendar- 230

print-iso-date, calendar- . 230

print-julian-date, calendar- 230

print-log, vc- . 116

print-mayan-date, calendar- 230

print-persian-date, calendar- 230

print-queue, tex-show- . 154

print-region . 257

process-coding-system, set-buffer- 143

Q
quail-set-keyboard-layout . 139

query, kbd-macro- . 275

query-replace . 94

query-replace, tags- . 184

query-replace-regexp . 94

queue, tex-show-print- . 154

quietly-read-abbrev-file . 208

quit-shell-subjob . 254

quote, tex-insert- . 153

quote-char, isearch- . 87

quoted-insert . 41

R
re-search-backward. 89

re-search-forward . 89

read-abbrev-file . 208

read-abbrev-file, quietly- . 208

read-key-sequence . 20

read-only, toggle- . 127

Command and Function Index 351

recenter . 42, 81

recenter-output-buffer, tex- 154

recompile-directory, byte- 195

recover-file . 110

rectangle, clear- . 78

rectangle, copy-region-to- . 80

rectangle, delete- . 78

rectangle, kill- . 78

rectangle, open- . 78

rectangle, picture-clear- . 213

rectangle, picture-yank- . 213

rectangle, yank- . 78

rectangle-from-register, picture-yank- 213

rectangle-to-register, picture-clear- 213

recursive-edit, abort- 258, 297

recursive-edit, exit- . 258

redefine, edit-abbrevs- . 207

redraw-calendar . 225

regexp, isearch-backward- . 89

regexp, isearch-forward- . 89

regexp, query-replace- . 94

regexp, replace- . 93

region, calendar-count-days- 224

region, conx- . 260

region, count-lines- . 45

region, downcase- . 164

region, eval- . 196

region, fill- . 163

region, fortran-comment- . 188

region, indent- . 148, 170

region, kill- . 70

region, lpr- . 257

region, mouse-window-to- 304

region, narrow-to- . 257

region, print- . 257

region, shell-command-on- 253

region, spell- . 99

region, tex- . 154

region, upcase- . 164

region, zmacs-activate- . 76

region, zmacs-deactivate- . 76

region-abbrevs, expand- . 207

region-as-kill, copy- . 71

region-as-paragraph, fill- . 163

region-to-rectangle, copy- . 80

register, copy-to-. 80

register, insert- . 80

register, jump-to- . 132

register, picture-clear-rectangle-to- 213

register, picture-yank-rectangle-from- 213

register, point-to- . 79

register, vc- . 113

register, view- . 79

register, window-configuration-to- 132

register-to-point . 79

reindent, move-over-close-and- 176

relabel-menu-item . 32, 305

relative, indent- . 148

remove-directory . 101, 304

rename-buffer . 127

rename-file . 123

rename-file, vc- . 117

repeat-backward, isearch- . 87

repeat-complex-command . 55

repeat-forward, isearch- . 87

replace, query- . 94

replace, tags-query- . 184

replace-regexp . 93

replace-regexp, query- . 94

replace-string . 93

retreat, isearch-ring- . 87

retrieve-snapshot, vc- . 117

reverse, picture-motion- . 212

revert-buffer . 108

revert-buffer, vc- . 112

right, picture-movement- . 212

right, scroll- . 82

right, scroll-calendar- . 224

right-three-months, scroll-calendar-. 224

rigidly, indent- . 148

ring-advance, isearch- . 87

ring-retreat, isearch- . 87

rosh-hodesh, diary- . 249

round-date, calendar-next-calendar- 232

ruler, fortran-column- . 189

run-lisp . 199

S
sabbath-candles, diary- . 249

same-level, outline-backward- 157

same-level, outline-forward- 157

save, conx- . 260

save, do-auto- . 110

save-buffer . 104

save-buffers-kill-emacs . 33

save-mode, auto- . 110

save-some-buffers . 104

saved, customize- . 269

scroll, mouse- . 66, 304

scroll-calendar-left . 224

scroll-calendar-left-three-months 224

352 XEmacs User’s Manual

scroll-calendar-right . 224

scroll-calendar-right-three-months 224

scroll-down . 81

scroll-left . 82

scroll-other-window . 133, 225

scroll-right . 82

scroll-up . 81

se, picture-movement- . 212

search, picture-tab- . 213

search, tags- . 184

search-backward . 88

search-backward, re- . 89

search-backward, word- . 88

search-forward . 88

search-forward, re- . 89

search-forward, word- . 88

secondary-selection, x-own- 74

select, mouse- . 66, 304

select-and-split, mouse- 66, 304

select-input-method . 139

selection, x-copy-primary- . 74

selection, x-delete-primary- 74

selection, x-insert- . 74

selection, x-kill-primary- . 74

selection, x-own- . 74

selection, x-own-secondary- 74

selection, x-set-point-and-insert- 74

selective-display, set- . 83

self-insert . 41

send, mail- . 218

send-and-exit, mail- . 218

send-defun, lisp- . 199

send-eof, shell-. 254

send-shell-input. 254

sentence, backward- . 159

sentence, backward-kill- 70, 97, 159

sentence, forward- . 159

sentence, kill- . 70, 159

sequence, read-key- . 20

set-buffer-file-coding-system 142

set-buffer-process-coding-system 143

set-comment-column . 175

set-default-file-modes . 108

set-face-background . 289, 304

set-face-background-pixmap 289, 304

set-face-font . 289, 304

set-face-foreground . 289, 304

set-face-underline-p . 289, 304

set-fill-column . 163

set-fill-prefix. 163

set-gnu-bindings . 260

set-goal-column . 43

set-gosmacs-bindings . 260

set-key, global- . 277, 278

set-key, local- . 277

set-keyboard-coding-system 143

set-keyboard-layout, quail- 139

set-language-environment . 137

set-mark, calendar- . 224

set-mark, mouse- . 66, 304

set-mark-command . 63

set-point, mouse- . 66, 304

set-point-and-insert-selection, x- 74

set-selective-display . 83

set-tab-stops, picture- . 213

set-terminal-coding-system 143

set-variable . 264

set-visited-file-name . 105

setq-default . 271

sexp, backward- . 167

sexp, eval-last- . 196

sexp, forward- . 167

sexp, indent- . 170

sexp, kill- . 70, 167

sexp, mark- . 65, 167

sexps, transpose- . 98, 167

shell . 253

shell, kill-output-from- . 254

shell, show-output-from-. 254

shell-command . 253

shell-command-on-region . 253

shell-input, copy-last- . 254

shell-input, send- . 254

shell-send-eof . 254

shell-subjob, interrupt- . 254

shell-subjob, quit- . 254

shell-subjob, stop- . 254

show-all . 158

show-all-diary-entries . 234

show-branches . 158

show-children. 158

show-entry . 158

show-output-from-shell . 254

show-print-queue, tex- . 154

show-subtree . 158

signature, mail- . 218

simple-diary-display . 246

smaller, make-face- . 288

snapshot, vc-create- . 117

snapshot, vc-retrieve- . 117

some-buffers, kill- . 127

some-buffers, save- . 104

Command and Function Index 353

sort-columns . 252

sort-diary-entries . 247

sort-fields . 251

sort-lines . 251

sort-numeric-fields . 251

sort-pages . 251

sort-paragraphs . 251

sound, play- . 286, 304

sound-file, load- . 287, 304

sounds, load-default- 286, 304

space, delete-horizontal- 70, 147

space, just-one- . 70

spell-buffer . 99

spell-region . 99

spell-string . 99

spell-word . 99

split, mouse-select-and- 66, 304

split-line . 147

split-line, fortran- . 186

split-window-horizontally . 132

split-window-vertically . 131

star-date, calendar- . 239

start-kbd-macro . 274

statement, fortran-next- . 185

statement, fortran-previous- 185

stop, tab-to-tab- . 148, 151

stop-shell-subjob. 254

stops, edit-tab- . 148, 151

stops, picture-set-tab- . 213

stops-note-changes, edit-tab- 148

string, replace- . 93

string, spell- . 99

subject, mail- . 218

subjob, interrupt-shell- . 254

subjob, quit-shell- . 254

subjob, stop-shell- . 254

subprogram, beginning-of-fortran- 185

subprogram, end-of-fortran- 185

subprogram, fortran-indent- 186

subprogram, mark-fortran- 185

substitute-key-definition . 277

subtree, hide-. 158

subtree, show- . 158

sunrise-sunset . 227

sunrise-sunset, calendar-. 227

sunrise-sunset, diary-. 248

sunset, calendar-sunrise-. 227

sunset, diary-sunrise-. 248

sunset, sunrise- . 227

suspend-emacs . 33

sw, picture-movement- . 212

switch-to-buffer . 125

switch-to-buffer-other-frame 16, 125

switch-to-buffer-other-window 125, 133

switch-to-other-buffer . 126

symbol, lisp-complete- . 176

symbolic-link, make- . 123

syntax, describe- . 282

syntax-entry, modify- . 282

system, describe-coding- . 140

system, prefer-coding- . 141

system, set-buffer-file-coding- 142

system, set-buffer-process-coding- 143

system, set-keyboard-coding- 143

system, set-terminal-coding- 143

system-argument, universal-coding- 142

systems, list-coding- . 140

T
tab, picture- . 213

tab-search, picture- . 213

tab-stop, tab-to- . 148, 151

tab-stops, edit- . 148, 151

tab-stops, picture-set- . 213

tab-stops-note-changes, edit- 148

tab-to-tab-stop . 148, 151

tabify . 149

table, visit-tags- . 182

tag, find- . 182

tag-other-window, find- 133, 183

tags, list-. 185

tags-apropos . 185

tags-loop-continue . 184

tags-query-replace . 184

tags-search . 184

tags-table, visit- . 182

term . 255

term-line-mode . 256

term-pager-toggle . 256

terminal-coding-system, set- 143

terminate-paragraph, tex- 153

termscript, open- . 302

tex-buffer . 154

tex-buffer, validate- . 153

tex-close-latex-block . 154

tex-insert-braces . 153

tex-insert-quote. 153

tex-kill-job . 154

tex-mode . 152

TeX-mode . 152

tex-mode, plain- . 152

354 XEmacs User’s Manual

TeX-mode, plain- . 152

tex-print . 154

tex-recenter-output-buffer 154

tex-region . 154

tex-show-print-queue . 154

tex-terminate-paragraph . 153

text-line, backward- . 152

text-line, forward- . 152

text-lines, count- . 152

text-mode . 151

text-mode, indented- . 151

this-file, find- . 103, 304

this-file-other-window, find- 104, 304

three-months, scroll-calendar-left- 224

three-months, scroll-calendar-right- 224

time, display- . 16

today, calendar-goto- . 223

today, calendar-mark- . 239

toggle, term-pager- . 256

toggle-input-method . 139

toggle-read-only . 127

top-level . 258, 297

track, mouse- . 66, 304

track-adjust, mouse- . 66, 304

track-and-copy-to-cutbuffer, mouse- 66, 304

track-delete-and-insert, mouse- 66, 304

track-insert, mouse- . 304

transpose-chars. 42, 97

transpose-lines . 98

transpose-sexps . 98, 167

transpose-words . 98, 159

tutorial, help-with- . 41, 62

tzolkin-date, calendar-next- 232

tzolkin-date, calendar-previous- 232

U
unbold, make-face- . 288, 304

underline-p, set-face- 289, 304

undo . 49

unexpand-abbrev . 207

unitalic, make-face- . 288, 304

universal-argument . 46

universal-coding-system-argument 142

unmark, calendar- . 226, 234

unset-key, local- . 277

untabify . 149

untabify, backward-delete-char- 165

up, picture-move- . 211

up, picture-movement- . 212

up, scroll- . 81

up-heading, outline- . 157

up-list . 153

up-list, backward- . 167

upcase-region . 164

upcase-word . 98, 164

update-change-log, vc- . 114

user-about-lock, ask- . 107

V

validate-tex-buffer . 153

value, default- . 271

variable, describe- 60, 176, 264

variable, kill-local- . 271

variable, make-local- . 271

variable, set- . 264

variable-buffer-local, make- 271

vc-cancel-version . 112

vc-create-snapshot . 117

vc-diff . 116

vc-directory . 116

vc-insert-headers . 118

vc-next-action . 113

vc-print-log . 116

vc-register . 113

vc-rename-file . 117

vc-retrieve-snapshot . 117

vc-revert-buffer . 112

vc-update-change-log . 114

vc-version-other-window . 116

version, emacs- . 301

version, vc-cancel- . 112

version-other-window, vc- 116

vertically, split-window- . 131

view-buffer . 127

view-diary-entries . 234

view-emacs-news . 62

view-file . 123

view-hello-file . 137

view-lossage . 61

view-register . 79

visible-heading, outline-next- 157

visible-heading, outline-previous- 157

visit-tags-table . 182

visited-file-name, set- . 105

Command and Function Index 355

W
warranty, describe-no- . 62

week, calendar-backward- 222

week, calendar-beginning-of- 222

week, calendar-end-of- . 222

week, calendar-forward- . 222

weekly-diary-entry, insert- 236

what-cursor-position . 46

what-line . 45

what-page . 45

where-is . 60

whole-buffer, mark- . 65

widen . 257

widget-backward . 267

widget-complete . 266

widget-forward . 267

window, delete- . 134

window, dired-other- 120, 133

window, enlarge- . 134

window, find-file-other- 103, 133

window, find-tag-other- 133, 183

window, find-this-file-other- 104, 304

window, mail-other- . 133, 215

window, mouse-delete- 66, 304

window, mouse-keep-one- 66, 304

window, other- . 132

window, scroll-other- 133, 225

window, switch-to-buffer-other- 125, 133

window, vc-version-other- 116

window-any-frame, other- 132

window-configuration-to-register 132

window-create, fortran- . 189

window-horizontally, enlarge- 134

window-horizontally, split- 132

window-line, move-to- . 42

window-to-region, mouse- 304

window-vertically, split- . 131

windows, compare- 120, 133, 305

windows, delete-other- . 134

with-tutorial, help- . 41, 62

word, backward- . 158

word, backward-kill- 70, 97, 159

word, capitalize- . 98, 164

word, downcase- . 98, 164

word, forward- . 158

word, isearch-yank- . 87

word, kill- . 70, 158

word, mark- . 65, 159

word, minibuffer-complete- 54

word, spell- . 99

word, upcase- . 98, 164

word-search-backward . 88

word-search-forward . 88

words, transpose- . 98, 159

write-abbrev-file . 208

write-file . 105

X
x-copy-primary-selection . 74

x-create-frame . 289

x-delete-primary-selection . 74

x-insert-selection . 74

x-kill-primary-selection . 74

x-mouse-kill . 74

x-own-secondary-selection . 74

x-own-selection . 74

x-set-point-and-insert-selection 74

Y
yahrzeit, diary- . 249

yahrzeit-dates, list- . 231

Yank . 71

yank-line, isearch- . 87

yank-original, mail- . 218

yank-pop . 72

yank-rectangle . 78

yank-rectangle, picture- . 213

yank-rectangle-from-register, picture- 213

yank-word, isearch- . 87

yanked-message, mail-fill- 219

year, calendar-beginning-of- 223

year, calendar-end-of- . 223

year, calendar-forward- . 222

year, calendar-print-day-of- 225

year, diary-day-of- . 248

yearly-diary-entry, insert- . 236

yearly-hebrew-diary-entry, insert- 246

yearly-islamic-diary-entry, insert- 246

yow . 260

Z
zap-to-char . 71

zmacs-activate-region . 76

zmacs-deactivate-region . 76

356 XEmacs User’s Manual

Variable Index 357

Variable Index

A
abbrev-all-caps . 206

abbrev-file-name . 208

abbrev-mailrc-file, mail- . 216

abbrev-mode . 205

abbrev-mode-regexp, mail- 217

abbrevs, save- . 208

after-load-alist . 194

after-save-hook . 105

alias-seperator-string, mail- 217

alist, after-load- . 194

alist, auto-mode- . 145

alist, default-directory- . 101

alist, default-frame- . 17

alist, file-coding-system- . 141

alist, sound- . 286

alist, tag-table- . 181, 183

alist, vc-comment- . 118

alist, vc-header- . 118

alist, vc-static-header- . 118

all-caps, abbrev- . 206

all-christian-calendar-holidays 240

all-hebrew-calendar-holidays 240

all-islamic-calendar-holidays 240

all-num-for-matching-do, fortran-check- 187

always-build-completion-table, tags- 182

always-indent, c-tab- . 171

appt-audible . 249

appt-display-duration . 249

appt-display-mode-line . 249

appt-message-warning-time 249

appt-msg-window . 249

appt-visible . 249

archive-file-name, mail- . 217

argdecl-indent, c- . 173

arglist, describe-function-show- 60

args, command-line- . 36

arrow, ctl- . 83

asking, trim-versions-without- 106

audible, appt- . 249

auto-fill-inhibit-regexp . 163

auto-help, completion- . 54

auto-lower-frame . 17

auto-mode-alist . 145

auto-newline, c- . 171

auto-raise-frame . 17

auto-save-default . 110

auto-save-files, delete- . 110

auto-save-interval . 110

auto-save-timeout . 110

auto-save-visited-file-name 110

B
back-end, vc-default- . 113

background-color, x-pointer- 305

backup-by-copying . 107

backup-by-copying-when-linked 107

backup-by-copying-when-mismatch 107

backup-files, make- . 105

backup-files, vc-make- . 112

bell-volume . 287

blanks, diary-list-include- . 246

blink-matching-paren . 173

blink-matching-paren-distance 173

body-indention, lisp- . 170

brace-imaginary-offset, c- . 172

brace-offset, c- . 172

brief-switches, list-directory- 119

buffer, holidays-in-diary- . 244

buffer-file-coding-system . 142

buffer-file-coding-system, default- 143

buffer-file-name . 103

buffer-file-truename . 103

buffer-function, display- . 133

buffer-read-only . 127

buffer-tag-table . 183

build-completion-table, tags- 183

build-completion-table, tags-always- 182

C
c-argdecl-indent . 173

c-auto-newline . 171

c-brace-imaginary-offset . 172

c-brace-offset . 172

c-continued-statement-offset 172

c-indent-level . 172

c-label-offset . 173

c-mode-hook . 166

c-mode-map . 276

c-tab-always-indent . 171

calendar, mark-diary-entries-in- 239

358 XEmacs User’s Manual

calendar, mark-holidays-in- 239

calendar-date-display-form 242

calendar-daylight-savings-ends 243

calendar-daylight-savings-ends-time 243

calendar-daylight-savings-starts 243

calendar-daylight-time-offset 243

calendar-daylight-time-zone-name 228

calendar-holiday-marker . 239

calendar-holidays . 240

calendar-holidays, all-christian- 240

calendar-holidays, all-hebrew- 240

calendar-holidays, all-islamic- 240

calendar-holidays-initially, view- 239

calendar-hook, today-invisible- 239

calendar-hook, today-visible- 239

calendar-latitude . 227

calendar-load-hook . 239

calendar-location-name . 227

calendar-longitude . 227

calendar-standard-time-zone-name 228

calendar-style, european- . 236

calendar-time-display-form 242

calendar-time-zone . 228

calendar-today-marker . 239

calendar-week-start-day . 223

calendar-window-hook, initial- 239

caps, abbrev-all- . 206

case, compare-ignore- . 120

case-fold-search . 92, 94

case-replace . 94

cd-regexp, shell- . 254

char, fortran-comment-indent- 188

char, fortran-continuation- 187

chars, picture-tab- . 213

check-all-num-for-matching-do, fortran- 187

christian-calendar-holidays, all- 240

christian-holidays . 240

coding . 142

coding-system, buffer-file- 142

coding-system, default-buffer-file- 143

coding-system, file-name- . 143

coding-system-alist, file- . 141

color, x-pointer-background- 305

color, x-pointer-foreground- 305

column, comment- . 175

column, fill- . 163

column, fortran-comment-line- 188

command, compile- . 191

command-history . 55

command-line-args . 36

command-map, repeat-complex- 276

command-messages, vc- . 113

comment, vc-initial- . 113

comment-alist, vc- . 118

comment-column . 175

comment-end . 175

comment-indent-char, fortran- 188

comment-indent-hook . 175

comment-indent-style, fortran- 188

comment-line-column, fortran- 188

comment-line-start . 188

comment-line-start-skip . 188

comment-multi-line . 175

comment-region, fortran- . 188

comment-start . 175

comment-start-skip . 175

comments, parse-sexp-ignore- 282

compare-ignore-case. 120

compare-truenames, find-file- 103

compile-command . 191

completion-auto-help . 54

completion-ignored-extensions 54

completion-map, minibuffer-local- 276

completion-table, tags-always-build- 182

completion-table, tags-build- 183

complex-command-map, repeat- 276

confirm, vc-suppress- . 113

confirm-incomplete, minibuffer- 54, 305

conservatively, scroll- . 82

context-lines, next-screen- . 82

continuation-char, fortran- 187

continuation-indent, fortran- 187

continued-statement-offset, c- 172

control, version- . 106

copying, backup-by- . 107

copying-when-linked, backup-by- 107

copying-when-mismatch, backup-by- 107

create-frame-hook . 17

ctl-arrow . 83

ctl-x-map . 276

current-input-method . 139

D
data-directory . 40

data-directory-list. 40

date-display-form, calendar- 242

date-forms, diary- . 244

day, calendar-week-start- . 223

daylight-savings-ends, calendar- 243

daylight-savings-ends-time, calendar- 243

daylight-savings-starts, calendar- 243

Variable Index 359

daylight-time-offset, calendar-. 243

daylight-time-zone-name, calendar- 228

days, diary-mail-. 234

debug-on-error . 197

debug-on-quit . 197

default, auto-save- . 110

default-back-end, vc- . 113

default-buffer-file-coding-system 143

default-directory . 101

default-directory, insert- 52, 101

default-directory-alist . 101

default-frame-alist . 17

default-input-method . 139

default-major-mode . 146

defaults, x-frame- . 17

delete-auto-save-files . 110

delimiter, page- . 161

describe-function-show-arglist 60

diary-buffer, holidays-in- . 244

diary-date-forms . 244

diary-display-hook . 246

diary-entries, number-of- . 244

diary-entries-hook, list- . 247

diary-entries-hook, mark- . 247

diary-entries-hook, print- . 244

diary-entries-in-calendar, mark- 239

diary-entries-initially, view- 238

diary-entry-marker . 239

diary-file . 234

diary-list-include-blanks . 246

diary-listing-hook, nongregorian- 245

diary-mail-days . 234

diary-marking-hook, nongregorian- 245

diff-switches . 120

directory, data- . 40

directory, default- . 101

directory, doc- . 40

directory, exec- . 40

directory, insert-default- 52, 101

directory, lisp- . 40

directory, lock- . 40

directory-alist, default- . 101

directory-brief-switches, list- 119

directory-list, data- . 40

directory-list, Info- . 40

directory-verbose-switches, list- 119

dired, find-file-run- . 103

dired-kept-versions . 122

dired-listing-switches . 120

display-buffer-function . 133

display-duration, appt- . 249

display-ellipses, selective- 84, 158

display-form, calendar-date- 242

display-form, calendar-time- 242

display-hook, diary- . 246

display-mode-line, appt- . 249

distance, blink-matching-paren- 173

do, fortran-check-all-num-for-matching- 187

do-indent, fortran- . 187

doc-directory . 40

duration, appt-display- . 249

E

echo-keystrokes . 83

electric-line-number, fortran- 186

ellipses, selective-display- 84, 158

emacs-lisp-mode-hook . 166

emacs-roots . 38

EMACSDATA . 40

EMACSLOADPATH . 40

EMACSLOCKDIR. 40

EMACSPATH . 40

enable-local-variables . 273

enable-recursive-minibuffers 52

end, comment- . 175

end, sentence- . 160

end, vc-default-back- . 113

ends, calendar-daylight-savings- 243

ends-time, calendar-daylight-savings- 243

entries, number-of-diary- . 244

entries-hook, list-diary- . 247

entries-hook, mark-diary- . 247

entries-hook, print-diary- . 244

entries-in-calendar, mark-diary- 239

entries-initially, view-diary- 238

entry-marker, diary- . 239

eol, track- . 43

error, debug-on- . 197

esc-map . 276

european-calendar-style . 236

exec-directory . 40

exec-path . 40

explicit-shell-file-name . 253

extensions, completion-ignored- 54

360 XEmacs User’s Manual

F
file, diary- . 234

file, mail-abbrev-mailrc- . 216

file, superlock- . 40

file-coding-system, buffer- 142

file-coding-system, default-buffer- 143

file-coding-system-alist . 141

file-compare-truenames, find- 103

file-hooks, find- . 104

file-hooks, write- . 105

file-name, abbrev- . 208

file-name, auto-save-visited- 110

file-name, buffer- . 103

file-name, explicit-shell- . 253

file-name, mail-archive- . 217

file-name, shell- . 253

file-name, tags- . 182, 183

file-name-coding-system . 143

file-not-found-hooks, find- 104

file-prefix, term- . 286

file-run-dired, find- . 103

file-truename, buffer- . 103

file-use-truenames, find- . 103

file-user, init- . 283

files, delete-auto-save- . 110

files, make-backup- . 105

files, vc-make-backup- . 112

files-invisible, make-tags- . 183

fill-column . 163

fill-inhibit-regexp, auto- . 163

fill-prefix . 164

final-newline, require- . 105

find-file-compare-truenames 103

find-file-hooks . 104

find-file-not-found-hooks . 104

find-file-run-dired . 103

find-file-use-truenames . 103

flag, input-method-highlight- 139

flag, input-method-verbose- 139

flag, meta- . 22

fold-search, case- . 92, 94

for-matching-do, fortran-check-all-num- 187

foreground-color, x-pointer- 305

form, calendar-date-display- 242

form, calendar-time-display- 242

format, frame-icon-title- 17, 37

format, frame-title- . 17, 37

forms, diary-date-. 244

fortran-check-all-num-for-matching-do 187

fortran-comment-indent-char 188

fortran-comment-indent-style 188

fortran-comment-line-column 188

fortran-comment-region . 188

fortran-continuation-char . 187

fortran-continuation-indent 187

fortran-do-indent . 187

fortran-electric-line-number 186

fortran-if-indent . 187

fortran-line-number-indent 186

fortran-minimum-statement-indent 187

found-hooks, find-file-not- 104

frame, auto-lower- . 17

frame, auto-raise- . 17

frame-alist, default- . 17

frame-defaults, x- . 17

frame-hook, create- . 17

frame-icon-title-format . 17, 37

frame-title-format . 17, 37

function, display-buffer- . 133

function-show-arglist, describe- 60

G
general-holidays . 240

global-map . 275

glyph, modeline-pointer-. 66

glyph, nontext-pointer- . 66

glyph, text-pointer- . 66

H
header-alist, vc- . 118

header-alist, vc-static- . 118

header-separator, mail- . 215

hebrew-calendar-holidays, all- 240

hebrew-holidays . 240

height, window-min- . 134

help, completion-auto- . 54

help-map . 276

highlight-flag, input-method- 139

history, command- . 55

holiday-marker, calendar- 239

holidays, all-christian-calendar- 240

holidays, all-hebrew-calendar- 240

holidays, all-islamic-calendar- 240

holidays, calendar- . 240

holidays, christian- . 240

holidays, general- . 240

holidays, hebrew- . 240

holidays, islamic- . 240

holidays, local- . 240

holidays, other- . 240

Variable Index 361

holidays-in-calendar, mark- 239

holidays-in-diary-buffer . 244

holidays-initially, view-calendar- 239

hook, after-save- . 105

hook, c-mode- . 166

hook, calendar-load- . 239

hook, comment-indent- . 175

hook, create-frame- . 17

hook, diary-display- . 246

hook, emacs-lisp-mode- . 166

hook, initial-calendar-window- 239

hook, LaTeX-mode- . 155

hook, lisp-interaction-mode- 166

hook, lisp-mode- . 166

hook, list-diary-entries- . 247

hook, mail-mode- . 219

hook, mark-diary-entries- . 247

hook, muddle-mode- . 166

hook, nongregorian-diary-listing- 245

hook, nongregorian-diary-marking- 245

hook, nroff-mode- . 152

hook, outline-mode- . 155

hook, picture-mode- . 211

hook, plain-TeX-mode- . 155

hook, print-diary-entries- . 244

hook, scheme-mode- . 166

hook, term-setup- . 286

hook, TeX-mode- . 155

hook, text-mode- . 151

hook, today-invisible-calendar- 239

hook, today-visible-calendar- 239

hook, vc-log-mode- . 114

hooks, find-file- . 104

hooks, find-file-not-found- 104

hooks, write-file- . 105

I
icon-title-format, frame- 17, 37

if-indent, fortran- . 187

ignore-case, compare- . 120

ignore-comments, parse-sexp- 282

ignored-extensions, completion- 54

imaginary-offset, c-brace- . 172

include-blanks, diary-list- . 246

incomplete, minibuffer-confirm- 54, 305

indent, c-argdecl- . 173

indent, c-tab-always- . 171

indent, fortran-continuation- 187

indent, fortran-do- . 187

indent, fortran-if- . 187

indent, fortran-line-number- 186

indent, fortran-minimum-statement- 187

indent-char, fortran-comment- 188

indent-hook, comment- . 175

indent-level, c- . 172

indent-offset, lisp-. 170

indent-style, fortran-comment- 188

indent-tabs-mode . 149

indention, lisp-body- . 170

Info-directory-list . 40

INFOPATH . 40

inhibit-regexp, auto-fill- . 163

init-file-user . 283

initial-calendar-window-hook 239

initial-comment, vc- . 113

initial-major-mode . 33

initially, view-calendar-holidays- 239

initially, view-diary-entries- 238

input-method, current- . 139

input-method, default- . 139

input-method-highlight-flag 139

input-method-verbose-flag 139

input-ring-size . 254

insert-default-directory 52, 101

interaction-mode-hook, lisp- 166

interval, auto-save- . 110

inverse-video, mode-line- . 16

invisible, make-tags-files- . 183

invisible-calendar-hook, today- 239

isearch-mode-map . 276

islamic-calendar-holidays, all- 240

islamic-holidays . 240

K
keep-workfiles, vc- . 112

kept-new-versions . 106

kept-old-versions . 106

kept-versions, dired- . 122

keyboard-translate-table . 20

keystrokes, echo- . 83

kill-ring-max . 73

L
label-offset, c- . 173

LaTeX-mode-hook . 155

latitude, calendar- . 227

level, c-indent- . 172

line, appt-display-mode- . 249

line, comment-multi- . 175

362 XEmacs User’s Manual

line-args, command- . 36

line-column, fortran-comment- 188

line-inverse-video, mode- . 16

line-number, fortran-electric- 186

line-number-indent, fortran- 186

line-start, comment- . 188

line-start-skip, comment- . 188

lines, next-screen-context- . 82

lines, search-slow-window- . 87

lines, truncate- . 45

linked, backup-by-copying-when- 107

lisp-body-indention . 170

lisp-directory . 40

lisp-indent-offset . 170

lisp-interaction-mode-hook 166

lisp-mode-hook . 166

lisp-mode-hook, emacs- . 166

lisp-mode-map . 276

list, data-directory- . 40

list, Info-directory- . 40

list, tab-stop- . 148

list-diary-entries-hook . 247

list-directory-brief-switches 119

list-directory-verbose-switches 119

list-include-blanks, diary- . 246

listing-hook, nongregorian-diary- 245

listing-switches, dired- . 120

load-alist, after- . 194

load-hook, calendar- . 239

load-path . 40, 193

local-completion-map, minibuffer- 276

local-holidays . 240

local-map, minibuffer- . 276

local-must-match-map, minibuffer- 276

local-ns-map, minibuffer- . 276

local-variables, enable- . 273

location-name, calendar- . 227

lock-directory . 40

log-mode-hook, vc- . 114

longitude, calendar- . 227

lower-frame, auto- . 17

lpr-switches . 257

M
mail-abbrev-mailrc-file . 216

mail-abbrev-mode-regexp . 217

mail-alias-seperator-string 217

mail-archive-file-name . 217

mail-days, diary- . 234

mail-header-separator . 215

mail-mode-hook . 219

mailrc-file, mail-abbrev- . 216

major-mode, default- . 146

major-mode, initial- . 33

make-backup-files . 105

make-backup-files, vc- . 112

make-tags-files-invisible . 183

map, c-mode- . 276

map, ctl-x- . 276

map, esc- . 276

map, global- . 275

map, help- . 276

map, isearch-mode- . 276

map, lisp-mode- . 276

map, minibuffer-local- . 276

map, minibuffer-local-completion- 276

map, minibuffer-local-must-match- 276

map, minibuffer-local-ns- . 276

map, repeat-complex-command- 276

mark-diary-entries-hook . 247

mark-diary-entries-in-calendar 239

mark-holidays-in-calendar 239

mark-ring . 65

mark-ring-max . 65

mark-stack-max, tag- . 183

marker, calendar-holiday- 239

marker, calendar-today- . 239

marker, diary-entry- . 239

marking-hook, nongregorian-diary- 245

match-map, minibuffer-local-must- 276

matching-do, fortran-check-all-num-for- 187

matching-paren, blink- . 173

matching-paren-distance, blink- 173

max, kill-ring- . 73

max, mark-ring- . 65

max, tag-mark-stack- . 183

message-warning-time, appt- 249

messages, vc-command- . 113

meta-flag . 22

method, current-input- . 139

method, default-input- . 139

method-highlight-flag, input- 139

method-verbose-flag, input- 139

min-height, window- . 134

min-width, window- . 134

minibuffer-confirm-incomplete 54, 305

minibuffer-local-completion-map 276

minibuffer-local-map . 276

minibuffer-local-must-match-map 276

minibuffer-local-ns-map . 276

minibuffers, enable-recursive- 52

Variable Index 363

minimum-statement-indent, fortran- 187

mismatch, backup-by-copying-when- 107

mistrust-permissions, vc- . 113

mode, abbrev- . 205

mode, default-major- . 146

mode, indent-tabs- . 149

mode, initial-major- . 33

mode-alist, auto- . 145

mode-hook, c- . 166

mode-hook, emacs-lisp-. 166

mode-hook, LaTeX- . 155

mode-hook, lisp- . 166

mode-hook, lisp-interaction- 166

mode-hook, mail- . 219

mode-hook, muddle- . 166

mode-hook, nroff- . 152

mode-hook, outline- . 155

mode-hook, picture- . 211

mode-hook, plain-TeX- . 155

mode-hook, scheme- . 166

mode-hook, TeX- . 155

mode-hook, text- . 151

mode-hook, vc-log- . 114

mode-line, appt-display- . 249

mode-line-inverse-video . 16

mode-map, c- . 276

mode-map, isearch- . 276

mode-map, lisp- . 276

mode-pointer-shape, x- . 305

mode-regexp, mail-abbrev- 217

modeline-pointer-glyph . 66

msg-window, appt- . 249

muddle-mode-hook. 166

multi-line, comment- . 175

must-match-map, minibuffer-local- 276

N
name, abbrev-file- . 208

name, auto-save-visited-file- 110

name, buffer-file- . 103

name, calendar-daylight-time-zone- 228

name, calendar-location- . 227

name, calendar-standard-time-zone- 228

name, explicit-shell-file- . 253

name, mail-archive-file- . 217

name, shell-file- . 253

name, tags-file- . 182, 183

name-coding-system, file- . 143

new-versions, kept- . 106

newline, c-auto- . 171

newline, require-final- . 105

next-screen-context-lines . 82

no-redraw-on-reenter . 83

nongregorian-diary-listing-hook 245

nongregorian-diary-marking-hook 245

nontext-pointer-glyph . 66

nontext-pointer-shape, x- . 305

not-found-hooks, find-file- 104

nroff-mode-hook . 152

ns-map, minibuffer-local- . 276

num-for-matching-do, fortran-check-all- 187

number, fortran-electric-line- 186

number-indent, fortran-line- 186

number-of-diary-entries . 244

O
offset, c-brace- . 172

offset, c-brace-imaginary- . 172

offset, c-continued-statement- 172

offset, c-label- . 173

offset, calendar-daylight-time-. 243

offset, lisp-indent-. 170

old-versions, kept- . 106

only, buffer-read- . 127

other-holidays . 240

outline-mode-hook . 155

outline-regexp . 156

P
page-delimiter . 161

paragraph-separate . 160

paragraph-start . 160

paren, blink-matching- . 173

paren-distance, blink-matching- 173

parse-sexp-ignore-comments 282

partial-width-windows, truncate- 132

PATH . 40

path, exec- . 40

path, load- . 40, 193

path, vc- . 113

pattern, shell-prompt- . 254

permissions, vc-mistrust- . 113

picture-mode-hook . 211

picture-tab-chars . 213

plain-TeX-mode-hook . 155

pointer-background-color, x- 305

pointer-foreground-color, x- 305

pointer-glyph, modeline-. 66

pointer-glyph, nontext- . 66

364 XEmacs User’s Manual

pointer-glyph, text- . 66

pointer-shape, x- . 305

pointer-shape, x-mode- . 305

pointer-shape, x-nontext- . 305

popd-regexp, shell- . 254

prefix, fill- . 164

prefix, term-file- . 286

print-diary-entries-hook . 244

prompt-pattern, shell- . 254

pushd-regexp, shell- . 254

Q
quit, debug-on- . 197

R
raise-frame, auto- . 17

read-only, buffer- . 127

recursive-minibuffers, enable- 52

redraw-on-reenter, no- . 83

reenter, no-redraw-on- . 83

regexp, auto-fill-inhibit- . 163

regexp, mail-abbrev-mode- 217

regexp, outline- . 156

regexp, shell-cd- . 254

regexp, shell-popd- . 254

regexp, shell-pushd- . 254

region, fortran-comment- . 188

region-stays, zmacs- . 76

regions, zmacs- . 75, 306

repeat-complex-command-map 276

replace, case- . 94

require-final-newline . 105

ring, mark- . 65

ring-max, kill- . 73

ring-max, mark- . 65

ring-size, input-. 254

roots, emacs- . 38

run-dired, find-file- . 103

S
save-abbrevs . 208

save-default, auto- . 110

save-files, delete-auto- . 110

save-hook, after- . 105

save-interval, auto- . 110

save-timeout, auto- . 110

save-visited-file-name, auto- 110

savings-ends, calendar-daylight- 243

savings-ends-time, calendar-daylight- 243

savings-starts, calendar-daylight- 243

scheme-mode-hook . 166

screen-context-lines, next- . 82

scroll-conservatively . 82

scroll-step . 82

search, case-fold- . 92, 94

search-slow-speed . 87

search-slow-window-lines . 87

selective-display-ellipses 84, 158

sentence-end . 160

separate, paragraph- . 160

separator, mail-header- . 215

seperator-string, mail-alias- 217

setup-hook, term- . 286

sexp-ignore-comments, parse- 282

shape, x-mode-pointer- . 305

shape, x-nontext-pointer- . 305

shape, x-pointer- . 305

shell-cd-regexp . 254

shell-file-name . 253

shell-file-name, explicit- . 253

shell-popd-regexp . 254

shell-prompt-pattern . 254

shell-pushd-regexp . 254

show-arglist, describe-function- 60

size, input-ring-. 254

skip, comment-line-start- . 188

skip, comment-start- . 175

slow-speed, search- . 87

slow-window-lines, search- . 87

sound-alist . 286

speed, search-slow- . 87

stack-max, tag-mark- . 183

standard-time-zone-name, calendar- 228

start, comment- . 175

start, comment-line- . 188

start, paragraph- . 160

start-day, calendar-week- . 223

start-skip, comment- . 175

start-skip, comment-line- . 188

starts, calendar-daylight-savings- 243

statement-indent, fortran-minimum- 187

statement-offset, c-continued- 172

static-header-alist, vc- . 118

stays, zmacs-region- . 76

step, scroll- . 82

stop-list, tab- . 148

string, mail-alias-seperator- 217

style, european-calendar- . 236

style, fortran-comment-indent- 188

Variable Index 365

superlock-file . 40

suppress-confirm, vc- . 113

switches, diff-. 120

switches, dired-listing- . 120

switches, list-directory-brief- 119

switches, list-directory-verbose- 119

switches, lpr- . 257

system, buffer-file-coding- 142

system, default-buffer-file-coding- 143

system, file-name-coding- . 143

system-alist, file-coding- . 141

T
tab-always-indent, c- . 171

tab-chars, picture- . 213

tab-stop-list . 148

tab-width . 84

table, buffer-tag- . 183

table, keyboard-translate- . 20

table, tags-always-build-completion- 182

table, tags-build-completion- 183

table-alist, tag- . 181, 183

tabs-mode, indent- . 149

tag-mark-stack-max . 183

tag-table, buffer- . 183

tag-table-alist . 181, 183

tags-always-build-completion-table 182

tags-build-completion-table 183

tags-file-name . 182, 183

tags-files-invisible, make- . 183

term-file-prefix . 286

term-setup-hook . 286

TeX-mode-hook . 155

TeX-mode-hook, plain- . 155

text-mode-hook . 151

text-pointer-glyph . 66

time, appt-message-warning- 249

time, calendar-daylight-savings-ends- 243

time-display-form, calendar- 242

time-offset, calendar-daylight-. 243

time-zone, calendar- . 228

time-zone-name, calendar-daylight- 228

time-zone-name, calendar-standard- 228

timeout, auto-save- . 110

title-format, frame- . 17, 37

title-format, frame-icon- 17, 37

today-invisible-calendar-hook 239

today-marker, calendar- . 239

today-visible-calendar-hook 239

track-eol . 43

translate-table, keyboard- . 20

trim-versions-without-asking 106

truename, buffer-file- . 103

truenames, find-file-compare- 103

truenames, find-file-use- . 103

truncate-lines . 45

truncate-partial-width-windows 132

U

use-truenames, find-file- . 103

user, init-file- . 283

V

variables, enable-local- . 273

vc-command-messages. 113

vc-comment-alist . 118

vc-default-back-end . 113

vc-header-alist . 118

vc-initial-comment . 113

vc-keep-workfiles . 112

vc-log-mode-hook . 114

vc-make-backup-files . 112

vc-mistrust-permissions . 113

vc-path . 113

vc-static-header-alist . 118

vc-suppress-confirm . 113

verbose-flag, input-method- 139

verbose-switches, list-directory- 119

version-control. 106

versions, dired-kept- . 122

versions, kept-new- . 106

versions, kept-old- . 106

versions-without-asking, trim- 106

video, mode-line-inverse- . 16

view-calendar-holidays-initially 239

view-diary-entries-initially 238

visible, appt- . 249

visible-calendar-hook, today- 239

visited-file-name, auto-save- 110

volume, bell- . 287

366 XEmacs User’s Manual

W
warning-time, appt-message- 249

week-start-day, calendar- . 223

when-linked, backup-by-copying- 107

when-mismatch, backup-by-copying- 107

width, tab- . 84

width, window-min- . 134

width-windows, truncate-partial- 132

window, appt-msg- . 249

window-hook, initial-calendar- 239

window-lines, search-slow- . 87

window-min-height. 134

window-min-width . 134

windows, truncate-partial-width- 132

without-asking, trim-versions- 106

workfiles, vc-keep- . 112

write-file-hooks . 105

X
x-frame-defaults . 17

x-map, ctl- . 276

x-mode-pointer-shape . 305

x-nontext-pointer-shape . 305

x-pointer-background-color 305

x-pointer-foreground-color 305

x-pointer-shape . 305

Z
zmacs-region-stays . 76

zmacs-regions . 75, 306

zone, calendar-time- . 228

zone-name, calendar-daylight-time- 228

zone-name, calendar-standard-time- 228

Concept Index 367

Concept Index

(
(buffer), modified . 102

(customization buffer), active fields 265

(customization buffer), editable fields 265

(from shell), arguments. 34

(in regexps), interval operator 180

(in search), quitting . 86

(Keep Others), Un-split . 26

(Keep This), Un-split . 26

(of abbrevs), expansion . 205

(of files), deletion . 120, 123

(of mail message), headers 216

(Outline mode), body lines 155

(Outline mode), heading lines 155

(Outline mode), subtree . 158

(RCS), named configurations 117

(symbol names), completion 176

(TeX mode), header . 155

.

... menu item, Save Buffer As 26

.mailrc file . 216

A
Abbrev mode . 263

abbrevs . 205

abbrevs), expansion (of. 205

aborting . 297

accumulating text . 76

active fields (customization buffer) 265

active regions . 75

adding menu items . 31

adding menus . 31

againformation . 259

Apps menu . 25, 29

apropos . 61

architecture-specific directories 39

area, echo . 14

argument, default . 51

arguments (from shell) . 34

arguments, command line . 34

arguments, numeric . 46

ASCII . 19

Asm mode . 189

astronomical day numbers 229

audible bell, changing . 286

Auto Delete Selection menu item 29

Auto Fill mode . 162, 175, 263

Auto-Save mode . 109

autoload . 194

B
backup file . 105

batch mode . 35

bell, changing . 286

bell, changing, audible . 286

binary packages . 200

binding . 24

blank lines . 44, 175

body lines (Outline mode) 155

bold font . 268

boredom . 260

buffer . 13

Buffer As ... menu item, Save 26

buffer menu . 127

Buffer menu item, Kill . 26

Buffer menu item, Print . 26

Buffer menu item, Revert . 26

Buffer menu item, Save. 26

buffer variables, per- . 271

buffer), active fields (customization 265

buffer), editable fields (customization 265

buffer, current . 125

buffer, customization . 265

buffer, diary . 246

buffer, read-only . 127

buffer, selected . 125

buffers . 125

Buffers menu . 25, 30

Buffers Menu Length... menu item 29

Buffers Sub-Menus menu item 29

buffers, changing . 125

buffers, cut . 74

buffers, switching . 125

buggestion . 259

bugs . 300

byte code . 194

368 XEmacs User’s Manual

C
C . 165

C mode . 165

calendar . 221

calendar round, Mayan . 232

calendar, Chinese . 230

calendar, Coptic . 229

calendar, Ethiopic . 229

calendar, first day of week 223

calendar, French Revolutionary 229

calendar, Gregorian . 229

calendar, Hebrew . 229

calendar, Islamic . 229

calendar, ISO commercial 229

calendar, Julian . 229

calendar, Mayan . 229

calendar, Mayan haab . 232

calendar, Mayan tzolkin . 232

calendar, moving inside the 221

calendar, Persian . 230

calendar, scrolling in the . 223

candle lighting times . 249

case conversion . 98, 164

Case Sensitive Search menu item 29

centering . 163

chain, Markov . 259

change log . 177

changes, drastic . 108

changing buffers . 125

changing menu items . 32

changing, audible bell, . 286

changing, bell, . 286

character set . 19

characters, encoding of . 137

characters, graphic . 41

characters, multibyte . 137

checking in files . 111

checking out files . 111

Chinese . 137

Chinese calendar . 230

Clear menu item . 28

clipboard selections . 73

code, byte . 194

code, loading Lisp . 193

coding systems . 140

command . 24, 275

command history . 55

command line arguments . 34

command name . 275

command, disabled . 280

Commands menu item, Teach Extended 29

commands, history of . 55

commands, shell . 252

comments . 174

commercial calendar, ISO 229

comparing files . 120

compilation errors . 191

compiling files . 191

completion . 53

completion (symbol names) 176

configurations (RCS), named 117

continuation line . 45

control, locking and version 111

control, snapshots and version 117

control, version . 111

Control-Meta . 166

conversion, case . 98, 164

Coptic calendar . 229

Copy menu item . 28

copy XEmacs, license to . 3

copying files . 123

copying text . 71, 76

core distribution . 200

correcting, mistakes, . 49, 97

count, Mayan long . 232

count, omer . 249

crashes. 109

creating directories . 101

creating files . 103

current buffer . 125

current stack frame . 197

cursor . 14, 41

customization . 24, 170, 263

customization buffer . 265

customization groups . 265

customizing faces . 268

cut buffers . 74

Cut menu item . 28

cutting . 69

D
dates, file . 107

day numbers, astronomical 229

day numbers, Julian . 229

day of week, calendar, first 223

day of year . 225

day they start on, weeks, which 223

daylight savings time . 243

debugger . 197

default argument . 51

defuns . 168

Concept Index 369

Delete Frame menu item . 26

Delete Selection menu item, Auto 29

deleting menu items . 32

deletion . 41, 69

deletion (of files) . 120, 123

diary . 233

diary buffer . 246

diary entries, sexp . 247

diary entries, sorting . 246

diary file . 234

ding . 286

directories . 38

directories, architecture-specific 39

directories, creating . 101

directories, removing . 101

directories, site-specific . 39

directories, version-specific. 39

directory hierarchies . 38

directory listing . 119

directory, file . 119

Dired . 120

disabled command . 280

disabling menu items . 32

display, selective . 155

Distribution . 4

distribution, core . 200

doctor . 299

documentation, self- . 59

down Menus, Pull- . 26, 134

drastic changes . 108

dribble file . 302

E
early package hierarchies . 38

echo area . 14

Edit menu . 25, 28

editable fields (customization buffer) 265

editing level, recursive 258, 297

editing, simultaneous . 107

editors, other . 260

EDT . 260

Eliza. 299

Emacs initialization file . 283

Emacs menu item, Exit . 26

Emacs, entering . 33

Emacs, killing . 33

Emacs-Lisp mode . 196

enabling menu items . 32

encoding of characters . 137

End Macro Recording menu item 28

entering Emacs . 33

entering XEmacs . 33

entries, sexp diary . 247

entries, sorting diary . 246

entry, log . 112

environment . 253

environments, language . 137

error log . 191

errors, compilation . 191

etags program . 179

Ethiopic calendar . 229

Execute Last Macro menu item 28

Exit Emacs menu item . 26

exiting . 33, 258

expansion (of abbrevs) . 205

expression . 166

expression, regular . 89

Extended Commands menu item, Teach 29

F
face, pointer . 66

faces, customizing . 268

faces, fonts and . 268

fields (customization buffer), active 265

fields (customization buffer), editable 265

file dates . 107

file directory . 119

File menu . 25, 26

file names . 101

file packages, single-. 200

file protection . 108

file, .mailrc . 216

file, backup . 105

file, diary . 234

file, dribble . 302

file, Emacs initialization . 283

file, init . 283

file, master . 111

File, New Frame... menu item, Open 26

file, registered . 111

file, termscript . 302

file, work . 111

File... menu item, Insert. 26

File... menu item, Open . 26

files . 43, 101, 102

files), deletion (of . 120, 123

files, checking in . 111

files, checking out . 111

files, comparing . 120

files, compiling . 191

370 XEmacs User’s Manual

files, copying . 123

files, creating . 103

files, local variables in . 271

files, visiting. 102

Fill mode, Auto 162, 175, 263

fill prefix . 163

filling . 161

first day of week, calendar, 223

Font menu item . 29

font, bold . 268

font, italic . 268

fonts and faces . 268

formfeed . 161

forms, holiday . 240

Fortran mode . 185

frame . 13

Frame menu item, Delete . 26

Frame menu item, New. 26

frame XEmacs, multi- . 16

frame, current stack . 197

frame, shrinking XEmacs . 33

Frame, Split . 26

Frame... menu item, Open File, New 26

French Revolutionary calendar 229

function . 24, 275

G
General Public License . 3

global keymap . 275

global substitution . 93

graphic characters . 41

Greek . 137

Gregorian calendar . 229

grinding . 169

groups, customization . 265

H
haab calendar, Mayan . 232

hardcopy . 257

header (TeX mode) . 155

headers (of mail message) 216

heading lines (Outline mode) 155

Hebrew calendar . 229

help . 59

Help menu . 26, 31

hierarchies . 38

hierarchies, directory . 38

hierarchies, early package . 38

hierarchies, last package . 38

hierarchies, late package . 38

hierarchies, package . 38

hierarchy, root of a . 38

Highlighting menu item, Paren 29

Highlighting menu item, Syntax 29

history of commands . 55

history, command . 55

hodesh, rosh. 249

holiday forms . 240

holidays . 226

hook, mode . 166

horizontal scrolling . 82

I
ignoriginal . 259

incremental search, non- . 88

indentation . 147, 169, 174

inferior process . 191

init file . 283

initialization file, Emacs . 283

input methods . 138

Insert File... menu item . 26

insertion . 41

inside the calendar, moving 221

international scripts . 137

interval operator (in regexps) 180

invisible lines . 155

IPA. 137

Islamic calendar . 229

ISO commercial calendar . 229

italic font . 268

item, Auto Delete Selection menu 29

item, Buffers Menu Length... menu. 29

item, Buffers Sub-Menus menu 29

item, Case Sensitive Search menu 29

item, Clear menu . 28

item, Copy menu . 28

item, Cut menu . 28

item, Delete Frame menu . 26

item, End Macro Recording menu 28

item, Execute Last Macro menu 28

item, Exit Emacs menu . 26

item, Font menu . 29

item, Insert File... menu. 26

item, Kill Buffer menu . 26

item, New Frame menu. 26

item, Open File, New Frame... menu 26

item, Open File... menu . 26

item, Overstrike menu . 29

item, Paren Highlighting menu 29

Concept Index 371

item, Paste menu . 28

item, Print Buffer menu . 26

item, Read Only menu . 29

item, Revert Buffer menu . 26

item, Save Buffer As ... menu 26

item, Save Buffer menu. 26

item, Size menu . 29

item, Start Macro Recording menu 28

item, Syntax Highlighting menu 29

item, Teach Extended Commands menu 29

item, Undo menu . 28

item, Weight menu . 29

items, adding menu . 31

items, changing menu . 32

items, deleting menu . 32

items, disabling menu . 32

items, enabling menu . 32

J

Japanese . 137

Julian calendar . 229

Julian day numbers . 229

justification . 163

K

key rebinding, permanent 283

key rebinding, this session 277

key sequence, prefix . 21

key, modifier . 19

keyboard macros . 273

keycode . 22

keymap . 24, 275

keymap, global . 275

keymap, local . 276

keys, permanently, rebinding 283

keys, redefining . 279

keys, this session, rebinding. 277

keystroke. 19

keysym . 19

keysyms. 22

Kill Buffer menu item . 26

kill ring . 71

killing . 69

killing Emacs . 33

Korean . 137

L
language environments . 137

Last Macro menu item, Execute 28

last package hierarchies . 38

late package hierarchies . 38

LaTeX . 152

Length... menu item, Buffers Menu. 29

level, recursive editing 258, 297

level, recursive, editing 258, 297

level, top . 15

libraries . 193

libraries, loading . 193

license to copy XEmacs . 3

License, General Public . 3

lighting times, candle . 249

line arguments, command . 34

line number . 45

line, continuation . 45

line, mode . 15, 263

lines (Outline mode), body 155

lines (Outline mode), heading 155

lines, blank . 44, 175

lines, invisible . 155

Lisp . 165

Lisp code, loading . 193

Lisp mode. 165

Lisp mode, Emacs- . 196

list . 166

listing, directory . 119

loading libraries . 193

loading Lisp code . 193

local keymap . 276

local variables . 270

local variables in files . 271

locking and version control 111

log entry . 112

log, change . 177

log, error . 191

long count, Mayan . 232

M
Macro menu item, Execute Last 28

Macro Recording menu item, End 28

Macro Recording menu item, Start 28

macros, keyboard . 273

mail . 215, 221

mail message), headers (of 216

major modes . 145

make . 191

mapping, modifier . 23

372 XEmacs User’s Manual

mark . 63

mark ring . 65, 224

Markov chain . 259

master file . 111

matching parentheses . 173

Mayan calendar . 229

Mayan calendar round . 232

Mayan haab calendar . 232

Mayan long count. 232

Mayan tzolkin calendar . 232

menu item, Auto Delete Selection 29

menu item, Buffers Menu Length... 29

menu item, Buffers Sub-Menus 29

menu item, Case Sensitive Search 29

menu item, Clear . 28

menu item, Copy . 28

menu item, Cut . 28

menu item, Delete Frame . 26

menu item, End Macro Recording 28

menu item, Execute Last Macro 28

menu item, Exit Emacs . 26

menu item, Font . 29

menu item, Insert File... 26

menu item, Kill Buffer . 26

menu item, New Frame. 26

menu item, Open File, New Frame... 26

menu item, Open File... 26

menu item, Overstrike . 29

menu item, Paren Highlighting 29

menu item, Paste . 28

menu item, Print Buffer . 26

menu item, Read Only . 29

menu item, Revert Buffer . 26

menu item, Save Buffer. 26

menu item, Save Buffer As 26

menu item, Size . 29

menu item, Start Macro Recording 28

menu item, Syntax Highlighting 29

menu item, Teach Extended Commands 29

menu item, Undo . 28

menu item, Weight . 29

menu items, adding . 31

menu items, changing . 32

menu items, deleting . 32

menu items, disabling . 32

menu items, enabling . 32

Menu Length... menu item, Buffers. 29

menu, Apps . 25, 29

menu, buffer . 127

menu, Buffers . 25, 30

menu, Edit . 25, 28

menu, File . 25, 26

menu, Help . 26, 31

menu, Options . 25, 29

menu, Tools . 26, 30

menu, Windows . 134

menus . 26, 134

Menus menu item, Buffers Sub- 29

menus, adding . 31

Menus, Pull-down . 26, 134

message . 215, 221

message), headers (of mail 216

Meta . 158

Meta, Control- . 166

methods, input . 138

minibuffer . 51, 57, 276

minor modes . 263

mistakes, correcting . 49, 97

mocklisp . 195

mode hook . 166

mode line . 15, 263

mode), body lines (Outline 155

mode), header (TeX . 155

mode), heading lines (Outline 155

mode), subtree (Outline . 158

mode, Abbrev . 263

mode, Asm . 189

mode, Auto Fill 162, 175, 263

mode, Auto-Save . 109

mode, batch . 35

mode, C . 165

mode, Emacs-Lisp . 196

mode, Fortran . 185

mode, Lisp . 165

mode, Overwrite . 263

mode, Scheme . 165

mode, Shell . 254

mode, Term . 256

mode, Text . 151

modes, major . 145

modes, minor . 263

modifer, shift . 20

modified (buffer) . 102

modifier key . 19

modifier mapping . 23

moon, phases of . 228

moon, phases of the . 228

mouse operations . 66

mouse selection . 66

moving inside the calendar 221

moving text . 71

MULE . 137

Concept Index 373

multi-frame XEmacs . 16

multibyte characters . 137

N
name, command . 275

named configurations (RCS) 117

names), completion (symbol 176

names, file . 101

narrowing . 256

New Frame menu item . 26

New Frame... menu item, Open File, 26

newline . 41

non-incremental search . 88

nroff . 152

number, line . 45

number, page . 45

number, version . 305

numbers, astronomical day 229

numbers, Julian day . 229

numeric arguments . 46

O
omer count . 249

only buffer, read- . 127

Only menu item, Read . 29

Open File, New Frame... menu item 26

Open File... menu item . 26

operations, mouse. 66

operator (in regexps), interval 180

option . 263, 264

option value, saving . 267

option value, setting . 266

Options menu . 25, 29

Options, Save . 29

other editors . 260

Others), Un-split (Keep . 26

out files, checking . 111

outlines . 155

outragedy . 259

Overstrike menu item . 29

Overwrite mode . 263

P
package hierarchies . 38

package hierarchies, early . 38

package hierarchies, last . 38

package hierarchies, late . 38

package path . 39

packages . 200

packages, binary . 200

packages, regular . 200

packages, single-file . 200

packages, source . 200

page number . 45

pages . 161

paragraphs . 160

parasha, weekly . 249

Paren Highlighting menu item 29

parentheses . 173

parentheses, matching . 173

Paste menu item . 28

pasting . 71

path . 38

path, package . 39

paths . 39

paths, startup . 38

per-buffer variables . 271

permanent, key rebinding, 283

permanently, rebinding keys, 283

Persian calendar . 230

phases of the moon . 228

phases of, moon, . 228

pictures . 211

point . 14, 41

pointer face . 66

pointer shapes . 66

prefix key sequence . 21

prefix, fill . 163

presidentagon . 259

primary selections . 74

Print Buffer menu item . 26

process, inferior. 191

program, etags . 179

prompt . 51

properbose . 259

protection, file . 108

Public License, General . 3

Pull-down Menus . 26, 134

Q

query replace . 94

quitting . 297

quitting (in search) . 86

quoting . 41

374 XEmacs User’s Manual

R
random sentences . 259

RCS . 111

Read Only menu item . 29

read-only buffer . 127

rebinding keys, permanently 283

rebinding keys, this session 277

rebinding, permanent, key 283

rebinding, this session, key 277

Recording menu item, End Macro 28

Recording menu item, Start Macro 28

rectangle . 80, 213

rectangles . 77

recursive editing level 258, 297

recursive, editing level, 258, 297

redefining keys . 279

regexp . 89

regexps), interval operator (in 180

region . 63, 164

regions, active . 75

registered file . 111

registers. 79

regular expression. 89

regular packages . 200

removing directories . 101

replace, query . 94

replacement . 93

resources, X . 289

restriction . 256

Revert Buffer menu item . 26

Revolutionary calendar, French 229

ring, kill . 71

ring, mark . 65, 224

root of a hierarchy . 38

rosh hodesh . 249

round, Mayan calendar . 232

Russian . 137

S
Save Buffer As ... menu item 26

Save Buffer menu item . 26

Save mode, Auto- . 109

Save Options . 29

saving . 102

saving option value . 267

savings time, daylight . 243

SCCS . 111

Scheme mode . 165

scripts, international . 137

scrolling. 81

scrolling in the calendar . 223

scrolling, horizontal . 82

Search menu item, Case Sensitive 29

search), quitting (in . 86

search, non-incremental . 88

search, word . 88

searching . 85

selected buffer . 125

selected window . 131

Selection menu item, Auto Delete 29

selection, mouse . 66

selections, clipboard. 73

selections, primary . 74

selective display . 155

self-documentation . 59

Sensitive Search menu item, Case 29

sentences . 159

sentences, random . 259

sequence, prefix key . 21

session, key rebinding, this 277

session, rebinding keys, this. 277

set, character . 19

setting option value . 266

setting variables . 264

sexp . 166

sexp diary entries . 247

shapes, pointer . 66

shell commands. 252

Shell mode . 254

shell), arguments (from. 34

shift modifer . 20

shrinking XEmacs frame . 33

simultaneous editing . 107

single-file packages . 200

site-specific directories . 39

Size menu item . 29

snapshots and version control 117

sorting . 251

sorting diary entries. 246

source packages . 200

specific directories, architecture- 39

specific directories, site- . 39

specific directories, version- 39

spelling . 98

split (Keep Others), Un- . 26

split (Keep This), Un-. 26

Split Frame . 26

stack frame, current. 197

Start Macro Recording menu item 28

start on, weeks, which day they 223

startup paths . 38

Concept Index 375

string substitution . 93

Sub-Menus menu item, Buffers 29

subshell . 252

substitution, global . 93

substitution, string. 93

subtree (Outline mode) . 158

sunrise and sunset . 227

sunset, sunrise and . 227

suspending . 33

switching buffers . 125

Syntax Highlighting menu item 29

syntax table . 159, 280

systems, coding . 140

T
table, syntax . 159, 280

table, tags . 178

tags table . 178

Teach Extended Commands menu item 29

techniquitous . 259

television. 72

Term mode . 256

Term, mode, . 256

termscript file . 302

TeX . 152

text . 151

Text mode . 151

text, accumulating . 76

text, copying . 71, 76

text, moving . 71

they start on, weeks, which day 223

this session, key rebinding, 277

this session, rebinding keys,. 277

This), Un-split (Keep . 26

time, daylight savings . 243

times, candle lighting . 249

Tools menu . 26, 30

top level . 15

transposition . 97, 159, 167

truncation . 45

typos . 97

tzolkin calendar, Mayan . 232

U
Un-split (Keep Others) . 26

Un-split (Keep This) . 26

undo . 49

Undo menu item . 28

V
value, saving option . 267

value, setting option . 266

variable . 263

variables . 25

variables in files, local . 271

variables, local . 270

variables, per-buffer . 271

variables, setting. 264

version control. 111

version control, locking and 111

version control, snapshots and 117

version number . 305

version-specific directories . 39

vi . 260

viewing . 123

Viper . 260

visiting . 102

visiting files . 102

W
week, calendar, first day of 223

weekly, parasha, . 249

weeks, which day they start on 223

Weight menu item . 29

which day they start on, weeks, 223

widening . 256

window . 13

window, selected . 131

windows . 131

Windows menu . 134

word search . 88

words . 98, 158, 164

work file . 111

X
X resources . 289

XEmacs frame, shrinking . 33

XEmacs, entering . 33

XEmacs, license to copy . 3

XEmacs, multi-frame . 16

Y
yahrzeits . 231, 249

yanking . 71

year, day of . 225

376 XEmacs User’s Manual

		XEmacs User's Manual

		Short Contents

		Table of Contents

		Preface

		GNU GENERAL PUBLIC LICENSE

		Preamble

		TERMS AND CONDITIONS

		Appendix: How to Apply These Terms to Your New Programs

		Distribution

		Getting Other Versions of Emacs

		Introduction

		The XEmacs Frame

		Point

		The Echo Area

		The Mode Line

		Using XEmacs Under the X Window System

		Keystrokes, Key Sequences, and Key Bindings

		Keystrokes as Building Blocks of Key Sequences

		Representing Keystrokes

		Representing Key Sequences

		String Key Sequences

		Assignment of the META Key

		Assignment of the SUPER and HYPER Keys

		Representation of Characters

		Keys and Commands

		XEmacs Pull-down Menus

		The File Menu

		The Edit Menu

		The Apps Menu

		The Options Menu

		The Buffers Menu

		The Tools Menu

		The Help Menu

		Customizing XEmacs Menus

		Entering and Exiting Emacs

		Exiting Emacs

		Command Line Switches and Arguments

		Command Line Arguments for Any Position

		Command Line Arguments (Beginning of Line Only)

		Command Line Arguments (for XEmacs Under X)

		How XEmacs finds Directories and Files

		XEmacs Directory Hierarchies

		Package Hierarchies

		Directories and Paths

		Basic Editing Commands

		Inserting Text

		Changing the Location of Point

		Erasing Text

		Files

		Help

		Blank Lines

		Continuation Lines

		Cursor Position Information

		Numeric Arguments

		Undoing Changes

		The Minibuffer

		Minibuffers for File Names

		Editing in the Minibuffer

		Completion

		A Completion Example

		Completion Commands

		Repeating Minibuffer Commands

		Running Commands by Name

		Help

		Documentation for a Key

		Help by Command or Variable Name

		Apropos

		Other Help Commands

		Selecting Text

		The Mark and the Region

		Setting the Mark

		Operating on the Region

		Commands to Mark Textual Objects

		The Mark Ring

		Selecting Text with the Mouse

		Additional Mouse Operations

		Killing and Moving Text

		Deletion and Killing

		Deletion

		Killing by Lines

		Other Kill Commands

		Yanking

		The Kill Ring

		Appending Kills

		Yanking Earlier Kills

		Using X Selections

		The Clipboard Selection

		Miscellaneous X Selection Commands

		X Cut Buffers

		Active Regions

		Accumulating Text

		Rectangles

		Registers

		Saving Positions in Registers

		Saving Text in Registers

		Saving Rectangles in Registers

		Controlling the Display

		Scrolling

		Horizontal Scrolling

		Selective Display

		Variables Controlling Display

		Searching and Replacement

		Incremental Search

		Slow Terminal Incremental Search

		Non-Incremental Search

		Word Search

		Regular Expression Search

		Syntax of Regular Expressions

		Searching and Case

		Replacement Commands

		Unconditional Replacement

		Regexp Replacement

		Replace Commands and Case

		Query Replace

		Other Search-and-Loop Commands

		Commands for Fixing Typos

		Killing Your Mistakes

		Transposing Text

		Case Conversion

		Checking and Correcting Spelling

		File Handling

		File Names

		Visiting Files

		Saving Files

		Backup Files

		Single or Numbered Backups

		Automatic Deletion of Backups

		Copying vs.spacefactor =1000 Renaming

		Protection Against Simultaneous Editing

		Reverting a Buffer

		Auto-Saving: Protection Against Disasters

		Auto-Save Files

		Controlling Auto-Saving

		Recovering Data from Auto-Saves

		Version Control

		Concepts of Version Control

		Editing with Version Control

		Variables Affecting Check-in and Check-out

		Log Entries

		Change Logs and VC

		Examining And Comparing Old Versions

		VC Status Commands

		Renaming VC Work Files and Master Files

		Snapshots

		Making and Using Snapshots

		Snapshot Caveats

		Inserting Version Control Headers

		Listing a File Directory

		Comparing Files

		Dired, the Directory Editor

		Entering Dired

		Editing in Dired

		Deleting Files With Dired

		Immediate File Operations in Dired

		Miscellaneous File Operations

		Using Multiple Buffers

		Creating and Selecting Buffers

		Listing Existing Buffers

		Miscellaneous Buffer Operations

		Killing Buffers

		Operating on Several Buffers

		Multiple Windows

		Concepts of Emacs Windows

		Splitting Windows

		Using Other Windows

		Displaying in Another Window

		Deleting and Rearranging Windows

		World Scripts Support

		Introduction to world scripts

		Language Environments

		Input Methods

		Selecting an Input Method

		Coding Systems

		Recognizing Coding Systems

		Specifying a Coding System

		Major Modes

		Choosing Major Modes

		Indentation

		Indentation Commands and Techniques

		Tab Stops

		Tabs vs. Spaces

		Commands for Human Languages

		Text Mode

		Nroff Mode

		TeX Mode

		TeX Editing Commands

		TeX Printing Commands

		Outline Mode

		Format of Outlines

		Outline Motion Commands

		Outline Visibility Commands

		Words

		Sentences

		Paragraphs

		Pages

		Filling Text

		Auto Fill Mode

		Explicit Fill Commands

		The Fill Prefix

		Case Conversion Commands

		Editing Programs

		Major Modes for Programming Languages

		Lists and Sexps

		Defuns

		Indentation for Programs

		Basic Program Indentation Commands

		Indenting Several Lines

		Customizing Lisp Indentation

		Customizing C Indentation

		Automatic Display of Matching Parentheses

		Manipulating Comments

		Multiple Lines of Comments

		Options Controlling Comments

		Editing Without Unbalanced Parentheses

		Completion for Lisp Symbols

		Documentation Commands

		Change Logs

		Tags Tables

		Source File Tag Syntax

		Creating Tags Tables

		Selecting a Tags Table

		Finding a Tag

		Searching and Replacing with Tags Tables

		Tags Table Inquiries

		Fortran Mode

		Motion Commands

		Fortran Indentation

		Fortran Indentation Commands

		Line Numbers and Continuation

		Syntactic Conventions

		Variables for Fortran Indentation

		Comments

		Columns

		Fortran Keyword Abbrevs

		Asm Mode

		Compiling and Testing Programs

		Running ``make'', or Compilers Generally

		Major Modes for Lisp

		Libraries of Lisp Code for Emacs

		Loading Libraries

		Compiling Libraries

		Converting Mocklisp to Lisp

		Evaluating Emacs-Lisp Expressions

		The Emacs-Lisp Debugger

		Lisp Interaction Buffers

		Running an External Lisp

		Packages

		Package Flavors

		Package Distributions

		Binary Packages

		Source Packages

		Getting Started

		Choosing the Packages You Need

		XEmacs and Installing Packages

		Other package installation interfaces

		Manual Binary Package Installation

		Prerequisites for Building Source Packages

		What You Can Do With Source Packages

		Abbrevs

		Defining Abbrevs

		Controlling Abbrev Expansion

		Examining and Editing Abbrevs

		Saving Abbrevs

		Dynamic Abbrev Expansion

		Editing Pictures

		Basic Editing in Picture Mode

		Controlling Motion After Insert

		Picture Mode Tabs

		Picture Mode Rectangle Commands

		Sending Mail

		The Format of the Mail Buffer

		Mail Header Fields

		Mail Mode

		Reading Mail

		Calendar Mode and the Diary

		Movement in the Calendar

		Motion by Integral Days, Weeks, Months, Years

		Beginning or End of Week, Month or Year

		Particular Dates

		Scrolling the Calendar through Time

		The Mark and the Region

		Miscellaneous Calendar Commands

		LaTeX Calendar

		Holidays

		Times of Sunrise and Sunset

		Phases of the Moon

		Conversion To and From Other Calendars

		Supported Calendar Systems

		Converting To Other Calendars

		Converting From Other Calendars

		Converting from the Mayan Calendar

		The Diary

		Commands Displaying Diary Entries

		The Diary File

		Date Formats

		Commands to Add to the Diary

		Special Diary Entries

		Customizing the Calendar and Diary

		Customizing the Calendar

		Customizing the Holidays

		Date Display Format

		Time Display Format

		Daylight Savings Time

		Customizing the Diary

		Hebrew- and Islamic-Date Diary Entries

		Fancy Diary Display

		Included Diary Files

		Sexp Entries and the Fancy Diary Display

		Customizing Appointment Reminders

		Miscellaneous Commands

		Sorting Text

		Running Shell Commands from XEmacs

		Single Shell Commands

		Interactive Inferior Shell

		Shell Mode

		Interactive Inferior Shell with Terminal Emulator

		Term Mode

		Paging in the terminal emulator

		Narrowing

		Hardcopy Output

		Recursive Editing Levels

		Dissociated Press

		CONX

		Other Amusements

		Emulation

		Customization

		Minor Modes

		Variables

		Examining and Setting Variables

		Easy Customization Interface

		Customization Groups

		Changing an Option

		Customizing Faces

		Customizing Specific Items

		Editing Variable Values

		Local Variables

		Local Variables in Files

		Keyboard Macros

		Basic Use

		Naming and Saving Keyboard Macros

		Executing Macros With Variations

		Customizing Key Bindings

		Keymaps

		Changing Key Bindings

		Changing Key Bindings Interactively

		Changing Key Bindings Programmatically

		Using Strings for Changing Key Bindings

		Disabling Commands

		The Syntax Table

		Information About Each Character

		Altering Syntax Information

		The Init File, .emacs

		Init File Syntax

		Init File Examples

		Terminal-Specific Initialization

		Changing the Bell Sound

		Faces

		Customizing Faces

		X Resources

		Geometry Resources

		Iconic Resources

		Resource List

		Face Resources

		Widgets

		Menubar Resources

		Correcting Mistakes (Yours or Emacs's)

		Quitting and Aborting

		Dealing With Emacs Trouble

		Recursive Editing Levels

		Garbage on the Screen

		Garbage in the Text

		Spontaneous Entry to Incremental Search

		Emergency Escape

		Help for Total Frustration

		Reporting Bugs

		When Is There a Bug

		How to Report a Bug

		XEmacs Features

		General Changes

		New Commands and Variables

		Changes in Key Bindings

		Glossary

		The GNU Manifesto

		What's GNU? GNU's Not Unix!

		Why I Must Write GNU

		Why GNU Will Be Compatible With Unix

		How GNU Will Be Available

		Why Many Other Programmers Want to Help

		How You Can Contribute

		Why All Computer Users Will Benefit

		Some Easily Rebutted Objections to GNU's Goals

		Key (Character) Index

		Command and Function Index

		Variable Index

		Concept Index

