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Chapter 1: A History of Emacs 1

1 A History of Emacs

XEmacs is a powerful, customizable text editor and development environment. It began
as Lucid Emacs, which was in turn derived from GNU Emacs, a program written by Richard
Stallman of the Free Software Foundation. GNU Emacs dates back to the 1970’s, and was
modelled after a package called “Emacs”, written in 1976, that was a set of macros on
top of TECO, an old, old text editor written at MIT on the DEC PDP 10 under one of
the earliest time-sharing operating systems, ITS (Incompatible Timesharing System). (ITS
dates back well before Unix.) ITS, TECO, and Emacs were products of a group of people
at MIT who called themselves “hackers”, who shared an idealistic belief system about the
free exchange of information and were fanatical in their devotion to and time spent with
computers. (The hacker subculture dates back to the late 1950’s at MIT and is described
in detail in Steven Levy’s book Hackers. This book also includes a lot of information about
Stallman himself and the development of Lisp, a programming language developed at MIT
that underlies Emacs.)

1.1 Through Version 18

Although the history of the early versions of GNU Emacs is unclear, the history is
well-known from the middle of 1985. A time line is:
• GNU Emacs version 15 (15.34) was released sometime in 1984 or 1985 and shared some

code with a version of Emacs written by James Gosling (the same James Gosling who
later created the Java language).

• GNU Emacs version 16 (first released version was 16.56) was released on July 15, 1985.
All Gosling code was removed due to potential copyright problems with the code.

• version 16.57: released on September 16, 1985.
• versions 16.58, 16.59: released on September 17, 1985.
• version 16.60: released on September 19, 1985. These later version 16’s incorporated

patches from the net, esp. for getting Emacs to work under System V.
• version 17.36 (first official v17 release) released on December 20, 1985. Included a

TeX-able user manual. First official unpatched version that worked on vanilla System
V machines.

• version 17.43 (second official v17 release) released on January 25, 1986.
• version 17.45 released on January 30, 1986.
• version 17.46 released on February 4, 1986.
• version 17.48 released on February 10, 1986.
• version 17.49 released on February 12, 1986.
• version 17.55 released on March 18, 1986.
• version 17.57 released on March 27, 1986.
• version 17.58 released on April 4, 1986.
• version 17.61 released on April 12, 1986.
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• version 17.63 released on May 7, 1986.
• version 17.64 released on May 12, 1986.
• version 18.24 (a beta version) released on October 2, 1986.
• version 18.30 (a beta version) released on November 15, 1986.
• version 18.31 (a beta version) released on November 23, 1986.
• version 18.32 (a beta version) released on December 7, 1986.
• version 18.33 (a beta version) released on December 12, 1986.
• version 18.35 (a beta version) released on January 5, 1987.
• version 18.36 (a beta version) released on January 21, 1987.
• January 27, 1987: The Great Usenet Renaming. net.emacs is now comp.emacs.
• version 18.37 (a beta version) released on February 12, 1987.
• version 18.38 (a beta version) released on March 3, 1987.
• version 18.39 (a beta version) released on March 14, 1987.
• version 18.40 (a beta version) released on March 18, 1987.
• version 18.41 (the first “official” release) released on March 22, 1987.
• version 18.45 released on June 2, 1987.
• version 18.46 released on June 9, 1987.
• version 18.47 released on June 18, 1987.
• version 18.48 released on September 3, 1987.
• version 18.49 released on September 18, 1987.
• version 18.50 released on February 13, 1988.
• version 18.51 released on May 7, 1988.
• version 18.52 released on September 1, 1988.
• version 18.53 released on February 24, 1989.
• version 18.54 released on April 26, 1989.
• version 18.55 released on August 23, 1989. This is the earliest version that is still

available by FTP.
• version 18.56 released on January 17, 1991.
• version 18.57 released late January, 1991.
• version 18.58 released ?????.
• version 18.59 released October 31, 1992.

1.2 Lucid Emacs

Lucid Emacs was developed by the (now-defunct) Lucid Inc., a maker of C++ and Lisp
development environments. It began when Lucid decided they wanted to use Emacs as the
editor and cornerstone of their C++ development environment (called “Energize”). They
needed many features that were not available in the existing version of GNU Emacs (version
18.5something), in particular good and integrated support for GUI elements such as mouse
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support, multiple fonts, multiple window-system windows, etc. A branch of GNU Emacs
called Epoch, written at the University of Illinois, existed that supplied many of these
features; however, Lucid needed more than what existed in Epoch. At the time, the Free
Software Foundation was working on version 19 of Emacs (this was sometime around 1991),
which was planned to have similar features, and so Lucid decided to work with the Free
Software Foundation. Their plan was to add features that they needed, and coordinate with
the FSF so that the features would get included back into Emacs version 19.

Delays in the release of version 19 occurred, however (resulting in it finally being released
more than a year after what was initially planned), and Lucid encountered unexpected
technical resistance in getting their changes merged back into version 19, so they decided
to release their own version of Emacs, which became Lucid Emacs 19.0.

The initial authors of Lucid Emacs were Matthieu Devin, Harlan Sexton, and Eric
Benson, and the work was later taken over by Jamie Zawinski, who became “Mr. Lucid
Emacs” for many releases.

A time line for Lucid Emacs/XEmacs is

• version 19.0 shipped with Energize 1.0, April 1992.

• version 19.1 released June 4, 1992.

• version 19.2 released June 19, 1992.

• version 19.3 released September 9, 1992.

• version 19.4 released January 21, 1993.

• version 19.5 was a repackaging of 19.4 with a few bug fixes and shipped with Energize
2.0. Never released to the net.

• version 19.6 released April 9, 1993.

• version 19.7 was a repackaging of 19.6 with a few bug fixes and shipped with Energize
2.1. Never released to the net.

• version 19.8 released September 6, 1993.

• version 19.9 released January 12, 1994.

• version 19.10 released May 27, 1994.

• version 19.11 (first XEmacs) released September 13, 1994.

• version 19.12 released June 23, 1995.

• version 19.13 released September 1, 1995.

• version 19.14 released June 23, 1996.

• version 20.0 released February 9, 1997.

• version 19.15 released March 28, 1997.

• version 20.1 (not released to the net) April 15, 1997.

• version 20.2 released May 16, 1997.

• version 19.16 released October 31, 1997.

• version 20.3 (the first stable version of XEmacs 20.x) released November 30, 1997.
version 20.4 released February 28, 1998.
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1.3 GNU Emacs 19

About a year after the initial release of Lucid Emacs, the FSF released a beta of their
version of Emacs 19 (referred to here as “GNU Emacs”). By this time, the current version
of Lucid Emacs was 19.6. (Strangely, the first released beta from the FSF was GNU Emacs
19.7.) A time line for GNU Emacs version 19 is

• version 19.8 (beta) released May 27, 1993.
• version 19.9 (beta) released May 27, 1993.
• version 19.10 (beta) released May 30, 1993.
• version 19.11 (beta) released June 1, 1993.
• version 19.12 (beta) released June 2, 1993.
• version 19.13 (beta) released June 8, 1993.
• version 19.14 (beta) released June 17, 1993.
• version 19.15 (beta) released June 19, 1993.
• version 19.16 (beta) released July 6, 1993.
• version 19.17 (beta) released late July, 1993.
• version 19.18 (beta) released August 9, 1993.
• version 19.19 (beta) released August 15, 1993.
• version 19.20 (beta) released November 17, 1993.
• version 19.21 (beta) released November 17, 1993.
• version 19.22 (beta) released November 28, 1993.
• version 19.23 (beta) released May 17, 1994.
• version 19.24 (beta) released May 16, 1994.
• version 19.25 (beta) released June 3, 1994.
• version 19.26 (beta) released September 11, 1994.
• version 19.27 (beta) released September 14, 1994.
• version 19.28 (first “official” release) released November 1, 1994.
• version 19.29 released June 21, 1995.
• version 19.30 released November 24, 1995.
• version 19.31 released May 25, 1996.
• version 19.32 released July 31, 1996.
• version 19.33 released August 11, 1996.
• version 19.34 released August 21, 1996.
• version 19.34b released September 6, 1996.

In some ways, GNU Emacs 19 was better than Lucid Emacs; in some ways, worse. Lucid
soon began incorporating features from GNU Emacs 19 into Lucid Emacs; the work was
mostly done by Richard Mlynarik, who had been working on and using GNU Emacs for a
long time (back as far as version 16 or 17).
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1.4 GNU Emacs 20

On February 2, 1997 work began on GNU Emacs to integrate Mule. The first release
was made in September of that year.

A timeline for Emacs 20 is

• version 20.1 released September 17, 1997.
• version 20.2 released September 20, 1997.
• version 20.3 released August 19, 1998.

1.5 XEmacs

Around the time that Lucid was developing Energize, Sun Microsystems was developing
their own development environment (called “SPARCWorks”) and also decided to use Emacs.
They joined forces with the Epoch team at the University of Illinois and later with Lucid.
The maintainer of the last-released version of Epoch was Marc Andreessen, but he dropped
out and the Epoch project, headed by Simon Kaplan, lured Chuck Thompson away from
a system administration job to become the primary Lucid Emacs author for Epoch and
Sun. Chuck’s area of specialty became the redisplay engine (he replaced the old Lucid
Emacs redisplay engine with a ported version from Epoch and then later rewrote it from
scratch). Sun also hired Ben Wing (the author of Win-Emacs, a port of Lucid Emacs to
Microsoft Windows 3.1) in 1993, for what was initially a one-month contract to fix some
event problems but later became a many-year involvement, punctuated by a six-month
contract with Amdahl Corporation.

In 1994, Sun and Lucid agreed to rename Lucid Emacs to XEmacs (a name not favorable
to either company); the first release called XEmacs was version 19.11. In June 1994, Lucid
folded and Jamie quit to work for the newly formed Mosaic Communications Corp., later
Netscape Communications Corp. (co-founded by the same Marc Andreessen, who had quit
his Epoch job to work on a graphical browser for the World Wide Web). Chuck then become
the primary maintainer of XEmacs, and put out versions 19.11 through 19.14 in conjunction
with Ben. For 19.12 and 19.13, Chuck added the new redisplay and many other display
improvements and Ben added MULE support (support for Asian and other languages) and
redesigned most of the internal Lisp subsystems to better support the MULE work and
the various other features being added to XEmacs. After 19.14 Chuck retired as primary
maintainer and Steve Baur stepped in.

Soon after 19.13 was released, work began in earnest on the MULE internationalization
code and the source tree was divided into two development paths. The MULE version
was initially called 19.20, but was soon renamed to 20.0. In 1996 Martin Buchholz of Sun
Microsystems took over the care and feeding of it and worked on it in parallel with the
19.14 development that was occurring at the same time. After much work by Martin, it
was decided to release 20.0 ahead of 19.15 in February 1997. The source tree remained
divided until 20.2 when the version 19 source was finally retired at version 19.16.

In 1997, Sun finally dropped all pretense of support for XEmacs and Martin Buchholz
left the company in November. Since then, and mostly for the previous year, because Steve



6 XEmacs Internals Manual

Baur was never paid to work on XEmacs, XEmacs has existed solely on the contributions
of volunteers from the Free Software Community. Starting from 1997, Hrvoje Niksic and
Kyle Jones have figured prominently in XEmacs development.

Many attempts have been made to merge XEmacs and GNU Emacs, but they have
consistently failed.

A more detailed history is contained in the XEmacs About page.
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2 XEmacs From the Outside

XEmacs appears to the outside world as an editor, but it is really a Lisp environment.
At its heart is a Lisp interpreter; it also “happens” to contain many specialized object types
(e.g. buffers, windows, frames, events) that are useful for implementing an editor. Some
of these objects (in particular windows and frames) have displayable representations, and
XEmacs provides a function redisplay() that ensures that the display of all such objects
matches their internal state. Most of the time, a standard Lisp environment is in a read-
eval-print loop – i.e. “read some Lisp code, execute it, and print the results”. XEmacs has
a similar loop:
• read an event
• dispatch the event (i.e. “do it”)
• redisplay

Reading an event is done using the Lisp function next-event, which waits for something
to happen (typically, the user presses a key or moves the mouse) and returns an event object
describing this. Dispatching an event is done using the Lisp function dispatch-event,
which looks up the event in a keymap object (a particular kind of object that associates
an event with a Lisp function) and calls that function. The function “does” what the user
has requested by changing the state of particular frame objects, buffer objects, etc. Finally,
redisplay() is called, which updates the display to reflect those changes just made. Thus
is an “editor” born.

Note that you do not have to use XEmacs as an editor; you could just as well make it
do your taxes, compute pi, play bridge, etc. You’d just have to write functions to do those
operations in Lisp.
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3 The Lisp Language

Lisp is a general-purpose language that is higher-level than C and in many ways more
powerful than C. Powerful dialects of Lisp such as Common Lisp are probably much better
languages for writing very large applications than is C. (Unfortunately, for many non-
technical reasons C and its successor C++ have become the dominant languages for appli-
cation development. These languages are both inadequate for extremely large applications,
which is evidenced by the fact that newer, larger programs are becoming ever harder to
write and are requiring ever more programmers despite great increases in C development
environments; and by the fact that, although hardware speeds and reliability have been
growing at an exponential rate, most software is still generally considered to be slow and
buggy.)

The new Java language holds promise as a better general-purpose development language
than C. Java has many features in common with Lisp that are not shared by C (this is not
a coincidence, since Java was designed by James Gosling, a former Lisp hacker). This will
be discussed more later.

For those used to C, here is a summary of the basic differences between C and Lisp:

1. Lisp has an extremely regular syntax. Every function, expression, and control state-
ment is written in the form

(func arg1 arg2 ...)

This is as opposed to C, which writes functions as
func(arg1, arg2, ...)

but writes expressions involving operators as (e.g.)
arg1 + arg2

and writes control statements as (e.g.)
while (expr) { statement1; statement2; ... }

Lisp equivalents of the latter two would be
(+ arg1 arg2 ...)

and
(while expr statement1 statement2 ...)

2. Lisp is a safe language. Assuming there are no bugs in the Lisp interpreter/compiler,
it is impossible to write a program that “core dumps” or otherwise causes the machine
to execute an illegal instruction. This is very different from C, where perhaps the most
common outcome of a bug is exactly such a crash. A corollary of this is that the C
operation of casting a pointer is impossible (and unnecessary) in Lisp, and that it is
impossible to access memory outside the bounds of an array.

3. Programs and data are written in the same form. The parenthesis-enclosing form
described above for statements is the same form used for the most common data type
in Lisp, the list. Thus, it is possible to represent any Lisp program using Lisp data
types, and for one program to construct Lisp statements and then dynamically evaluate
them, or cause them to execute.



10 XEmacs Internals Manual

4. All objects are dynamically typed. This means that part of every object is an indication
of what type it is. A Lisp program can manipulate an object without knowing what type
it is, and can query an object to determine its type. This means that, correspondingly,
variables and function parameters can hold objects of any type and are not normally
declared as being of any particular type. This is opposed to the static typing of C,
where variables can hold exactly one type of object and must be declared as such, and
objects do not contain an indication of their type because it’s implicit in the variables
they are stored in. It is possible in C to have a variable hold different types of objects
(e.g. through the use of void * pointers or variable-argument functions), but the type
information must then be passed explicitly in some other fashion, leading to additional
program complexity.

5. Allocated memory is automatically reclaimed when it is no longer in use. This opera-
tion is called garbage collection and involves looking through all variables to see what
memory is being pointed to, and reclaiming any memory that is not pointed to and is
thus “inaccessible” and out of use. This is as opposed to C, in which allocated memory
must be explicitly reclaimed using free(). If you simply drop all pointers to memory
without freeing it, it becomes “leaked” memory that still takes up space. Over a long
period of time, this can cause your program to grow and grow until it runs out of
memory.

6. Lisp has built-in facilities for handling errors and exceptions. In C, when an error
occurs, usually either the program exits entirely or the routine in which the error
occurs returns a value indicating this. If an error occurs in a deeply-nested routine,
then every routine currently called must unwind itself normally and return an error
value back up to the next routine. This means that every routine must explicitly check
for an error in all the routines it calls; if it does not do so, unexpected and often
random behavior results. This is an extremely common source of bugs in C programs.
An alternative would be to do a non-local exit using longjmp(), but that is often very
dangerous because the routines that were exited past had no opportunity to clean up
after themselves and may leave things in an inconsistent state, causing a crash shortly
afterwards.

Lisp provides mechanisms to make such non-local exits safe. When an error occurs, a
routine simply signals that an error of a particular class has occurred, and a non-local
exit takes place. Any routine can trap errors occurring in routines it calls by registering
an error handler for some or all classes of errors. (If no handler is registered, a default
handler, generally installed by the top-level event loop, is executed; this prints out the
error and continues.) Routines can also specify cleanup code (called an unwind-protect)
that will be called when control exits from a block of code, no matter how that exit
occurs – i.e. even if a function deeply nested below it causes a non-local exit back to
the top level.

Note that this facility has appeared in some recent vintages of C, in particular Visual
C++ and other PC compilers written for the Microsoft Win32 API.

7. In Emacs Lisp, local variables are dynamically scoped. This means that if you declare a
local variable in a particular function, and then call another function, that subfunction
can “see” the local variable you declared. This is actually considered a bug in Emacs
Lisp and in all other early dialects of Lisp, and was corrected in Common Lisp. (In
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Common Lisp, you can still declare dynamically scoped variables if you want to – they
are sometimes useful – but variables by default are lexically scoped as in C.)

For those familiar with Lisp, Emacs Lisp is modelled after MacLisp, an early dialect of
Lisp developed at MIT (no relation to the Macintosh computer). There is a Common Lisp
compatibility package available for Emacs that provides many of the features of Common
Lisp.

The Java language is derived in many ways from C, and shares a similar syntax, but has
the following features in common with Lisp (and different from C):
1. Java is a safe language, like Lisp.
2. Java provides garbage collection, like Lisp.
3. Java has built-in facilities for handling errors and exceptions, like Lisp.
4. Java has a type system that combines the best advantages of both static and dynamic

typing. Objects (except very simple types) are explicitly marked with their type, as in
dynamic typing; but there is a hierarchy of types and functions are declared to accept
only certain types, thus providing the increased compile-time error-checking of static
typing.
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4 XEmacs From the Perspective of Building

The heart of XEmacs is the Lisp environment, which is written in C. This is contained
in the ‘src/’ subdirectory. Underneath ‘src/’ are two subdirectories of header files: ‘s/’
(header files for particular operating systems) and ‘m/’ (header files for particular machine
types). In practice the distinction between the two types of header files is blurred. These
header files define or undefine certain preprocessor constants and macros to indicate partic-
ular characteristics of the associated machine or operating system. As part of the configure
process, one ‘s/’ file and one ‘m/’ file is identified for the particular environment in which
XEmacs is being built.

XEmacs also contains a great deal of Lisp code. This implements the operations that
make XEmacs useful as an editor as well as just a Lisp environment, and also contains many
add-on packages that allow XEmacs to browse directories, act as a mail and Usenet news
reader, compile Lisp code, etc. There is actually more Lisp code than C code associated
with XEmacs, but much of the Lisp code is peripheral to the actual operation of the editor.
The Lisp code all lies in subdirectories underneath the ‘lisp/’ directory.

The ‘lwlib/’ directory contains C code that implements a generalized interface onto
different X widget toolkits and also implements some widgets of its own that behave like
Motif widgets but are faster, free, and in some cases more powerful. The code in this
directory compiles into a library and is mostly independent from XEmacs.

The ‘etc/’ directory contains various data files associated with XEmacs. Some of them
are actually read by XEmacs at startup; others merely contain useful information of various
sorts.

The ‘lib-src/’ directory contains C code for various auxiliary programs that are used in
connection with XEmacs. Some of them are used during the build process; others are used
to perform certain functions that cannot conveniently be placed in the XEmacs executable
(e.g. the ‘movemail’ program for fetching mail out of ‘/var/spool/mail’, which must be
setgid to ‘mail’ on many systems; and the ‘gnuclient’ program, which allows an external
script to communicate with a running XEmacs process).

The ‘man/’ directory contains the sources for the XEmacs documentation. It is mostly
in a form called Texinfo, which can be converted into either a printed document (by passing
it through TEX) or into on-line documentation called info files.

The ‘info/’ directory contains the results of formatting the XEmacs documentation as
info files, for on-line use. These files are used when you enter the Info system using C-h i

or through the Help menu.

The ‘dynodump/’ directory contains auxiliary code used to build XEmacs on Solaris
platforms.

The other directories contain various miscellaneous code and information that is not
normally used or needed.

The first step of building involves running the ‘configure’ program and passing it various
parameters to specify any optional features you want and compiler arguments and such, as
described in the ‘INSTALL’ file. This determines what the build environment is, chooses the
appropriate ‘s/’ and ‘m/’ file, and runs a series of tests to determine many details about
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your environment, such as which library functions are available and exactly how they work.
(The ‘s/’ and ‘m/’ files only contain information that cannot be conveniently detected in
this fashion.) The reason for running these tests is that it allows XEmacs to be compiled
on a much wider variety of platforms than those that the XEmacs developers happen to be
familiar with, including various sorts of hybrid platforms. This is especially important now
that many operating systems give you a great deal of control over exactly what features
you want installed, and allow for easy upgrading of parts of a system without upgrading
the rest. It would be impossible to pre-determine and pre-specify the information for all
possible configurations.

When configure is done running, it generates ‘Makefile’s and the file ‘src/config.h’
(which describes the features of your system) from template files. You then run ‘make’,
which compiles the auxiliary code and programs in ‘lib-src/’ and ‘lwlib/’ and the main
XEmacs executable in ‘src/’. The result of compiling and linking is an executable called
‘temacs’, which is not the final XEmacs executable. ‘temacs’ by itself is not intended to
function as an editor or even display any windows on the screen, and if you simply run it,
it will exit immediately. The ‘Makefile’ runs ‘temacs’ with certain options that cause it
to initialize itself, read in a number of basic Lisp files, and then dump itself out into a new
executable called ‘xemacs’. This new executable has been pre-initialized and contains pre-
digested Lisp code that is necessary for the editor to function (this includes most basic Lisp
functions, e.g. not, that can be defined in terms of other Lisp primitives; some initialization
code that is called when certain objects, such as frames, are created; and all of the standard
keybindings and code for the actions they result in). This executable, ‘xemacs’, is the
executable that you run to use the XEmacs editor.

Although ‘temacs’ is not intended to be run as an editor, it can, by using the incantation
temacs -batch -l loadup.el run-temacs. This is useful when the dumping procedure
described above is broken, or when using certain program debugging tools such as Purify.
These tools get mighty confused by the tricks played by the XEmacs build process, such as
allocation memory in one process, and freeing it in the next.
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5 XEmacs From the Inside

Internally, XEmacs is quite complex, and can be very confusing. To simplify things, it
can be useful to think of XEmacs as containing an event loop that “drives” everything, and
a number of other subsystems, such as a Lisp engine and a redisplay mechanism. Each of
these other subsystems exists simultaneously in XEmacs, and each has a certain state. The
flow of control continually passes in and out of these different subsystems in the course of
normal operation of the editor.

It is important to keep in mind that, most of the time, the editor is “driven” by the event
loop. Except during initialization and batch mode, all subsystems are entered directly or
indirectly through the event loop, and ultimately, control exits out of all subsystems back
up to the event loop. This cycle of entering a subsystem, exiting back out to the event loop,
and starting another iteration of the event loop occurs once each keystroke, mouse motion,
etc.

If you’re trying to understand a particular subsystem (other than the event loop), think
of it as a “daemon” process or “servant” that is responsible for one particular aspect of a
larger system, and periodically receives commands or environment changes that cause it to
do something. Ultimately, these commands and environment changes are always triggered
by the event loop. For example:
• The window and frame mechanism is responsible for keeping track of what windows and

frames exist, what buffers are in them, etc. It is periodically given commands (usually
from the user) to make a change to the current window/frame state: i.e. create a new
frame, delete a window, etc.

• The buffer mechanism is responsible for keeping track of what buffers exist and what
text is in them. It is periodically given commands (usually from the user) to insert or
delete text, create a buffer, etc. When it receives a text-change command, it notifies
the redisplay mechanism.

• The redisplay mechanism is responsible for making sure that windows and frames are
displayed correctly. It is periodically told (by the event loop) to actually “do its job”,
i.e. snoop around and see what the current state of the environment (mostly of the
currently-existing windows, frames, and buffers) is, and make sure that that state
matches what’s actually displayed. It keeps lots and lots of information around (such
as what is actually being displayed currently, and what the environment was last time
it checked) so that it can minimize the work it has to do. It is also helped along in
that whenever a relevant change to the environment occurs, the redisplay mechanism
is told about this, so it has a pretty good idea of where it has to look to find possible
changes and doesn’t have to look everywhere.

• The Lisp engine is responsible for executing the Lisp code in which most user commands
are written. It is entered through a call to eval or funcall, which occurs as a result
of dispatching an event from the event loop. The functions it calls issue commands to
the buffer mechanism, the window/frame subsystem, etc.

• The Lisp allocation subsystem is responsible for keeping track of Lisp objects. It is
given commands from the Lisp engine to allocate objects, garbage collect, etc.

etc.
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The important idea here is that there are a number of independent subsystems each
with its own responsibility and persistent state, just like different employees in a company,
and each subsystem is periodically given commands from other subsystems. Commands
can flow from any one subsystem to any other, but there is usually some sort of hierarchy,
with all commands originating from the event subsystem.

XEmacs is entered in main(), which is in ‘emacs.c’. When this is called the first time
(in a properly-invoked ‘temacs’), it does the following:
1. It does some very basic environment initializations, such as determining where it and

its directories (e.g. ‘lisp/’ and ‘etc/’) reside and setting up signal handlers.
2. It initializes the entire Lisp interpreter.
3. It sets the initial values of many built-in variables (including many variables that are

visible to Lisp programs), such as the global keymap object and the built-in faces (a face
is an object that describes the display characteristics of text). This involves creating
Lisp objects and thus is dependent on step (2).

4. It performs various other initializations that are relevant to the particular environment
it is running in, such as retrieving environment variables, determining the current date
and the user who is running the program, examining its standard input, creating any
necessary file descriptors, etc.

5. At this point, the C initialization is complete. A Lisp program that was specified
on the command line (usually ‘loadup.el’) is called (temacs is normally invoked as
temacs -batch -l loadup.el dump). ‘loadup.el’ loads all of the other Lisp files that
are needed for the operation of the editor, calls the dump-emacs function to write out
‘xemacs’, and then kills the temacs process.

When ‘xemacs’ is then run, it only redoes steps (1) and (4) above; all variables already
contain the values they were set to when the executable was dumped, and all memory that
was allocated with malloc() is still around. (XEmacs knows whether it is being run as
‘xemacs’ or ‘temacs’ because it sets the global variable initialized to 1 after step (4)
above.) At this point, ‘xemacs’ calls a Lisp function to do any further initialization, which
includes parsing the command-line (the C code can only do limited command-line parsing,
which includes looking for the ‘-batch’ and ‘-l’ flags and a few other flags that it needs
to know about before initialization is complete), creating the first frame (or window in
standard window-system parlance), running the user’s init file (usually the file ‘.emacs’ in
the user’s home directory), etc. The function to do this is usually called normal-top-level;
‘loadup.el’ tells the C code about this function by setting its name as the value of the
Lisp variable top-level.

When the Lisp initialization code is done, the C code enters the event loop, and stays
there for the duration of the XEmacs process. The code for the event loop is contained
in ‘keyboard.c’, and is called Fcommand_loop_1(). Note that this event loop could very
well be written in Lisp, and in fact a Lisp version exists; but apparently, doing this makes
XEmacs run noticeably slower.

Notice how much of the initialization is done in Lisp, not in C. In general, XEmacs
tries to move as much code as is possible into Lisp. Code that remains in C is code that
implements the Lisp interpreter itself, or code that needs to be very fast, or code that needs
to do system calls or other such stuff that needs to be done in C, or code that needs to
have access to “forbidden” structures. (One conscious aspect of the design of Lisp under
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XEmacs is a clean separation between the external interface to a Lisp object’s functionality
and its internal implementation. Part of this design is that Lisp programs are forbidden
from accessing the contents of the object other than through using a standard API. In
this respect, XEmacs Lisp is similar to modern Lisp dialects but differs from GNU Emacs,
which tends to expose the implementation and allow Lisp programs to look at it directly.
The major advantage of hiding the implementation is that it allows the implementation to
be redesigned without affecting any Lisp programs, including those that might want to be
“clever” by looking directly at the object’s contents and possibly manipulating them.)

Moving code into Lisp makes the code easier to debug and maintain and makes it much
easier for people who are not XEmacs developers to customize XEmacs, because they can
make a change with much less chance of obscure and unwanted interactions occurring than
if they were to change the C code.
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6 The XEmacs Object System (Abstractly
Speaking)

At the heart of the Lisp interpreter is its management of objects. XEmacs Lisp contains
many built-in objects, some of which are simple and others of which can be very complex;
and some of which are very common, and others of which are rarely used or are only
used internally. (Since the Lisp allocation system, with its automatic reclamation of unused
storage, is so much more convenient than malloc() and free(), the C code makes extensive
use of it in its internal operations.)

The basic Lisp objects are

integer 28 bits of precision, or 60 bits on 64-bit machines; the reason for this is described
below when the internal Lisp object representation is described.

float Same precision as a double in C.

cons A simple container for two Lisp objects, used to implement lists and most other
data structures in Lisp.

char An object representing a single character of text; chars behave like integers in
many ways but are logically considered text rather than numbers and have a
different read syntax. (the read syntax for a char contains the char itself or
some textual encoding of it – for example, a Japanese Kanji character might be
encoded as ‘^[$(B#&^[(B’ using the ISO-2022 encoding standard – rather than
the numerical representation of the char; this way, if the mapping between chars
and integers changes, which is quite possible for Kanji characters and other
extended characters, the same character will still be created. Note that some
primitives confuse chars and integers. The worst culprit is eq, which makes a
special exception and considers a char to be eq to its integer equivalent, even
though in no other case are objects of two different types eq. The reason for
this monstrosity is compatibility with existing code; the separation of char from
integer came fairly recently.)

symbol An object that contains Lisp objects and is referred to by name; symbols are
used to implement variables and named functions and to provide the equivalent
of preprocessor constants in C.

vector A one-dimensional array of Lisp objects providing constant-time access to any
of the objects; access to an arbitrary object in a vector is faster than for lists,
but the operations that can be done on a vector are more limited.

string Self-explanatory; behaves much like a vector of chars but has a different read
syntax and is stored and manipulated more compactly and efficiently.

bit-vector
A vector of bits; similar to a string in spirit.

compiled-function
An object describing compiled Lisp code, known as byte code.

subr An object describing a Lisp primitive.
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Note that there is no basic “function” type, as in more powerful versions of Lisp (where
it’s called a closure). XEmacs Lisp does not provide the closure semantics implemented
by Common Lisp and Scheme. The guts of a function in XEmacs Lisp are represented in
one of four ways: a symbol specifying another function (when one function is an alias for
another), a list containing the function’s source code, a bytecode object, or a subr object.
(In other words, given a symbol specifying the name of a function, calling symbol-function
to retrieve the contents of the symbol’s function cell will return one of these types of objects.)

XEmacs Lisp also contains numerous specialized objects used to implement the editor:

buffer Stores text like a string, but is optimized for insertion and deletion and has
certain other properties that can be set.

frame An object with various properties whose displayable representation is a window
in window-system parlance.

window A section of a frame that displays the contents of a buffer; often called a pane
in window-system parlance.

window-configuration
An object that represents a saved configuration of windows in a frame.

device An object representing a screen on which frames can be displayed; equivalent
to a display in the X Window System and a TTY in character mode.

face An object specifying the appearance of text or graphics; it contains character-
istics such as font, foreground color, and background color.

marker An object that refers to a particular position in a buffer and moves around as
text is inserted and deleted to stay in the same relative position to the text
around it.

extent Similar to a marker but covers a range of text in a buffer; can also specify
properties of the text, such as a face in which the text is to be displayed,
whether the text is invisible or unmodifiable, etc.

event Generated by calling next-event and contains information describing a partic-
ular event happening in the system, such as the user pressing a key or a process
terminating.

keymap An object that maps from events (described using lists, vectors, and symbols
rather than with an event object because the mapping is for classes of events,
rather than individual events) to functions to execute or other events to recur-
sively look up; the functions are described by name, using a symbol, or using
lists to specify the function’s code.

glyph An object that describes the appearance of an image (e.g. pixmap) on the
screen; glyphs can be attached to the beginning or end of extents and in some
future version of XEmacs will be able to be inserted directly into a buffer.

process An object that describes a connection to an externally-running process.

There are some other, less-commonly-encountered general objects:

hashtable
An object that maps from an arbitrary Lisp object to another arbitrary Lisp
object, using hashing for fast lookup.
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obarray A limited form of hashtable that maps from strings to symbols; obarrays are
used to look up a symbol given its name and are not actually their own ob-
ject type but are kludgily represented using vectors with hidden fields (this
representation derives from GNU Emacs).

specifier
A complex object used to specify the value of a display property; a default
value is given and different values can be specified for particular frames, buffers,
windows, devices, or classes of device.

char-table
An object that maps from chars or classes of chars to arbitrary Lisp objects;
internally char tables use a complex nested-vector representation that is opti-
mized to the way characters are represented as integers.

range-table
An object that maps from ranges of integers to arbitrary Lisp objects.

And some strange special-purpose objects:

charset
coding-system

Objects used when MULE, or multi-lingual/Asian-language, support is enabled.

color-instance
font-instance
image-instance

An object that encapsulates a window-system resource; instances are mostly
used internally but are exposed on the Lisp level for cleanness of the specifier
model and because it’s occasionally useful for Lisp program to create or query
the properties of instances.

subwindow
An object that encapsulate a subwindow resource, i.e. a window-system child
window that is drawn into by an external process; this object should be inte-
grated into the glyph system but isn’t yet, and may change form when this is
done.

tooltalk-message
tooltalk-pattern

Objects that represent resources used in the ToolTalk interprocess communica-
tion protocol.

toolbar-button
An object used in conjunction with the toolbar.

x-resource
An object that encapsulates certain miscellaneous resources in the X window
system, used only when Epoch support is enabled.

And objects that are only used internally:

opaque A generic object for encapsulating arbitrary memory; this allows you the gen-
erality of malloc() and the convenience of the Lisp object system.
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lstream A buffering I/O stream, used to provide a unified interface to anything that
can accept output or provide input, such as a file descriptor, a stdio stream, a
chunk of memory, a Lisp buffer, a Lisp string, etc.; it’s a Lisp object to make
its memory management more convenient.

char-table-entry
Subsidiary objects in the internal char-table representation.

extent-auxiliary
menubar-data
toolbar-data

Various special-purpose objects that are basically just used to encapsulate mem-
ory for particular subsystems, similar to the more general “opaque” object.

symbol-value-forward
symbol-value-buffer-local
symbol-value-varalias
symbol-value-lisp-magic

Special internal-only objects that are placed in the value cell of a symbol to
indicate that there is something special with this variable – e.g. it has no value,
it mirrors another variable, or it mirrors some C variable; there is really only one
kind of object, called a symbol-value-magic, but it is sort-of halfway kludged
into semi-different object types.

Some types of objects are permanent, meaning that once created, they do not disap-
pear until explicitly destroyed, using a function such as delete-buffer, delete-window,
delete-frame, etc. Others will disappear once they are not longer used, through the
garbage collection mechanism. Buffers, frames, windows, devices, and processes are among
the objects that are permanent. Note that some objects can go both ways: Faces can be
created either way; extents are normally permanent, but detached extents (extents not re-
ferring to any text, as happens to some extents when the text they are referring to is deleted)
are temporary. Note that some permanent objects, such as faces and coding systems, cannot
be deleted. Note also that windows are unique in that they can be undeleted after having
previously been deleted. (This happens as a result of restoring a window configuration.)

Note that many types of objects have a read syntax, i.e. a way of specifying an object
of that type in Lisp code. When you load a Lisp file, or type in code to be evaluated, what
really happens is that the function read is called, which reads some text and creates an
object based on the syntax of that text; then eval is called, which possibly does something
special; then this loop repeats until there’s no more text to read. (eval only actually does
something special with symbols, which causes the symbol’s value to be returned, similar to
referencing a variable; and with conses [i.e. lists], which cause a function invocation. All
other values are returned unchanged.)

The read syntax
17297

converts to an integer whose value is 17297.
1.983e-4

converts to a float whose value is 1.983e-4, or .0001983.
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?b

converts to a char that represents the lowercase letter b.
?^[$(B#&^[(B

(where ‘^[’ actually is an ‘ESC’ character) converts to a particular Kanji character when
using an ISO2022-based coding system for input. (To decode this gook: ‘ESC’ begins an
escape sequence; ‘ESC $ (’ is a class of escape sequences meaning “switch to a 94x94 char-
acter set”; ‘ESC $ ( B’ means “switch to Japanese Kanji”; ‘#’ and ‘&’ collectively index into
a 94-by-94 array of characters [subtract 33 from the ASCII value of each character to get
the corresponding index]; ‘ESC (’ is a class of escape sequences meaning “switch to a 94
character set”; ‘ESC (B’ means “switch to US ASCII”. It is a coincidence that the letter ‘B’
is used to denote both Japanese Kanji and US ASCII. If the first ‘B’ were replaced with an
‘A’, you’d be requesting a Chinese Hanzi character from the GB2312 character set.)

"foobar"

converts to a string.
foobar

converts to a symbol whose name is "foobar". This is done by looking up the string
equivalent in the global variable obarray, whose contents should be an obarray. If no
symbol is found, a new symbol with the name "foobar" is automatically created and
added to obarray; this process is called interning the symbol.

(foo . bar)

converts to a cons cell containing the symbols foo and bar.
(1 a 2.5)

converts to a three-element list containing the specified objects (note that a list is actually
a set of nested conses; see the XEmacs Lisp Reference).

[1 a 2.5]

converts to a three-element vector containing the specified objects.
#[... ... ... ...]

converts to a compiled-function object (the actual contents are not shown since they are
not relevant here; look at a file that ends with ‘.elc’ for examples).

#*01110110

converts to a bit-vector.
#s(range-table ... ...)

converts to a range table (the actual contents are not shown).
#s(char-table ... ...)

converts to a char table (the actual contents are not shown). (Note that the #s syntax
is the general syntax for structures, which are not really implemented in XEmacs Lisp but
should be.)

When an object is printed out (using print or a related function), the read syntax is
used, so that the same object can be read in again.

The other objects do not have read syntaxes, usually because it does not really make
sense to create them in this fashion (i.e. processes, where it doesn’t make sense to have
a subprocess created as a side effect of reading some Lisp code), or because they can’t be
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created at all (e.g. subrs). Permanent objects, as a rule, do not have a read syntax; nor do
most complex objects, which contain too much state to be easily initialized through a read
syntax.
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7 How Lisp Objects Are Represented in C

Lisp objects are represented in C using a 32- or 64-bit machine word (depending on the
processor; i.e. DEC Alphas use 64-bit Lisp objects and most other processors use 32-bit
Lisp objects). The representation stuffs a pointer together with a tag, as follows:

[ 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ]
[ 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 ]

^ <---> <------------------------------------------------------>
| tag a pointer to a structure, or an integer
|
‘---> mark bit

The tag describes the type of the Lisp object. For integers and chars, the lower 28 bits
contain the value of the integer or char; for all others, the lower 28 bits contain a pointer.
The mark bit is used during garbage-collection, and is always 0 when garbage collection is
not happening. Many macros that extract out parts of a Lisp object expect that the mark
bit is 0, and will produce incorrect results if it’s not. (The way that garbage collection
works, basically, is that it loops over all places where Lisp objects could exist – this includes
all global variables in C that contain Lisp objects [including Vobarray, the C equivalent of
obarray; through this, all Lisp variables will get marked], plus various other places – and
recursively scans through the Lisp objects, marking each object it finds by setting the mark
bit. Then it goes through the lists of all objects allocated, freeing the ones that are not
marked and turning off the mark bit of the ones that are marked.)

Lisp objects use the typedef Lisp_Object, but the actual C type used for the Lisp
object can vary. It can be either a simple type (long on the DEC Alpha, int on other
machines) or a structure whose fields are bit fields that line up properly (actually, a union
of structures that’s used). Generally the simple integral type is preferable because it ensures
that the compiler will actually use a machine word to represent the object (some compilers
will use more general and less efficient code for unions and structs even if they can fit in
a machine word). The union type, however, has the advantage of stricter type checking (if
you accidentally pass an integer where a Lisp object is desired, you get a compile error),
and it makes it easier to decode Lisp objects when debugging. The choice of which type to
use is determined by the presence or absence of the preprocessor constant USE_UNION_TYPE.

Note that there are only eight types that the tag can represent, but many more actual
types than this. This is handled by having one of the tag types specify a meta-type called
a record; for all such objects, the first four bytes of the pointed-to structure indicate what
the actual type is.

Note also that having 28 bits for pointers and integers restricts a lot of things to 256
megabytes of memory. (Basically, enough pointers and indices and whatnot get stuffed
into Lisp objects that the total amount of memory used by XEmacs can’t grow above 256
megabytes. In older versions of XEmacs and GNU Emacs, the tag was 5 bits wide, allowing
for 32 types, which was more than the actual number of types that existed at the time, and
no “record” type was necessary. However, this limited the editor to 64 megabytes total,
which some users who edited large files might conceivably exceed.)



26 XEmacs Internals Manual

Also, note that there is an implicit assumption here that all pointers are low enough that
the top bits are all zero and can just be chopped off. On standard machines that allocate
memory from the bottom up (and give each process its own address space), this works fine.
Some machines, however, put the data space somewhere else in memory (e.g. beginning at
0x80000000). Those machines cope by defining DATA_SEG_BITS in the corresponding ‘m/’ or
‘s/’ file to the proper mask. Then, pointers retrieved from Lisp objects are automatically
OR’ed with this value prior to being used.

A corollary of the previous paragraph is that (pointers to) stack-allocated structures
cannot be put into Lisp objects. The stack is generally located near the top of memory; if
you put such a pointer into a Lisp object, it will get its top bits chopped off, and you will
lose.

Various macros are used to construct Lisp objects and extract the components. Macros
of the form XINT(), XCHAR(), XSTRING(), XSYMBOL(), etc. mask out the pointer/integer
field and cast it to the appropriate type. All of the macros that construct pointers will OR
with DATA_SEG_BITS if necessary. XINT() needs to be a bit tricky so that negative numbers
are properly sign-extended: Usually it does this by shifting the number four bits to the
left and then four bits to the right. This assumes that the right-shift operator does an
arithmetic shift (i.e. it leaves the most-significant bit as-is rather than shifting in a zero,
so that it mimics a divide-by-two even for negative numbers). Not all machines/compilers
do this, and on the ones that don’t, a more complicated definition is selected by defining
EXPLICIT_SIGN_EXTEND.

Note that when ERROR_CHECK_TYPECHECK is defined, the extractor macros become more
complicated – they check the tag bits and/or the type field in the first four bytes of a record
type to ensure that the object is really of the correct type. This is great for catching places
where an incorrect type is being dereferenced – this typically results in a pointer being
dereferenced as the wrong type of structure, with unpredictable (and sometimes not easily
traceable) results.

There are similar XSETTYPE() macros that construct a Lisp object. These macros are
of the form XSETTYPE (lvalue, result), i.e. they have to be a statement rather than just
used in an expression. The reason for this is that standard C doesn’t let you “construct”
a structure (but GCC does). Granted, this sometimes isn’t too convenient; for the case of
integers, at least, you can use the function make_int(), which constructs and returns an
integer Lisp object. Note that the XSETTYPE() macros are also affected by ERROR_CHECK_
TYPECHECK and make sure that the structure is of the right type in the case of record types,
where the type is contained in the structure.
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8 Rules When Writing New C Code

The XEmacs C Code is extremely complex and intricate, and there are many rules that
are more or less consistently followed throughout the code. Many of these rules are not
obvious, so they are explained here. It is of the utmost importance that you follow them.
If you don’t, you may get something that appears to work, but which will crash in odd
situations, often in code far away from where the actual breakage is.

8.1 General Coding Rules

Almost every module contains a syms_of_*() function and a vars_of_*() function.
The former declares any Lisp primitives you have defined and defines any symbols you
will be using. The latter declares any global Lisp variables you have added and initializes
global C variables in the module. For each such function, declare it in ‘symsinit.h’ and
make sure it’s called in the appropriate place in ‘emacs.c’. Important: There are stringent
requirements on exactly what can go into these functions. See the comment in ‘emacs.c’.
The reason for this is to avoid obscure unwanted interactions during initialization. If you
don’t follow these rules, you’ll be sorry! If you want to do anything that isn’t allowed,
create a complex_vars_of_*() function for it. Doing this is tricky, though: You have to
make sure your function is called at the right time so that all the initialization dependencies
work out.

Every module includes ‘<config.h>’ (angle brackets so that ‘--srcdir’ works correctly;
‘config.h’ may or may not be in the same directory as the C sources) and ‘lisp.h’.
‘config.h’ should always be included before any other header files (including system header
files) to ensure that certain tricks played by various ‘s/’ and ‘m/’ files work out correctly.

All global and static variables that are to be modifiable must be declared uninitialized.
This means that you may not use the “declare with initializer” form for these variables,
such as int some_variable = 0;. The reason for this has to do with some kludges done
during the dumping process: If possible, the initialized data segment is re-mapped so that
it becomes part of the (unmodifiable) code segment in the dumped executable. This allows
this memory to be shared among multiple running XEmacs processes. XEmacs is careful to
place as much constant data as possible into initialized variables (in particular, into what’s
called the pure space – see below) during the ‘temacs’ phase.

Please note: This kludge only works on a few systems nowadays, and is rapidly becoming
irrelevant because most modern operating systems provide copy-on-write semantics. All
data is initially shared between processes, and a private copy is automatically made (on a
page-by-page basis) when a process first attempts to write to a page of memory.

Formerly, there was a requirement that static variables not be declared inside of func-
tions. This had to do with another hack along the same vein as what was just described:
old USG systems put statically-declared variables in the initialized data space, so those
header files had a #define static declaration. (That way, the data-segment remapping
described above could still work.) This fails badly on static variables inside of functions,
which suddenly become automatic variables; therefore, you weren’t supposed to have any
of them. This awful kludge has been removed in XEmacs because
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1. almost all of the systems that used this kludge ended up having to disable the data-
segment remapping anyway;

2. the only systems that didn’t were extremely outdated ones;
3. this hack completely messed up inline functions.

8.2 Writing Lisp Primitives

Lisp primitives are Lisp functions implemented in C. The details of interfacing the C
function so that Lisp can call it are handled by a few C macros. The only way to really
understand how to write new C code is to read the source, but we can explain some things
here.

An example of a special form is the definition of or, from ‘eval.c’. (An ordinary function
would have the same general appearance.)

DEFUN ("or", For, 0, UNEVALLED, 0, /*
Eval args until one of them yields non-nil, then return that value.
The remaining args are not evalled at all.
If all args return nil, return nil.
*/

(args))
{

/* This function can GC */
Lisp_Object val = Qnil;
struct gcpro gcpro1;

GCPRO1 (args);

while (!NILP (args))
{
val = Feval (XCAR (args));
if (!NILP (val))

break;
args = XCDR (args);

}

UNGCPRO;
return val;

}

Let’s start with a precise explanation of the arguments to the DEFUN macro. Here is a
template for them:

DEFUN (lname, fname, min, max, interactive, /*
docstring
*/

(arglist) )

lname This string is the name of the Lisp symbol to define as the function name; in
the example above, it is "or".
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fname This is the C function name for this function. This is the name that is used in
C code for calling the function. The name is, by convention, ‘F’ prepended to
the Lisp name, with all dashes (‘-’) in the Lisp name changed to underscores.
Thus, to call this function from C code, call For. Remember that the arguments
are of type Lisp_Object; various macros and functions for creating values of
type Lisp_Object are declared in the file ‘lisp.h’.
Primitives whose names are special characters (e.g. + or <) are named by
spelling out, in some fashion, the special character: e.g. Fplus() or Flss().
Primitives whose names begin with normal alphanumeric characters but also
contain special characters are spelled out in some creative way, e.g. let* be-
comes FletX().
Each function also has an associated structure that holds the data for the subr
object that represents the function in Lisp. This structure conveys the Lisp
symbol name to the initialization routine that will create the symbol and store
the subr object as its definition. The C variable name of this structure is always
‘S’ prepended to the fname. You hardly ever need to be aware of the existence
of this structure.

min This is the minimum number of arguments that the function requires. The
function or allows a minimum of zero arguments.

max This is the maximum number of arguments that the function accepts, if there is
a fixed maximum. Alternatively, it can be UNEVALLED, indicating a special form
that receives unevaluated arguments, or MANY, indicating an unlimited number
of evaluated arguments (the equivalent of &rest). Both UNEVALLED and MANY
are macros. If max is a number, it may not be less than min and it may not
be greater than 8. (If you need to add a function with more than 8 arguments,
either use the MANY form or edit the definition of DEFUN in ‘lisp.h’. If you
do the latter, make sure to also add another clause to the switch statement in
primitive_funcall().)

interactive
This is an interactive specification, a string such as might be used as the ar-
gument of interactive in a Lisp function. In the case of or, it is 0 (a null
pointer), indicating that or cannot be called interactively. A value of "" indi-
cates a function that should receive no arguments when called interactively.

docstring This is the documentation string. It is written just like a documentation string
for a function defined in Lisp; in particular, the first line should be a single
sentence. Note how the documentation string is enclosed in a comment, none
of the documentation is placed on the same lines as the comment-start and
comment-end characters, and the comment-start characters are on the same
line as the interactive specification. ‘make-docfile’, which scans the C files for
documentation strings, is very particular about what it looks for, and will not
properly extract the doc string if it’s not in this exact format.
You are free to put the various arguments to DEFUN on separate lines to avoid
overly long lines. However, make sure to put the comment-start characters
for the doc string on the same line as the interactive specification, and put a
newline directly after them (and before the comment-end characters).
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arglist This is the comma-separated list of arguments to the C function. For a function
with a fixed maximum number of arguments, provide a C argument for each Lisp
argument. In this case, unlike regular C functions, the types of the arguments
are not declared; they are simply always of type Lisp_Object.
The names of the C arguments will be used as the names of the arguments to
the Lisp primitive as displayed in its documentation, modulo the same concerns
described above for F... names (in particular, underscores in the C arguments
become dashes in the Lisp arguments).
There is one additional kludge: A trailing ‘ ’ on the C argument is discarded
when forming the Lisp argument. This allows C language reserved words (like
default) or global symbols (like dirname) to be used as argument names with-
out compiler warnings or errors.
A Lisp function with max = UNEVALLED is a special form; its arguments are not
evaluated. Instead it receives one argument of type Lisp_Object, a (Lisp) list
of the unevaluated arguments, conventionally named (args).
When a Lisp function has no upper limit on the number of arguments, specify
max = MANY. In this case its implementation in C actually receives exactly two
arguments: the number of Lisp arguments (an int) and the address of a block
containing their values (a Lisp_Object *). In this case only are the C types
specified in the arglist: (int nargs, Lisp_Object *args).

Within the function For itself, note the use of the macros GCPRO1 and UNGCPRO. GCPRO1
is used to “protect” a variable from garbage collection—to inform the garbage collector
that it must look in that variable and regard its contents as an accessible object. This is
necessary whenever you call Feval or anything that can directly or indirectly call Feval
(this includes the QUIT macro!). At such a time, any Lisp object that you intend to refer
to again must be protected somehow. UNGCPRO cancels the protection of the variables that
are protected in the current function. It is necessary to do this explicitly.

The macro GCPRO1 protects just one local variable. If you want to protect two, use
GCPRO2 instead; repeating GCPRO1 will not work. Macros GCPRO3 and GCPRO4 also exist.

These macros implicitly use local variables such as gcpro1; you must declare these
explicitly, with type struct gcpro. Thus, if you use GCPRO2, you must declare gcpro1 and
gcpro2.

Note also that the general rule is caller-protects; i.e. you are only responsible for pro-
tecting those Lisp objects that you create. Any objects passed to you as parameters should
have been protected by whoever created them, so you don’t in general have to protect
them. For is an exception; it protects its parameters to provide extra assurance against
Lisp primitives elsewhere that are incorrectly written, and against malicious self-modifying
code. There are a few other standard functions that also do this.

GCPROing is perhaps the trickiest and most error-prone part of XEmacs coding. It is
extremely important that you get this right and use a great deal of discipline when writing
this code. See Section 10.3 [GCPROing], page 63, for full details on how to do this.

What DEFUN actually does is declare a global structure of type Lisp_Subr whose name
begins with capital ‘SF’ and which contains information about the primitive (e.g. a pointer
to the function, its minimum and maximum allowed arguments, a string describing its Lisp
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name); DEFUN then begins a normal C function declaration using the F... name. The Lisp
subr object that is the function definition of a primitive (i.e. the object in the function slot
of the symbol that names the primitive) actually points to this ‘SF’ structure; when Feval
encounters a subr, it looks in the structure to find out how to call the C function.

Defining the C function is not enough to make a Lisp primitive available; you must
also create the Lisp symbol for the primitive (the symbol is interned; see Section 13.2
[Obarrays], page 85) and store a suitable subr object in its function cell. (If you don’t do
this, the primitive won’t be seen by Lisp code.) The code looks like this:

DEFSUBR (fname);

Here fname is the name you used as the second argument to DEFUN.
This call to DEFSUBR should go in the syms_of_*() function at the end of the module. If

no such function exists, create it and make sure to also declare it in ‘symsinit.h’ and call
it from the appropriate spot in main(). See Section 8.1 [General Coding Rules], page 27.

Note that C code cannot call functions by name unless they are defined in C. The
way to call a function written in Lisp from C is to use Ffuncall, which embodies the
Lisp function funcall. Since the Lisp function funcall accepts an unlimited number of
arguments, in C it takes two: the number of Lisp-level arguments, and a one-dimensional
array containing their values. The first Lisp-level argument is the Lisp function to call, and
the rest are the arguments to pass to it. Since Ffuncall can call the evaluator, you must
protect pointers from garbage collection around the call to Ffuncall. (However, Ffuncall
explicitly protects all of its parameters, so you don’t have to protect any pointers passed as
parameters to it.)

The C functions call0, call1, call2, and so on, provide handy ways to call a Lisp
function conveniently with a fixed number of arguments. They work by calling Ffuncall.

‘eval.c’ is a very good file to look through for examples; ‘lisp.h’ contains the definitions
for some important macros and functions.

8.3 Adding Global Lisp Variables

Global variables whose names begin with ‘Q’ are constants whose value is a symbol of a
particular name. The name of the variable should be derived from the name of the symbol
using the same rules as for Lisp primitives. These variables are initialized using a call to
defsymbol() in the syms_of_*() function. (This call interns a symbol, sets the C variable
to the resulting Lisp object, and calls staticpro() on the C variable to tell the garbage-
collection mechanism about this variable. What staticpro() does is add a pointer to the
variable to a large global array; when garbage-collection happens, all pointers listed in the
array are used as starting points for marking Lisp objects. This is important because it’s
quite possible that the only current reference to the object is the C variable. In the case of
symbols, the staticpro() doesn’t matter all that much because the symbol is contained in
obarray, which is itself staticpro()ed. However, it’s possible that a naughty user could
do something like uninterning the symbol out of obarray or even setting obarray to a
different value [although this is likely to make XEmacs crash!].)

Please note: It is potentially deadly if you declare a ‘Q...’ variable in two different
modules. The two calls to defsymbol() are no problem, but some linkers will complain
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about multiply-defined symbols. The most insidious aspect of this is that often the link will
succeed anyway, but then the resulting executable will sometimes crash in obscure ways
during certain operations! To avoid this problem, declare any symbols with common names
(such as text) that are not obviously associated with this particular module in the module
‘general.c’.

Global variables whose names begin with ‘V’ are variables that contain Lisp objects.
The convention here is that all global variables of type Lisp_Object begin with ‘V’, and
all others don’t (including integer and boolean variables that have Lisp equivalents). Most
of the time, these variables have equivalents in Lisp, but some don’t. Those that do are
declared this way by a call to DEFVAR_LISP() in the vars_of_*() initializer for the module.
What this does is create a special symbol-value-forward Lisp object that contains a pointer
to the C variable, intern a symbol whose name is as specified in the call to DEFVAR_LISP(),
and set its value to the symbol-value-forward Lisp object; it also calls staticpro() on
the C variable to tell the garbage-collection mechanism about the variable. When eval
(or actually symbol-value) encounters this special object in the process of retrieving a
variable’s value, it follows the indirection to the C variable and gets its value. setq does
similar things so that the C variable gets changed.

Whether or not you DEFVAR_LISP() a variable, you need to initialize it in the vars_
of_*() function; otherwise it will end up as all zeroes, which is the integer 0 (not nil),
and this is probably not what you want. Also, if the variable is not DEFVAR_LISP()ed,
you must call staticpro() on the C variable in the vars_of_*() function. Otherwise, the
garbage-collection mechanism won’t know that the object in this variable is in use, and will
happily collect it and reuse its storage for another Lisp object, and you will be the one
who’s unhappy when you can’t figure out how your variable got overwritten.

8.4 Coding for Mule

Although Mule support is not compiled by default in XEmacs, many people are using it,
and we consider it crucial that new code works correctly with multibyte characters. This
is not hard; it is only a matter of following several simple user-interface guidelines. Even
if you never compile with Mule, with a little practice you will find it quite easy to code
Mule-correctly.

Note that these guidelines are not necessarily tied to the current Mule implementation;
they are also a good idea to follow on the grounds of code generalization for future I18N
work.

8.4.1 Character-Related Data Types

First, we will list the basic character-related datatypes used by XEmacs. Note that the
separate typedefs are not required for the code to work (all of them boil down to unsigned
char or int), but they improve clarity of code a great deal, because one glance at the
declaration can tell the intended use of the variable.

Emchar An Emchar holds a single Emacs character.
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Obviously, the equality between characters and bytes is lost in the Mule world.
Characters can be represented by one or more bytes in the buffer, and Emchar
is the C type large enough to hold any character.
Without Mule support, an Emchar is equivalent to an unsigned char.

Bufbyte The data representing the text in a buffer or string is logically a set of Bufbytes.
XEmacs does not work with character formats all the time; when reading char-
acters from the outside, it decodes them to an internal format, and likewise
encodes them when writing. Bufbyte (in fact unsigned char) is the basic unit
of XEmacs internal buffers and strings format.
One character can correspond to one or more Bufbytes. In the current im-
plementation, an ASCII character is represented by the same Bufbyte, and
extended characters are represented by a sequence of Bufbytes.
Without Mule support, a Bufbyte is equivalent to an Emchar.

Bufpos
Charcount

A Bufpos represents a character position in a buffer or string. A Charcount
represents a number (count) of characters. Logically, subtracting two Bufpos
values yields a Charcount value. Although all of these are typedefed to int,
we use them in preference to int to make it clear what sort of position is being
used.
Bufpos and Charcount values are the only ones that are ever visible to Lisp.

Bytind
Bytecount

A Bytind represents a byte position in a buffer or string. A Bytecount rep-
resents the distance between two positions in bytes. The relationship between
Bytind and Bytecount is the same as the relationship between Bufpos and
Charcount.

Extbyte
Extcount When dealing with the outside world, XEmacs works with Extbytes, which are

equivalent to unsigned char. Obviously, an Extcount is the distance between
two Extbytes. Extbytes and Extcounts are not all that frequent in XEmacs
code.

8.4.2 Working With Character and Byte Positions

Now that we have defined the basic character-related types, we can look at the macros
and functions designed for work with them and for conversion between them. Most of these
macros are defined in ‘buffer.h’, and we don’t discuss all of them here, but only the most
important ones. Examining the existing code is the best way to learn about them.

MAX_EMCHAR_LEN
This preprocessor constant is the maximum number of buffer bytes per Emacs
character, i.e. the byte length of an Emchar. It is useful when allocating tem-
porary strings to keep a known number of characters. For instance:
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{
Charcount cclen;
...
{

/* Allocate place for cclen characters. */
Bufbyte *tmp_buf = (Bufbyte *)alloca (cclen * MAX_EMCHAR_LEN);

...

If you followed the previous section, you can guess that, logically, multiplying
a Charcount value with MAX_EMCHAR_LEN produces a Bytecount value.

In the current Mule implementation, MAX_EMCHAR_LEN equals 4. Without Mule,
it is 1.

charptr_emchar

set_charptr_emchar
charptr_emchar macro takes a Bufbyte pointer and returns the underlying
Emchar. If it were a function, its prototype would be:

Emchar charptr_emchar (Bufbyte *p);

set_charptr_emchar stores an Emchar to the specified byte position. It returns
the number of bytes stored:

Bytecount set_charptr_emchar (Bufbyte *p, Emchar c);

It is important to note that set_charptr_emchar is safe only for appending a
character at the end of a buffer, not for overwriting a character in the middle.
This is because the width of characters varies, and set_charptr_emchar can-
not resize the string if it writes, say, a two-byte character where a single-byte
character used to reside.

A typical use of set_charptr_emchar can be demonstrated by this example,
which copies characters from buffer buf to a temporary string of Bufbytes.

{
Bufpos pos;
for (pos = beg; pos < end; pos++)
{
Emchar c = BUF_FETCH_CHAR (buf, pos);
p += set_charptr_emchar (buf, c);

}
}

Note how set_charptr_emchar is used to store the Emchar and increment the
counter, at the same time.

INC_CHARPTR
DEC_CHARPTR

These two macros increment and decrement a Bufbyte pointer, respectively.
The pointer needs to be correctly positioned at the beginning of a valid character
position.

Without Mule support, INC_CHARPTR (p) and DEC_CHARPTR (p) simply expand
to p++ and p--, respectively.
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bytecount_to_charcount
Given a pointer to a text string and a length in bytes, return the equivalent
length in characters.

Charcount bytecount_to_charcount (Bufbyte *p, Bytecount bc);

charcount_to_bytecount
Given a pointer to a text string and a length in characters, return the equivalent
length in bytes.

Bytecount charcount_to_bytecount (Bufbyte *p, Charcount cc);

charptr_n_addr
Return a pointer to the beginning of the character offset cc (in characters) from
p.

Bufbyte *charptr_n_addr (Bufbyte *p, Charcount cc);

8.4.3 Conversion of External Data

When an external function, such as a C library function, returns a char pointer, you
should never treat it as Bufbyte. This is because these returned strings may contain 8bit
characters which can be misinterpreted by XEmacs, and cause a crash. Instead, you should
use a conversion macro. Many different conversion macros are defined in ‘buffer.h’, so I
will try to order them logically, by direction and by format.

Thus the basic conversion macros are GET_CHARPTR_INT_DATA_ALLOCA and GET_
CHARPTR_EXT_DATA_ALLOCA. The former is used to convert external data to internal
format, and the latter is used to convert the other way around. The arguments each of
these receives are ptr (pointer to the text in external format), len (length of texts in bytes),
fmt (format of the external text), ptr out (lvalue to which new text should be copied),
and len out (lvalue which will be assigned the length of the internal text in bytes). The
resulting text is stored to a stack-allocated buffer. If the text doesn’t need changing, these
macros will do nothing, except for setting len out.

Currently meaningful formats are FORMAT_BINARY, FORMAT_FILENAME, FORMAT_OS, and
FORMAT_CTEXT.

The two macros above take many arguments which makes them unwieldy. For this
reason, several convenience macros are defined with obvious functionality, but accepting
less arguments:

GET_C_CHARPTR_EXT_DATA_ALLOCA
GET_C_CHARPTR_INT_DATA_ALLOCA

These two macros work on “C char pointers”, which are zero-terminated, and
thus do not need len or len out parameters.

GET_STRING_EXT_DATA_ALLOCA
GET_C_STRING_EXT_DATA_ALLOCA

These two macros work on Lisp strings, thus also not needing a len parame-
ter. However, GET_STRING_EXT_DATA_ALLOCA still provides a len out parame-
ter. Note that for Lisp strings only one conversion direction makes sense.



36 XEmacs Internals Manual

GET_C_CHARPTR_EXT_BINARY_DATA_ALLOCA
GET_C_CHARPTR_EXT_FILENAME_DATA_ALLOCA
GET_C_CHARPTR_EXT_CTEXT_DATA_ALLOCA
... These macros are a combination of the above, but with the fmt argument

encoded into the name of the macro.

8.4.4 General Guidelines for Writing Mule-Aware Code

This section contains some general guidance on how to write Mule-aware code, as well
as some pitfalls you should avoid.

Never use char and char *.
In XEmacs, the use of char and char * is almost always a mistake. If you
want to manipulate an Emacs character from “C”, use Emchar. If you want
to examine a specific octet in the internal format, use Bufbyte. If you want
a Lisp-visible character, use a Lisp_Object and make_char. If you want a
pointer to move through the internal text, use Bufbyte *. Also note that you
almost certainly do not need Emchar *.

Be careful not to confuse Charcount, Bytecount, and Bufpos.
The whole point of using different types is to avoid confusion about the use
of certain variables. Lest this effect be nullified, you need to be careful about
using the right types.

Always convert external data
It is extremely important to always convert external data, because XEmacs can
crash if unexpected 8bit sequences are copied to its internal buffers literally.

This means that when a system function, such as readdir, returns a string, you
need to convert it using one of the conversion macros described in the previous
chapter, before passing it further to Lisp. In the case of readdir, you would
use the GET_C_CHARPTR_INT_FILENAME_DATA_ALLOCA macro.

Also note that many internal functions, such as make_string, accept Bufbytes,
which removes the need for them to convert the data they receive. This increases
efficiency because that way external data needs to be decoded only once, when
it is read. After that, it is passed around in internal format.

8.4.5 An Example of Mule-Aware Code

As an example of Mule-aware code, we shall will analyze the string function, which
conses up a Lisp string from the character arguments it receives. Here is the definition,
pasted from alloc.c:
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DEFUN ("string", Fstring, 0, MANY, 0, /*
Concatenate all the argument characters and make the result a string.
*/

(int nargs, Lisp_Object *args))
{
Bufbyte *storage = alloca_array (Bufbyte, nargs * MAX_EMCHAR_LEN);
Bufbyte *p = storage;

for (; nargs; nargs--, args++)
{

Lisp_Object lisp_char = *args;
CHECK_CHAR_COERCE_INT (lisp_char);
p += set_charptr_emchar (p, XCHAR (lisp_char));

}
return make_string (storage, p - storage);

}

Now we can analyze the source line by line.

Obviously, string will be as long as there are arguments to the function. This is why we
allocate MAX_EMCHAR_LEN * nargs bytes on the stack, i.e. the worst-case number of bytes
for nargs Emchars to fit in the string.

Then, the loop checks that each element is a character, converting integers in the pro-
cess. Like many other functions in XEmacs, this function silently accepts integers where
characters are expected, for historical and compatibility reasons. Unless you know what you
are doing, CHECK_CHAR will also suffice. XCHAR (lisp_char) extracts the Emchar from the
Lisp_Object, and set_charptr_emchar stores it to storage, increasing p in the process.

Other instructing examples of correct coding under Mule can be found all over XEmacs
code. For starters, I recommend Fnormalize_menu_item_name in ‘menubar.c’. After you
have understood this section of the manual and studied the examples, you can proceed
writing new Mule-aware code.

8.5 Techniques for XEmacs Developers

To make a quantified XEmacs, do: make quantmacs.

You simply can’t dump Quantified and Purified images. Run the image like so:
quantmacs -batch -l loadup.el run-temacs -q.

Before you go through the trouble, are you compiling with all debugging and error-
checking off? If not try that first. Be warned that while Quantify is directly responsible for
quite a few optimizations which have been made to XEmacs, doing a run which generates
results which can be acted upon is not necessarily a trivial task.

Also, if you’re still willing to do some runs make sure you configure with the ‘--quantify’
flag. That will keep Quantify from starting to record data until after the loadup is completed
and will shut off recording right before it shuts down (which generates enough bogus data
to throw most results off). It also enables three additional elisp commands: quantify-
start-recording-data, quantify-stop-recording-data and quantify-clear-data.
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To get started debugging XEmacs, take a look at the ‘gdbinit’ and ‘dbxrc’ files in the
‘src’ directory. See section “Q2.1.15 - How to Debug an XEmacs problem with a debugger”
in XEmacs FAQ.

Here are things to know when you create a new source file:
• All .c files should #include <config.h> first. Almost all .c files should #include

"lisp.h" second.
• Generated header files should be included using the <> syntax, not the "" syntax. The

generated headers are:
config.h puresize-adjust.h sheap-adjust.h paths.h Emacs.ad.h
The basic rule is that you should assume builds using --srcdir and the <> syntax
needs to be used when the to-be-included generated file is in a potentially different
directory at compile time.

• Header files should not include <config.h> and "lisp.h". It is the responsibility of the
.c files that use it to do so.

• If the header uses INLINE, either directly or though DECLARE LRECORD, then it
must be added to inline.c’s includes.

• Try compiling at least once with
gcc --with-mule --with-union-type --error-checking=all
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9 A Summary of the Various XEmacs Modules

This is accurate as of XEmacs 20.0.

9.1 Low-Level Modules

size name
------- ---------------------
18150 config.h

This is automatically generated from ‘config.h.in’ based on the results of configure
tests and user-selected optional features and contains preprocessor definitions specifying the
nature of the environment in which XEmacs is being compiled.

2347 paths.h

This is automatically generated from ‘paths.h.in’ based on supplied configure values,
and allows for non-standard installed configurations of the XEmacs directories. It’s cur-
rently broken, though.

47878 emacs.c
20239 signal.c

‘emacs.c’ contains main() and other code that performs the most basic environment
initializations and handles shutting down the XEmacs process (this includes kill-emacs,
the normal way that XEmacs is exited; dump-emacs, which is used during the build process
to write out the XEmacs executable; run-emacs-from-temacs, which can be used to start
XEmacs directly when temacs has finished loading all the Lisp code; and emergency code
to handle crashes [XEmacs tries to auto-save all files before it crashes]).

Low-level code that directly interacts with the Unix signal mechanism, however, is in
‘signal.c’. Note that this code does not handle system dependencies in interfacing to
signals; that is handled using the ‘syssignal.h’ header file, described in section J below.

23458 unexaix.c
9893 unexalpha.c
11302 unexapollo.c
16544 unexconvex.c
31967 unexec.c
30959 unexelf.c
35791 unexelfsgi.c
3207 unexencap.c
7276 unexenix.c
20539 unexfreebsd.c
1153 unexfx2800.c
13432 unexhp9k3.c
11049 unexhp9k800.c
9165 unexmips.c
8981 unexnext.c
1673 unexsol2.c
19261 unexsunos4.c
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These modules contain code dumping out the XEmacs executable on various different
systems. (This process is highly machine-specific and requires intimate knowledge of the
executable format and the memory map of the process.) Only one of these modules is
actually used; this is chosen by ‘configure’.

15715 crt0.c
1484 lastfile.c
1115 pre-crt0.c

These modules are used in conjunction with the dump mechanism. On some systems,
an alternative version of the C startup code (the actual code that receives control from the
operating system when the process is started, and which calls main()) is required so that
the dumping process works properly; ‘crt0.c’ provides this.

‘pre-crt0.c’ and ‘lastfile.c’ should be the very first and very last file linked, respec-
tively. (Actually, this is not really true. ‘lastfile.c’ should be after all Emacs modules
whose initialized data should be made constant, and before all other Emacs files and all
libraries. In particular, the allocation modules ‘gmalloc.c’, ‘alloca.c’, etc. are normally
placed past ‘lastfile.c’, and all of the files that implement Xt widget classes must be
placed after ‘lastfile.c’ because they contain various structures that must be statically
initialized and into which Xt writes at various times.) ‘pre-crt0.c’ and ‘lastfile.c’ con-
tain exported symbols that are used to determine the start and end of XEmacs’ initialized
data space when dumping.

14786 alloca.c
16678 free-hook.c
1692 getpagesize.h
41936 gmalloc.c
25141 malloc.c
3802 mem-limits.h
39011 ralloc.c
3436 vm-limit.c

These handle basic C allocation of memory. ‘alloca.c’ is an emulation of the stack
allocation function alloca() on machines that lack this. (XEmacs makes extensive use of
alloca() in its code.)

‘gmalloc.c’ and ‘malloc.c’ are two implementations of the standard C functions
malloc(), realloc() and free(). They are often used in place of the standard
system-provided malloc() because they usually provide a much faster implementation,
at the expense of additional memory use. ‘gmalloc.c’ is a newer implementation that
is much more memory-efficient for large allocations than ‘malloc.c’, and should always
be preferred if it works. (At one point, ‘gmalloc.c’ didn’t work on some systems where
‘malloc.c’ worked; but this should be fixed now.)

‘ralloc.c’ is the relocating allocator. It provides functions similar to malloc(),
realloc() and free() that allocate memory that can be dynamically relocated in
memory. The advantage of this is that allocated memory can be shuffled around to place
all the free memory at the end of the heap, and the heap can then be shrunk, releasing the
memory back to the operating system. The use of this can be controlled with the configure
option --rel-alloc; if enabled, memory allocated for buffers will be relocatable, so that if
a very large file is visited and the buffer is later killed, the memory can be released to the
operating system. (The disadvantage of this mechanism is that it can be very slow. On
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systems with the mmap() system call, the XEmacs version of ‘ralloc.c’ uses this to move
memory around without actually having to block-copy it, which can speed things up; but
it can still cause noticeable performance degradation.)

‘free-hook.c’ contains some debugging functions for checking for invalid arguments to
free().

‘vm-limit.c’ contains some functions that warn the user when memory is getting low.
These are callback functions that are called by ‘gmalloc.c’ and ‘malloc.c’ at appropriate
times.

‘getpagesize.h’ provides a uniform interface for retrieving the size of a page in virtual
memory. ‘mem-limits.h’ provides a uniform interface for retrieving the total amount of
available virtual memory. Both are similar in spirit to the ‘sys*.h’ files described in section
J, below.

2659 blocktype.c
1410 blocktype.h
7194 dynarr.c
2671 dynarr.h

These implement a couple of basic C data types to facilitate memory allocation. The
Blocktype type efficiently manages the allocation of fixed-size blocks by minimizing the
number of times that malloc() and free() are called. It allocates memory in large chunks,
subdivides the chunks into blocks of the proper size, and returns the blocks as requested.
When blocks are freed, they are placed onto a linked list, so they can be efficiently reused.
This data type is not much used in XEmacs currently, because it’s a fairly new addition.

The Dynarr type implements a dynamic array, which is similar to a standard C array
but has no fixed limit on the number of elements it can contain. Dynamic arrays can hold
elements of any type, and when you add a new element, the array automatically resizes
itself if it isn’t big enough. Dynarrs are extensively used in the redisplay mechanism.

2058 inline.c

This module is used in connection with inline functions (available in some compilers).
Often, inline functions need to have a corresponding non-inline function that does the same
thing. This module is where they reside. It contains no actual code, but defines some special
flags that cause inline functions defined in header files to be rendered as actual functions.
It then includes all header files that contain any inline function definitions, so that each one
gets a real function equivalent.

6489 debug.c
2267 debug.h

These functions provide a system for doing internal consistency checks during code de-
velopment. This system is not currently used; instead the simpler assert() macro is used
along with the various checks provided by the ‘--error-check-*’ configuration options.

1643 prefix-args.c

This is actually the source for a small, self-contained program used during building.

904 universe.h

This is not currently used.
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9.2 Basic Lisp Modules

size name
------- ---------------------
70167 emacsfns.h
6305 lisp-disunion.h
7086 lisp-union.h

54929 lisp.h
14235 lrecord.h
10728 symsinit.h

These are the basic header files for all XEmacs modules. Each module includes ‘lisp.h’,
which brings the other header files in. ‘lisp.h’ contains the definitions of the structures
and extractor and constructor macros for the basic Lisp objects and various other basic
definitions for the Lisp environment, as well as some general-purpose definitions (e.g. min()
and max()). ‘lisp.h’ includes either ‘lisp-disunion.h’ or ‘lisp-union.h’, depending on
whether USE_UNION_TYPE is defined. These files define the typedef of the Lisp object itself
(as described above) and the low-level macros that hide the actual implementation of the
Lisp object. All extractor and constructor macros for particular types of Lisp objects are
defined in terms of these low-level macros.

As a general rule, all typedefs should go into the typedefs section of ‘lisp.h’ rather
than into a module-specific header file even if the structure is defined elsewhere. This
allows function prototypes that use the typedef to be placed into ‘emacsfns.h’. Forward
structure declarations (i.e. a simple declaration like struct foo; where the structure itself
is defined elsewhere) should be placed into the typedefs section as necessary.

‘lrecord.h’ contains the basic structures and macros that implement all record-type
Lisp objects – i.e. all objects whose type is a field in their C structure, which includes all
objects except the few most basic ones.

‘emacsfns.h’ contains prototypes for most of the exported functions in the various mod-
ules. (In particular, prototypes for Lisp primitives should always go into this header file.
Prototypes for other functions can either go here or in a module-specific header file, depend-
ing on how general-purpose the function is and whether it has special-purpose argument
types requiring definitions not in ‘lisp.h’.) All initialization functions are prototyped in
‘symsinit.h’.

120478 alloc.c
1029 pure.c
2506 puresize.h

The large module ‘alloc.c’ implements all of the basic allocation and garbage collection
for Lisp objects. The most commonly used Lisp objects are allocated in chunks, similar to
the Blocktype data type described above; others are allocated in individually malloc()ed
blocks. This module provides the foundation on which all other aspects of the Lisp envi-
ronment sit, and is the first module initialized at startup.

Note that ‘alloc.c’ provides a series of generic functions that are not dependent on any
particular object type, and interfaces to particular types of objects using a standardized
interface of type-specific methods. This scheme is a fundamental principle of object-oriented
programming and is heavily used throughout XEmacs. The great advantage of this is that
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it allows for a clean separation of functionality into different modules – new classes of
Lisp objects, new event interfaces, new device types, new stream interfaces, etc. can be
added transparently without affecting code anywhere else in XEmacs. Because the different
subsystems are divided into general and specific code, adding a new subtype within a
subsystem will in general not require changes to the generic subsystem code or affect any of
the other subtypes in the subsystem; this provides a great deal of robustness to the XEmacs
code.

‘pure.c’ contains the declaration of the purespace array. Pure space is a hack used
to place some constant Lisp data into the code segment of the XEmacs executable, even
though the data needs to be initialized through function calls. (See above in section VIII
for more info about this.) During startup, certain sorts of data is automatically copied into
pure space, and other data is copied manually in some of the basic Lisp files by calling
the function purecopy, which copies the object if possible (this only works in temacs, of
course) and returns the new object. In particular, while temacs is executing, the Lisp
reader automatically copies all compiled-function objects that it reads into pure space.
Since compiled-function objects are large, are never modified, and typically comprise the
majority of the contents of a compiled-Lisp file, this works well. While XEmacs is running,
any attempt to modify an object that resides in pure space causes an error. Objects in pure
space are never garbage collected – almost all of the time, they’re intended to be permanent,
and in any case you can’t write into pure space to set the mark bits.

‘puresize.h’ contains the declaration of the size of the pure space array. This depends
on the optional features that are compiled in, any extra purespace requested by the user at
compile time, and certain other factors (e.g. 64-bit machines need more pure space because
their Lisp objects are larger). The smallest size that suffices should be used, so that there’s
no wasted space. If there’s not enough pure space, you will get an error during the build
process, specifying how much more pure space is needed.

122243 eval.c
2305 backtrace.h

This module contains all of the functions to handle the flow of control. This includes the
mechanisms of defining functions, calling functions, traversing stack frames, and binding
variables; the control primitives and other special forms such as while, if, eval, let,
and, or, progn, etc.; handling of non-local exits, unwind-protects, and exception handlers;
entering the debugger; methods for the subr Lisp object type; etc. It does not include the
read function, the print function, or the handling of symbols and obarrays.

‘backtrace.h’ contains some structures related to stack frames and the flow of control.
64949 lread.c

This module implements the Lisp reader and the read function, which converts text into
Lisp objects, according to the read syntax of the objects, as described above. This is similar
to the parser that is a part of all compilers.

40900 print.c

This module implements the Lisp print mechanism and the print function and related
functions. This is the inverse of the Lisp reader – it converts Lisp objects to a printed,
textual representation. (Hopefully something that can be read back in using read to get
an equivalent object.)

4518 general.c
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60220 symbols.c
9966 symeval.h

‘symbols.c’ implements the handling of symbols, obarrays, and retrieving the values of
symbols. Much of the code is devoted to handling the special symbol-value-magic objects
that define special types of variables – this includes buffer-local variables, variable aliases,
variables that forward into C variables, etc. This module is initialized extremely early (right
after ‘alloc.c’), because it is here that the basic symbols t and nil are created, and those
symbols are used everywhere throughout XEmacs.

‘symeval.h’ contains the definitions of symbol structures and the DEFVAR_LISP() and
related macros for declaring variables.

48973 data.c
25694 floatfns.c
71049 fns.c

These modules implement the methods and standard Lisp primitives for all the basic
Lisp object types other than symbols (which are described above). ‘data.c’ contains all
the predicates (primitives that return whether an object is of a particular type); the integer
arithmetic functions; and the basic accessor and mutator primitives for the various object
types. ‘fns.c’ contains all the standard predicates for working with sequences (where,
abstractly speaking, a sequence is an ordered set of objects, and can be represented by
a list, string, vector, or bit-vector); it also contains equal, perhaps on the grounds that
bulk of the operation of equal is comparing sequences. ‘floatfns.c’ contains methods and
primitives for floats and floating-point arithmetic.

23555 bytecode.c
3358 bytecode.h

‘bytecode.c’ implements the byte-code interpreter, and ‘bytecode.h’ contains associ-
ated structures. Note that the byte-code compiler is written in Lisp.

9.3 Modules for Standard Editing Operations

size name
------- ---------------------

82900 buffer.c
60964 buffer.h
6059 bufslots.h

‘buffer.c’ implements the buffer Lisp object type. This includes functions that create
and destroy buffers; retrieve buffers by name or by other properties; manipulate lists of
buffers (remember that buffers are permanent objects and stored in various ordered lists);
retrieve or change buffer properties; etc. It also contains the definitions of all the built-in
buffer-local variables (which can be viewed as buffer properties). It does not contain code
to manipulate buffer-local variables (that’s in ‘symbols.c’, described above); or code to
manipulate the text in a buffer.

‘buffer.h’ defines the structures associated with a buffer and the various macros for
retrieving text from a buffer and special buffer positions (e.g. point, the default location
for text insertion). It also contains macros for working with buffer positions and converting
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between their representations as character offsets and as byte offsets (under MULE, they
are different, because characters can be multi-byte). It is one of the largest header files.

‘bufslots.h’ defines the fields in the buffer structure that correspond to the built-
in buffer-local variables. It is its own header file because it is included many times in
‘buffer.c’, as a way of iterating over all the built-in buffer-local variables.

79888 insdel.c
6103 insdel.h

‘insdel.c’ contains low-level functions for inserting and deleting text in a buffer, keeping
track of changed regions for use by redisplay, and calling any before-change and after-change
functions that may have been registered for the buffer. It also contains the actual functions
that convert between byte offsets and character offsets.

‘insdel.h’ contains associated headers.
10975 marker.c

This module implements the marker Lisp object type, which conceptually is a pointer
to a text position in a buffer that moves around as text is inserted and deleted, so as
to remain in the same relative position. This module doesn’t actually move the markers
around – that’s handled in ‘insdel.c’. This module just creates them and implements the
primitives for working with them. As markers are simple objects, this does not entail much.

Note that the standard arithmetic primitives (e.g. +) accept markers in place of integers
and automatically substitute the value of marker-position for the marker, i.e. an integer
describing the current buffer position of the marker.

193714 extents.c
15686 extents.h

This module implements the extent Lisp object type, which is like a marker that works
over a range of text rather than a single position. Extents are also much more complex
and powerful than markers and have a more efficient (and more algorithmically complex)
implementation. The implementation is described in detail in comments in ‘extents.c’.

The code in ‘extents.c’ works closely with ‘insdel.c’ so that extents are properly
moved around as text is inserted and deleted. There is also code in ‘extents.c’ that provides
information needed by the redisplay mechanism for efficient operation. (Remember that
extents can have display properties that affect [sometimes drastically, as in the invisible
property] the display of the text they cover.)

60155 editfns.c

‘editfns.c’ contains the standard Lisp primitives for working with a buffer’s text, and
calls the low-level functions in ‘insdel.c’. It also contains primitives for working with
point (the default buffer insertion location).

‘editfns.c’ also contains functions for retrieving various characteristics from the exter-
nal environment: the current time, the process ID of the running XEmacs process, the name
of the user who ran this XEmacs process, etc. It’s not clear why this code is in ‘editfns.c’.

26081 callint.c
12577 cmds.c
2749 commands.h

These modules implement the basic interactive commands, i.e. user-callable functions.
Commands, as opposed to other functions, have special ways of getting their parameters
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interactively (by querying the user), as opposed to having them passed in a normal function
invocation. Many commands are not really meant to be called from other Lisp functions,
because they modify global state in a way that’s often undesired as part of other Lisp
functions.

‘callint.c’ implements the mechanism for querying the user for parameters and calling
interactive commands. The bulk of this module is code that parses the interactive spec that
is supplied with an interactive command.

‘cmds.c’ implements the basic, most commonly used editing commands: commands to
move around the current buffer and insert and delete characters. These commands are
implemented using the Lisp primitives defined in ‘editfns.c’.

‘commands.h’ contains associated structure definitions and prototypes.
194863 regex.c
18968 regex.h
79800 search.c

‘search.c’ implements the Lisp primitives for searching for text in a buffer, and some
of the low-level algorithms for doing this. In particular, the fast fixed-string Boyer-Moore
search algorithm is implemented in ‘search.c’. The low-level algorithms for doing regular-
expression searching, however, are implemented in ‘regex.c’ and ‘regex.h’. These two
modules are largely independent of XEmacs, and are similar to (and based upon) the
regular-expression routines used in ‘grep’ and other GNU utilities.

20476 doprnt.c

‘doprnt.c’ implements formatted-string processing, similar to printf() command in C.
15372 undo.c

This module implements the undo mechanism for tracking buffer changes. Most of this
could be implemented in Lisp.

9.4 Editor-Level Control Flow Modules

size name
------- ---------------------

84546 event-Xt.c
121483 event-stream.c

6658 event-tty.c
49271 events.c
14459 events.h

These implement the handling of events (user input and other system notifications).

‘events.c’ and ‘events.h’ define the event Lisp object type and primitives for manip-
ulating it.

‘event-stream.c’ implements the basic functions for working with event queues, dis-
patching an event by looking it up in relevant keymaps and such, and handling timeouts;
this includes the primitives next-event and dispatch-event, as well as related primitives
such as sit-for, sleep-for, and accept-process-output. (‘event-stream.c’ is one of
the hairiest and trickiest modules in XEmacs. Beware! You can easily mess things up here.)
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‘event-Xt.c’ and ‘event-tty.c’ implement the low-level interfaces onto retrieving
events from Xt (the X toolkit) and from TTY’s (using read() and select()), respectively.
The event interface enforces a clean separation between the specific code for interfacing
with the operating system and the generic code for working with events, by defining an
API of basic, low-level event methods; ‘event-Xt.c’ and ‘event-tty.c’ are two different
implementations of this API. To add support for a new operating system (e.g. NeXTstep),
one merely needs to provide another implementation of those API functions.

Note that the choice of whether to use ‘event-Xt.c’ or ‘event-tty.c’ is made at compile
time! Or at the very latest, it is made at startup time. ‘event-Xt.c’ handles events for
both X and TTY frames; ‘event-tty.c’ is only used when X support is not compiled into
XEmacs. The reason for this is that there is only one event loop in XEmacs: thus, it needs
to be able to receive events from all different kinds of frames.

129583 keymap.c
2621 keymap.h

‘keymap.c’ and ‘keymap.h’ define the keymap Lisp object type and associated methods
and primitives. (Remember that keymaps are objects that associate event descriptions with
functions to be called to “execute” those events; dispatch-event looks up events in the
relevant keymaps.)

25212 keyboard.c

‘keyboard.c’ contains functions that implement the actual editor command loop – i.e.
the event loop that cyclically retrieves and dispatches events. This code is also rather tricky,
just like ‘event-stream.c’.

9973 macros.c
1397 macros.h

These two modules contain the basic code for defining keyboard macros. These functions
don’t actually do much; most of the code that handles keyboard macros is mixed in with
the event-handling code in ‘event-stream.c’.

23234 minibuf.c

This contains some miscellaneous code related to the minibuffer (most of the minibuffer
code was moved into Lisp by Richard Mlynarik). This includes the primitives for completion
(although filename completion is in ‘dired.c’), the lowest-level interface to the minibuffer
(if the command loop were cleaned up, this too could be in Lisp), and code for dealing with
the echo area (this, too, was mostly moved into Lisp, and the only code remaining is code
to call out to Lisp or provide simple bootstrapping implementations early in temacs, before
the echo-area Lisp code is loaded).

9.5 Modules for the Basic Displayable Lisp Objects

size name
------- ---------------------

985 device-ns.h
6454 device-stream.c
1196 device-stream.h
9526 device-tty.c
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8660 device-tty.h
43798 device-x.c
11667 device-x.h
26056 device.c
22993 device.h

These modules implement the device Lisp object type. This abstracts a particular screen
or connection on which frames are displayed. As with Lisp objects, event interfaces, and
other subsystems, the device code is separated into a generic component that contains a
standardized interface (in the form of a set of methods) onto particular device types.

The device subsystem defines all the methods and provides method services for not only
device operations but also for the frame, window, menubar, scrollbar, toolbar, and other
displayable-object subsystems. The reason for this is that all of these subsystems have the
same subtypes (X, TTY, NeXTstep, Microsoft Windows, etc.) as devices do.

934 frame-ns.h
2303 frame-tty.c
69205 frame-x.c
5976 frame-x.h
68175 frame.c
15080 frame.h

Each device contains one or more frames in which objects (e.g. text) are displayed. A
frame corresponds to a window in the window system; usually this is a top-level window
but it could potentially be one of a number of overlapping child windows within a top-level
window, using the MDI (Multiple Document Interface) protocol in Microsoft Windows or
a similar scheme.

The ‘frame-*’ files implement the frame Lisp object type and provide the generic and
device-type-specific operations on frames (e.g. raising, lowering, resizing, moving, etc.).

160783 window.c
15974 window.h

Each frame consists of one or more non-overlapping windows (better known as panes in
standard window-system terminology) in which a buffer’s text can be displayed. Windows
can also have scrollbars displayed around their edges.

‘window.c’ and ‘window.h’ implement the window Lisp object type and provide code to
manage windows. Since windows have no associated resources in the window system (the
window system knows only about the frame; no child windows or anything are used for
XEmacs windows), there is no device-type-specific code here; all of that code is part of the
redisplay mechanism or the code for particular object types such as scrollbars.

9.6 Modules for other Display-Related Lisp Objects

size name
------- ---------------------

54397 faces.c
15173 faces.h

4961 bitmaps.h
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954 glyphs-ns.h
105345 glyphs-x.c

4288 glyphs-x.h
72102 glyphs.c
16356 glyphs.h

952 objects-ns.h
9971 objects-tty.c
1465 objects-tty.h

32326 objects-x.c
2806 objects-x.h

31944 objects.c
6809 objects.h

57511 menubar-x.c
11243 menubar.c

25012 scrollbar-x.c
2554 scrollbar-x.h

26954 scrollbar.c
2778 scrollbar.h

23117 toolbar-x.c
43456 toolbar.c
4280 toolbar.h

25070 font-lock.c

This file provides C support for syntax highlighting – i.e. highlighting different syntactic
constructs of a source file in different colors, for easy reading. The C support is provided
so that this is fast.

32180 dgif_lib.c
3999 gif_err.c
10697 gif_lib.h
9371 gifalloc.c

These modules decode GIF-format image files, for use with glyphs.

9.7 Modules for the Redisplay Mechanism

size name
------- ---------------------

38692 redisplay-output.c
40835 redisplay-tty.c
65069 redisplay-x.c

234142 redisplay.c
17026 redisplay.h

These files provide the redisplay mechanism. As with many other subsystems in XEmacs,
there is a clean separation between the general and device-specific support.

‘redisplay.c’ contains the bulk of the redisplay engine. These functions update the
redisplay structures (which describe how the screen is to appear) to reflect any changes
made to the state of any displayable objects (buffer, frame, window, etc.) since the last
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time that redisplay was called. These functions are highly optimized to avoid doing more
work than necessary (since redisplay is called extremely often and is potentially a huge
time sink), and depend heavily on notifications from the objects themselves that changes
have occurred, so that redisplay doesn’t explicitly have to check each possible object. The
redisplay mechanism also contains a great deal of caching to further speed things up; some
of this caching is contained within the various displayable objects.

‘redisplay-output.c’ goes through the redisplay structures and converts them into
calls to device-specific methods to actually output the screen changes.

‘redisplay-x.c’ and ‘redisplay-tty.c’ are two implementations of these redisplay
output methods, for X frames and TTY frames, respectively.

14129 indent.c

This module contains various functions and Lisp primitives for converting between buffer
positions and screen positions. These functions call the redisplay mechanism to do most of
the work, and then examine the redisplay structures to get the necessary information. This
module needs work.

14754 termcap.c
2141 terminfo.c
7253 tparam.c

These files contain functions for working with the termcap (BSD-style) and terminfo
(System V style) databases of terminal capabilities and escape sequences, used when
XEmacs is displaying in a TTY.

10869 cm.c
5876 cm.h

These files provide some miscellaneous TTY-output functions and should probably be
merged into ‘redisplay-tty.c’.

9.8 Modules for Interfacing with the File System

size name
------- ---------------------

43362 lstream.c
14240 lstream.h

These modules implement the stream Lisp object type. This is an internal-only Lisp
object that implements a generic buffering stream. The idea is to provide a uniform in-
terface onto all sources and sinks of data, including file descriptors, stdio streams, chunks
of memory, Lisp buffers, Lisp strings, etc. That way, I/O functions can be written to the
stream interface and can transparently handle all possible sources and sinks. (For example,
the read function can read data from a file, a string, a buffer, or even a function that is
called repeatedly to return data, without worrying about where the data is coming from or
what-size chunks it is returned in.)

Note that in the C code, streams are called lstreams (for “Lisp streams”) to distinguish
them from other kinds of streams, e.g. stdio streams and C++ I/O streams.
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Similar to other subsystems in XEmacs, lstreams are separated into generic functions and
a set of methods for the different types of lstreams. ‘lstream.c’ provides implementations
of many different types of streams; others are provided, e.g., in ‘mule-coding.c’.

126926 fileio.c

This implements the basic primitives for interfacing with the file system. This includes
primitives for reading files into buffers, writing buffers into files, checking for the presence or
accessibility of files, canonicalizing file names, etc. Note that these primitives are usually not
invoked directly by the user: There is a great deal of higher-level Lisp code that implements
the user commands such as find-file and save-buffer. This is similar to the distinction
between the lower-level primitives in ‘editfns.c’ and the higher-level user commands in
‘commands.c’ and ‘simple.el’.

10960 filelock.c

This file provides functions for detecting clashes between different processes (e.g.
XEmacs and some external process, or two different XEmacs processes) modifying the
same file. (XEmacs can optionally use the ‘lock/’ subdirectory to provide a form of
“locking” between different XEmacs processes.) This module is also used by the low-level
functions in ‘insdel.c’ to ensure that, if the first modification is being made to a buffer
whose corresponding file has been externally modified, the user is made aware of this so
that the buffer can be synched up with the external changes if necessary.

4527 filemode.c

This file provides some miscellaneous functions that construct a ‘rwxr-xr-x’-type per-
missions string (as might appear in an ‘ls’-style directory listing) given the information
returned by the stat() system call.

22855 dired.c
2094 ndir.h

These files implement the XEmacs interface to directory searching. This includes a num-
ber of primitives for determining the files in a directory and for doing filename completion.
(Remember that generic completion is handled by a different mechanism, in ‘minibuf.c’.)

‘ndir.h’ is a header file used for the directory-searching emulation functions provided
in ‘sysdep.c’ (see section J below), for systems that don’t provide any directory-searching
functions. (On those systems, directories can be read directly as files, and parsed.)

4311 realpath.c

This file provides an implementation of the realpath() function for expanding symbolic
links, on systems that don’t implement it or have a broken implementation.

9.9 Modules for Other Aspects of the Lisp Interpreter and
Object System

size name
------- ---------------------

22290 elhash.c
2454 elhash.h
12169 hash.c
3369 hash.h
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These files implement the hashtable Lisp object type. ‘hash.c’ and ‘hash.h’ provide
a generic C implementation of hash tables (which can stand independently of XEmacs),
and ‘elhash.c’ and ‘elhash.h’ provide a Lisp interface onto the C hash tables using the
hashtable Lisp object type.

95691 specifier.c
11167 specifier.h

This module implements the specifier Lisp object type. This is primarily used for dis-
playable properties, and allows for values that are specific to a particular buffer, window,
frame, device, or device class, as well as a default value existing. This is used, for example,
to control the height of the horizontal scrollbar or the appearance of the default, bold, or
other faces. The specifier object consists of a number of specifications, each of which maps
from a buffer, window, etc. to a value. The function specifier-instance looks up a value
given a window (from which a buffer, frame, and device can be derived).

43058 chartab.c
6503 chartab.h
9918 casetab.c

‘chartab.c’ and ‘chartab.h’ implement the char table Lisp object type, which maps
from characters or certain sorts of character ranges to Lisp objects. The implementation
of this object type is optimized for the internal representation of characters. Char tables
come in different types, which affect the allowed object types to which a character can be
mapped and also dictate certain other properties of the char table.

‘casetab.c’ implements one sort of char table, the case table, which maps characters
to other characters of possibly different case. These are used by XEmacs to implement
case-changing primitives and to do case-insensitive searching.

49593 syntax.c
10200 syntax.h

This module implements syntax tables, another sort of char table that maps characters
into syntax classes that define the syntax of these characters (e.g. a parenthesis belongs to
a class of ‘open’ characters that have corresponding ‘close’ characters and can be nested).
This module also implements the Lisp scanner, a set of primitives for scanning over text
based on syntax tables. This is used, for example, to find the matching parenthesis in a
command such as forward-sexp, and by ‘font-lock.c’ to locate quoted strings, comments,
etc.

10438 casefiddle.c

This module implements various Lisp primitives for upcasing, downcasing and capital-
izing strings or regions of buffers.

20234 rangetab.c

This module implements the range table Lisp object type, which provides for a mapping
from ranges of integers to arbitrary Lisp objects.

3201 opaque.c
2206 opaque.h

This module implements the opaque Lisp object type, an internal-only Lisp object that
encapsulates an arbitrary block of memory so that it can be managed by the Lisp allocation
system. To create an opaque object, you call make_opaque(), passing a pointer to a block
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of memory. An object is created that is big enough to hold the memory, which is copied
into the object’s storage. The object will then stick around as long as you keep pointers to
it, after which it will be automatically reclaimed.

Opaque objects can also have an arbitrary mark method associated with them, in case the
block of memory contains other Lisp objects that need to be marked for garbage-collection
purposes. (If you need other object methods, such as a finalize method, you should just go
ahead and create a new Lisp object type – it’s not hard.)

8783 abbrev.c

This function provides a few primitives for doing dynamic abbreviation expansion. In
XEmacs, most of the code for this has been moved into Lisp. Some C code remains for speed
and because the primitive self-insert-command (which is executed for all self-inserting
characters) hooks into the abbrev mechanism. (self-insert-command is itself in C only
for speed.)

21934 doc.c

This function provides primitives for retrieving the documentation strings of functions
and variables. These documentation strings contain certain special markers that get dy-
namically expanded (e.g. a reverse-lookup is performed on some named functions to re-
trieve their current key bindings). Some documentation strings (in particular, for the
built-in primitives and pre-loaded Lisp functions) are stored externally in a file ‘DOC’ in
the ‘lib-src/’ directory and need to be fetched from that file. (Part of the build stage
involves building this file, and another part involves constructing an index for this file and
embedding it into the executable, so that the functions in ‘doc.c’ do not have to search the
entire ‘DOC’ file to find the appropriate documentation string.)

13197 md5.c

This function provides a Lisp primitive that implements the MD5 secure hashing scheme,
used to create a large hash value of a string of data such that the data cannot be derived
from the hash value. This is used for various security applications on the Internet.

9.10 Modules for Interfacing with the Operating System

size name
------- ---------------------

33533 callproc.c
89697 process.c
4663 process.h

These modules allow XEmacs to spawn and communicate with subprocesses and network
connections.

‘callproc.c’ implements (through the call-process primitive) what are called syn-
chronous subprocesses. This means that XEmacs runs a program, waits till it’s done, and
retrieves its output. A typical example might be calling the ‘ls’ program to get a directory
listing.

‘process.c’ and ‘process.h’ implement asynchronous subprocesses. This means that
XEmacs starts a program and then continues normally, not waiting for the process to finish.
Data can be sent to the process or retrieved from it as it’s running. This is used for the
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shell command (which provides a front end onto a shell program such as ‘csh’), the mail
and news readers implemented in XEmacs, etc. The result of calling start-process to
start a subprocess is a process object, a particular kind of object used to communicate with
the subprocess. You can send data to the process by passing the process object and the data
to send-process, and you can specify what happens to data retrieved from the process by
setting properties of the process object. (When the process sends data, XEmacs receives
a process event, which says that there is data ready. When dispatch-event is called on
this event, it reads the data from the process and does something with it, as specified by
the process object’s properties. Typically, this means inserting the data into a buffer or
calling a function.) Another property of the process object is called the sentinel, which is a
function that is called when the process terminates.

Process objects are also used for network connections (connections to a process running
on another machine). Network connections are started with open-network-stream but
otherwise work just like subprocesses.

136029 sysdep.c
5986 sysdep.h

These modules implement most of the low-level, messy operating-system interface code.
This includes various device control (ioctl) operations for file descriptors, TTY’s, pseudo-
terminals, etc. (usually this stuff is fairly system-dependent; thus the name of this module),
and emulation of standard library functions and system calls on systems that don’t provide
them or have broken versions.

3605 sysdir.h
6708 sysfile.h
2027 sysfloat.h
2918 sysproc.h
745 syspwd.h
7643 syssignal.h
6892 systime.h
12477 systty.h
3487 syswait.h

These header files provide consistent interfaces onto system-dependent header files
and system calls. The idea is that, instead of including a standard header file like
‘<sys/param.h>’ (which may or may not exist on various systems) or having to worry
about whether all system provide a particular preprocessor constant, or having to deal
with the four different paradigms for manipulating signals, you just include the appropriate
‘sys*.h’ header file, which includes all the right system header files, defines and missing
preprocessor constants, provides a uniform interface onto system calls, etc.

‘sysdir.h’ provides a uniform interface onto directory-querying functions. (In some
cases, this is in conjunction with emulation functions in ‘sysdep.c’.)

‘sysfile.h’ includes all the necessary header files for standard system calls (e.g.
read()), ensures that all necessary open() and stat() preprocessor constants are
defined, and possibly (usually) substitutes sugared versions of read(), write(), etc. that
automatically restart interrupted I/O operations.

‘sysfloat.h’ includes the necessary header files for floating-point operations.
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‘sysproc.h’ includes the necessary header files for calling select(), fork(), execve(),
socket operations, and the like, and ensures that the FD_*() macros for descriptor-set
manipulations are available.

‘syspwd.h’ includes the necessary header files for obtaining information from
‘/etc/passwd’ (the functions are emulated under VMS).

‘syssignal.h’ includes the necessary header files for signal-handling and provides a
uniform interface onto the different signal-handling and signal-blocking paradigms.

‘systime.h’ includes the necessary header files and provides uniform interfaces for re-
trieving the time of day, setting file access/modification times, getting the amount of time
used by the XEmacs process, etc.

‘systty.h’ buffers against the infinitude of different ways of controlling TTY’s.

‘syswait.h’ provides a uniform way of retrieving the exit status from a wait()ed-on
process (some systems use a union, others use an int).

7940 hpplay.c
10920 libsst.c
1480 libsst.h
3260 libst.h
15355 linuxplay.c
15849 nas.c
19133 sgiplay.c
15411 sound.c
7358 sunplay.c

These files implement the ability to play various sounds on some types of computers.
You have to configure your XEmacs with sound support in order to get this capability.

‘sound.c’ provides the generic interface. It implements various Lisp primitives and
variables that let you specify which sounds should be played in certain conditions. (The
conditions are identified by symbols, which are passed to ding to make a sound. Various
standard functions call this function at certain times; if sound support does not exist, a
simple beep results.

‘sgiplay.c’, ‘sunplay.c’, ‘hpplay.c’, and ‘linuxplay.c’ interface to the machine’s
speaker for various different kind of machines. This is called native sound.

‘nas.c’ interfaces to a computer somewhere else on the network using the NAS (Network
Audio Server) protocol, playing sounds on that machine. This allows you to run XEmacs
on a remote machine, with its display set to your local machine, and have the sounds be
made on your local machine, provided that you have a NAS server running on your local
machine.

‘libsst.c’, ‘libsst.h’, and ‘libst.h’ provide some additional functions for playing
sound on a Sun SPARC but are not currently in use.

44368 tooltalk.c
2137 tooltalk.h

These two modules implement an interface to the ToolTalk protocol, which is an in-
terprocess communication protocol implemented on some versions of Unix. ToolTalk is a
high-level protocol that allows processes to register themselves as providers of particular
services; other processes can then request a service without knowing or caring exactly who
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is providing the service. It is similar in spirit to the DDE protocol provided under Microsoft
Windows. ToolTalk is a part of the new CDE (Common Desktop Environment) specification
and is used to connect the parts of the SPARCWorks development environment.

22695 getloadavg.c

This module provides the ability to retrieve the system’s current load average. (The way
to do this is highly system-specific, unfortunately, and requires a lot of special-case code.)

148520 energize.c
6896 energize.h

This module provides code to interface to an Energize server (when XEmacs is used
as part of Lucid’s Energize development environment) and provides some other Energize-
specific functions. Much of the code in this module should be made more general-purpose
and moved elsewhere, but is no longer very relevant now that Lucid is defunct. It also
hasn’t worked since version 19.12, since nobody has been maintaining it.

2861 sunpro.c

This module provides a small amount of code used internally at Sun to keep statistics
on the usage of XEmacs.

5548 broken-sun.h
3468 strcmp.c
2179 strcpy.c
1650 sunOS-fix.c

These files provide replacement functions and prototypes to fix numerous bugs in early
releases of SunOS 4.1.

11669 hftctl.c

This module provides some terminal-control code necessary on versions of AIX prior to
4.1.

1776 acldef.h
1602 chpdef.h
9032 uaf.h
105 vlimit.h
7145 vms-pp.c
1158 vms-pwd.h
26532 vmsfns.c
6038 vmsmap.c
695 vmspaths.h

17482 vmsproc.c
469 vmsproc.h

All of these files are used for VMS support, which has never worked in XEmacs.
28316 msdos.c
1472 msdos.h

These modules are used for MS-DOS support, which does not work in XEmacs.

9.11 Modules for Interfacing with X Windows
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size name
------- ---------------------

3196 Emacs.ad.h

A file generated from ‘Emacs.ad’, which contains XEmacs-supplied fallback resources
(so that XEmacs has pretty defaults).

24242 EmacsFrame.c
6979 EmacsFrame.h
3351 EmacsFrameP.h

These modules implement an Xt widget class that encapsulates a frame. This is for ease
in integrating with Xt. The EmacsFrame widget covers the entire X window except for the
menubar; the scrollbars are positioned on top of the EmacsFrame widget.

Warning: Abandon hope, all ye who enter here. This code took an ungodly amount of
time to get right, and is likely to fall apart mercilessly at the slightest change. Such is life
under Xt.

8178 EmacsManager.c
1967 EmacsManager.h
1895 EmacsManagerP.h

These modules implement a simple Xt manager (i.e. composite) widget class that simply
lets its children set whatever geometry they want. It’s amazing that Xt doesn’t provide
this standardly, but on second thought, it makes sense, considering how amazingly broken
Xt is.

13188 EmacsShell-sub.c
4588 EmacsShell.c
2180 EmacsShell.h
3133 EmacsShellP.h

These modules implement two Xt widget classes that are subclasses of the TopLevelShell
and TransientShell classes. This is necessary to deal with more brokenness that Xt has
sadistically thrust onto the backs of developers.

9673 xgccache.c
1111 xgccache.h

These modules provide functions for maintenance and caching of GC’s (graphics con-
texts) under the X Window System. This code is junky and needs to be rewritten.

69181 xselect.c

This module provides an interface to the X Window System’s concept of selections, the
standard way for X applications to communicate with each other.

929 xintrinsic.h
1038 xintrinsicp.h
1579 xmmanagerp.h
1585 xmprimitivep.h

These header files are similar in spirit to the ‘sys*.h’ files and buffer against different
implementations of Xt and Motif.
• ‘xintrinsic.h’ should be included in place of ‘<Intrinsic.h>’.
• ‘xintrinsicp.h’ should be included in place of ‘<IntrinsicP.h>’.
• ‘xmmanagerp.h’ should be included in place of ‘<XmManagerP.h>’.
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• ‘xmprimitivep.h’ should be included in place of ‘<XmPrimitiveP.h>’.
16930 xmu.c

936 xmu.h

These files provide an emulation of the Xmu library for those systems (i.e. HPUX) that
don’t provide it as a standard part of X.

4201 ExternalClient-Xlib.c
18083 ExternalClient.c
2035 ExternalClient.h
2104 ExternalClientP.h
22684 ExternalShell.c
1709 ExternalShell.h
1971 ExternalShellP.h
2478 extw-Xlib.c
1481 extw-Xlib.h
6565 extw-Xt.c
1430 extw-Xt.h

These files provide the external widget interface, which allows an XEmacs frame
to appear as a widget in another application. To do this, you have to configure with
‘--external-widget’.

‘ExternalShell*’ provides the server (XEmacs) side of the connection.

‘ExternalClient*’ provides the client (other application) side of the connection. These
files are not compiled into XEmacs but are compiled into libraries that are then linked into
your application.

‘extw-*’ is common code that is used for both the client and server.

Don’t touch this code; something is liable to break if you do.

31014 epoch.c

This file provides some additional, Epoch-compatible, functionality for interfacing to the
X Window System.

9.12 Modules for Internationalization

size name
------- ---------------------

42836 mule-canna.c
16737 mule-ccl.c
41080 mule-charset.c
30176 mule-charset.h

146844 mule-coding.c
16588 mule-coding.h
6996 mule-mcpath.c
2899 mule-mcpath.h
57158 mule-wnnfns.c
3351 mule.c
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These files implement the MULE (Asian-language) support. Note that MULE actually
provides a general interface for all sorts of languages, not just Asian languages (although
they are generally the most complicated to support). This code is still in beta.

‘mule-charset.*’ and ‘mule-coding.*’ provide the heart of the XEmacs MULE sup-
port. ‘mule-charset.*’ implements the charset Lisp object type, which encapsulates a
character set (an ordered one- or two-dimensional set of characters, such as US ASCII or
JISX0208 Japanese Kanji).

‘mule-coding.*’ implements the coding-system Lisp object type, which encapsulates
a method of converting between different encodings. An encoding is a representation of a
stream of characters, possibly from multiple character sets, using a stream of bytes or words,
and defines (e.g.) which escape sequences are used to specify particular character sets, how
the indices for a character are converted into bytes (sometimes this involves setting the
high bit; sometimes complicated rearranging of the values takes place, as in the Shift-JIS
encoding), etc.

‘mule-ccl.c’ provides the CCL (Code Conversion Language) interpreter. CCL is similar
in spirit to Lisp byte code and is used to implement converters for custom encodings.

‘mule-canna.c’ and ‘mule-wnnfns.c’ implement interfaces to external programs used
to implement the Canna and WNN input methods, respectively. This is currently in beta.

‘mule-mcpath.c’ provides some functions to allow for pathnames containing extended
characters. This code is fragmentary, obsolete, and completely non-working. Instead,
pathname-coding-system is used to specify conversions of names of files and directories.
The standard C I/O functions like ‘open()’ are wrapped so that conversion occurs auto-
matically.

‘mule.c’ provides a few miscellaneous things that should probably be elsewhere.
9400 intl.c

This provides some miscellaneous internationalization code for implementing message
translation and interfacing to the Ximp input method. None of this code is currently
working.

1764 iso-wide.h

This contains leftover code from an earlier implementation of Asian-language support,
and is not currently used.
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10 Allocation of Objects in XEmacs Lisp

10.1 Introduction to Allocation

Emacs Lisp, like all Lisps, has garbage collection. This means that the programmer
never has to explicitly free (destroy) an object; it happens automatically when the object
becomes inaccessible. Most experts agree that garbage collection is a necessity in a modern,
high-level language. Its omission from C stems from the fact that C was originally designed
to be a nice abstract layer on top of assembly language, for writing kernels and basic system
utilities rather than large applications.

Lisp objects can be created by any of a number of Lisp primitives. Most object types
have one or a small number of basic primitives for creating objects. For conses, the basic
primitive is cons; for vectors, the primitives are make-vector and vector; for symbols,
the primitives are make-symbol and intern; etc. Some Lisp objects, especially those that
are primarily used internally, have no corresponding Lisp primitives. Every Lisp object,
though, has at least one C primitive for creating it.

Recall from section (VII) that a Lisp object, as stored in a 32-bit or 64-bit word, has
a mark bit, a few tag bits, and a “value” that occupies the remainder of the bits. We can
separate the different Lisp object types into four broad categories:
• (a) Those for whom the value directly represents the contents of the Lisp object. Only

two types are in this category: integers and characters. No special allocation or garbage
collection is necessary for such objects. Lisp objects of these types do not need to be
GCPROed.

In the remaining three categories, the value is a pointer to a structure.
• (b) Those for whom the tag directly specifies the type. Recall that there are only

three tag bits; this means that at most five types can be specified this way. The most
commonly-used types are stored in this format; this includes conses, strings, vectors,
and sometimes symbols. With the exception of vectors, objects in this category are
allocated in frob blocks, i.e. large blocks of memory that are subdivided into individual
objects. This saves a lot on malloc overhead, since there are typically quite a lot of
these objects around, and the objects are small. (A cons, for example, occupies 8
bytes on 32-bit machines – 4 bytes for each of the two objects it contains.) Vectors
are individually malloc()ed since they are of variable size. (It would be possible,
and desirable, to allocate vectors of certain small sizes out of frob blocks, but it isn’t
currently done.) Strings are handled specially: Each string is allocated in two parts, a
fixed size structure containing a length and a data pointer, and the actual data of the
string. The former structure is allocated in frob blocks as usual, and the latter data
is stored in string chars blocks and is relocated during garbage collection to eliminate
holes.

In the remaining two categories, the type is stored in the object itself. The tag for all
such objects is the generic lrecord (Lisp Record) tag. The first four bytes (or eight, for
64-bit machines) of the object’s structure are a pointer to a structure that describes the
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object’s type, which includes method pointers and a pointer to a string naming the type.
Note that it’s possible to save some space by using a one- or two-byte tag, rather than a
four- or eight-byte pointer to store the type, but it’s not clear it’s worth making the change.
• (c) Those lrecords that are allocated in frob blocks (see above). This includes the

objects that are most common and relatively small, and includes floats, bytecodes,
symbols (when not in category (b)), extents, events, and markers. With the cleanup of
frob blocks done in 19.12, it’s not terribly hard to add more objects to this category,
but it’s a bit trickier than adding an object type to type (d) (esp. if the object needs
a finalization method), and is not likely to save much space unless the object is small
and there are many of them. (In fact, if there are very few of them, it might actually
waste space.)

• (d) Those lrecords that are individually malloc()ed. These are called lcrecords. All
other types are in this category. Adding a new type to this category is comparatively
easy, and all types added since 19.8 (when the current allocation scheme was devised,
by Richard Mlynarik), with the exception of the character type, have been in this
category.

Note that bit vectors are a bit of a special case. They are simple lrecords as in category
(c), but are individually malloc()ed like vectors. You can basically view them as exactly
like vectors except that their type is stored in lrecord fashion rather than in directly-tagged
fashion.

Note that FSF Emacs redesigned their object system in 19.29 to follow a similar scheme.
However, given RMS’s expressed dislike for data abstraction, the FSF scheme is not nearly
as clean or as easy to extend. (FSF calls items of type (c) Lisp_Misc and items of type (d)
Lisp_Vectorlike, with separate tags for each, although Lisp_Vectorlike is also used for
vectors.)

10.2 Garbage Collection

Garbage collection is simple in theory but tricky to implement. Emacs Lisp uses the
oldest garbage collection method, called mark and sweep. Garbage collection begins by
starting with all accessible locations (i.e. all variables and other slots where Lisp objects
might occur) and recursively traversing all objects accessible from those slots, marking each
one that is found. We then go through all of memory and free each object that is not
marked, and unmarking each object that is marked. Note that “all of memory” means all
currently allocated objects. Traversing all these objects means traversing all frob blocks, all
vectors (which are chained in one big list), and all lcrecords (which are likewise chained).

Note that, when an object is marked, the mark has to occur inside of the object’s
structure, rather than in the 32-bit Lisp_Object holding the object’s pointer; i.e. you
can’t just set the pointer’s mark bit. This is because there may be many pointers to the
same object. This means that the method of marking an object can differ depending on
the type. The different marking methods are approximately as follows:
1. For conses, the mark bit of the car is set.
2. For strings, the mark bit of the string’s plist is set.
3. For symbols when not lrecords, the mark bit of the symbol’s plist is set.



Chapter 10: Allocation of Objects in XEmacs Lisp 63

4. For vectors, the length is negated after adding 1.
5. For lrecords, the pointer to the structure describing the type is changed (see below).
6. Integers and characters do not need to be marked, since no allocation occurs for them.

The details of this are in the mark_object() function.
Note that any code that operates during garbage collection has to be especially careful

because of the fact that some objects may be marked and as such may not look like they
normally do. In particular:

Some object pointers may have their mark bit set. This will make FOOBARP() predicates
fail. Use GC_FOOBARP() to deal with this.

• Even if you clear the mark bit, FOOBARP() will still fail for lrecords because the im-
plementation pointer has been changed (see below). GC_FOOBARP() will correctly deal
with this.

• Vectors have their size field munged, so anything that looks at this field will fail.
• Note that XFOOBAR() macros will work correctly on object pointers with their mark

bit set, because the logical shift operations that remove the tag also remove the mark
bit.

Finally, note that garbage collection can be invoked explicitly by calling garbage-
collect but is also called automatically by eval, once a certain amount of memory has
been allocated since the last garbage collection (according to gc-cons-threshold).

10.3 GCPROing

GCPROing is one of the ugliest and trickiest parts of Emacs internals. The basic idea is
that whenever garbage collection occurs, all in-use objects must be reachable somehow or
other from one of the roots of accessibility. The roots of accessibility are:
1. All objects that have been staticpro()d. This is used for any global C variables that

hold Lisp objects. A call to staticpro() happens implicitly as a result of any symbols
declared with defsymbol() and any variables declared with DEFVAR_FOO(). You need
to explicitly call staticpro() (in the vars_of_foo() method of a module) for other
global C variables holding Lisp objects. (This typically includes internal lists and such
things.)
Note that obarray is one of the staticpro()d things. Therefore, all functions and
variables get marked through this.

2. Any shadowed bindings that are sitting on the specpdl stack.
3. Any objects sitting in currently active (Lisp) stack frames, catches, and condition cases.
4. A couple of special-case places where active objects are located.
5. Anything currently marked with GCPRO.

Marking with GCPRO is necessary because some C functions (quite a lot, in fact), allocate
objects during their operation. Quite frequently, there will be no other pointer to the object
while the function is running, and if a garbage collection occurs and the object needs to be
referenced again, bad things will happen. The solution is to mark those objects with GCPRO.
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Unfortunately this is easy to forget, and there is basically no way around this problem.
Here are some rules, though:
1. For every GCPROn, there have to be declarations of struct gcpro gcpro1, gcpro2, etc.
2. You must UNGCPRO anything that’s GCPROed, and you must not UNGCPRO if you haven’t

GCPROed. Getting either of these wrong will lead to crashes, often in completely random
places unrelated to where the problem lies.

3. The way this actually works is that all currently active GCPROs are chained through the
struct gcpro local variables, with the variable ‘gcprolist’ pointing to the head of
the list and the nth local gcpro variable pointing to the first gcpro variable in the next
enclosing stack frame. Each GCPROed thing is an lvalue, and the struct gcpro local
variable contains a pointer to this lvalue. This is why things will mess up badly if you
don’t pair up the GCPROs and UNGCPROs – you will end up with gcprolists containing
pointers to struct gcpros or local Lisp_Object variables in no-longer-active stack
frames.

4. It is actually possible for a single struct gcpro to protect a contiguous array of any
number of values, rather than just a single lvalue. To effect this, call GCPROn as usual
on the first object in the array and then set gcpron.nvars.

5. Strings are relocated. What this means in practice is that the pointer obtained using
XSTRING_DATA() is liable to change at any time, and you should never keep it around
past any function call, or pass it as an argument to any function that might cause a
garbage collection. This is why a number of functions accept either a “non-relocatable”
char * pointer or a relocatable Lisp string, and only access the Lisp string’s data at
the very last minute. In some cases, you may end up having to alloca() some space
and copy the string’s data into it.

6. By convention, if you have to nest GCPRO’s, use NGCPROn (along with struct gcpro
ngcpro1, ngcpro2, etc.), NNGCPROn, etc. This avoids compiler warnings about shad-
owed locals.

7. It is always better to err on the side of extra GCPROs rather than too few. The extra
cycles spent on this are almost never going to make a whit of difference in the speed
of anything.

8. The general rule to follow is that caller, not callee, GCPROs. That is, you should not
have to explicitly GCPRO any Lisp objects that are passed in as parameters.
One exception from this rule is if you ever plan to change the parameter value, and
store a new object in it. In that case, you must GCPRO the parameter, because otherwise
the new object will not be protected.
So, if you create any Lisp objects (remember, this happens in all sorts of circumstances,
e.g. with Fcons(), etc.), you are responsible for GCPROing them, unless you are abso-
lutely sure that there’s no possibility that a garbage-collection can occur while you
need to use the object. Even then, consider GCPROing.

9. A garbage collection can occur whenever anything calls Feval, or whenever a QUIT can
occur where execution can continue past this. (Remember, this is almost anywhere.)

10. If you have the least smidgeon of doubt about whether you need to GCPRO, you should
GCPRO.

11. Beware of GCPROing something that is uninitialized. If you have any shade of doubt
about this, initialize all your variables to Qnil.
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12. Be careful of traps, like calling Fcons() in the argument to another function. By the
“caller protects” law, you should be GCPROing the newly-created cons, but you aren’t.
A certain number of functions that are commonly called on freshly created stuff (e.g.
nconc2(), Fsignal()), break the “caller protects” law and go ahead and GCPRO their
arguments so as to simplify things, but make sure and check if it’s OK whenever doing
something like this.

13. Once again, remember to GCPRO! Bugs resulting from insufficient GCPROing are inter-
mittent and extremely difficult to track down, often showing up in crashes inside of
garbage-collect or in weirdly corrupted objects or even in incorrect values in a totally
different section of code.

Given the extremely error-prone nature of the GCPRO scheme, and the difficulties in
tracking down, it should be considered a deficiency in the XEmacs code. A solution to this
problem would involve implementing so-called conservative garbage collection for the C
stack. That involves looking through all of stack memory and treating anything that looks
like a reference to an object as a reference. This will result in a few objects not getting
collected when they should, but it obviates the need for GCPROing, and allows garbage
collection to happen at any point at all, such as during object allocation.

10.4 Integers and Characters

Integer and character Lisp objects are created from integers using the macros XSETINT()
and XSETCHAR() or the equivalent functions make_int() and make_char(). (These are
actually macros on most systems.) These functions basically just do some moving of bits
around, since the integral value of the object is stored directly in the Lisp_Object.

XSETINT() and the like will truncate values given to them that are too big; i.e. you
won’t get the value you expected but the tag bits will at least be correct.

10.5 Allocation from Frob Blocks

The uninitialized memory required by a Lisp_Object of a particular type is allocated
using ALLOCATE_FIXED_TYPE(). This only occurs inside of the lowest-level object-creating
functions in ‘alloc.c’: Fcons(), make_float(), Fmake_byte_code(), Fmake_symbol(),
allocate_extent(), allocate_event(), Fmake_marker(), and make_uninit_string().
The idea is that, for each type, there are a number of frob blocks (each 2K in size); each
frob block is divided up into object-sized chunks. Each frob block will have some of these
chunks that are currently assigned to objects, and perhaps some that are free. (If a frob
block has nothing but free chunks, it is freed at the end of the garbage collection cycle.)
The free chunks are stored in a free list, which is chained by storing a pointer in the first
four bytes of the chunk. (Except for the free chunks at the end of the last frob block, which
are handled using an index which points past the end of the last-allocated chunk in the
last frob block.) ALLOCATE_FIXED_TYPE() first tries to retrieve a chunk from the free list;
if that fails, it calls ALLOCATE_FIXED_TYPE_FROM_BLOCK(), which looks at the end of the
last frob block for space, and creates a new frob block if there is none. (There are actually
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two versions of these macros, one of which is more defensive but less efficient and is used
for error-checking.)

10.6 lrecords

[see ‘lrecord.h’]
All lrecords have at the beginning of their structure a struct lrecord_header. This just

contains a pointer to a struct lrecord_implementation, which is a structure containing
method pointers and such. There is one of these for each type, and it is a global, constant,
statically-declared structure that is declared in the DEFINE_LRECORD_IMPLEMENTATION()
macro. (This macro actually declares an array of two struct lrecord_implementation
structures. The first one contains all the standard method pointers, and is used in all normal
circumstances. During garbage collection, however, the lrecord is marked by bumping its
implementation pointer by one, so that it points to the second structure in the array. This
structure contains a special indication in it that it’s a marked-object structure: the finalize
method is the special function this_marks_a_marked_record(), and all other methods
are null pointers. At the end of garbage collection, all lrecords will either be reclaimed or
unmarked by decrementing their implementation pointers, so this second structure pointer
will never remain past garbage collection.

Simple lrecords (of type (c) above) just have a struct lrecord_header at their begin-
ning. lcrecords, however, actually have a struct lcrecord_header. This, in turn, has a
struct lrecord_header at its beginning, so sanity is preserved; but it also has a pointer
used to chain all lcrecords together, and a special ID field used to distinguish one lcrecord
from another. (This field is used only for debugging and could be removed, but the space
gain is not significant.)

Simple lrecords are created using ALLOCATE_FIXED_TYPE(), just like for other frob
blocks. The only change is that the implementation pointer must be initialized correctly.
(The implementation structure for an lrecord, or rather the pointer to it, is named lrecord_
float, lrecord_extent, lrecord_buffer, etc.)

lcrecords are created using alloc_lcrecord(). This takes a size to allocate and an
implementation pointer. (The size needs to be passed because some lcrecords, such as
window configurations, are of variable size.) This basically just malloc()s the storage,
initializes the struct lcrecord_header, and chains the lcrecord onto the head of the list of
all lcrecords, which is stored in the variable all_lcrecords. The calls to alloc_lcrecord()
generally occur in the lowest-level allocation function for each lrecord type.

Whenever you create an lrecord, you need to call either DEFINE_LRECORD_
IMPLEMENTATION() or DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION(). This needs
to be specified in a C file, at the top level. What this actually does is define and
initialize the implementation structure for the lrecord. (And possibly declares a function
error_check_foo() that implements the XFOO() macro when error-checking is enabled.)
The arguments to the macros are the actual type name (this is used to construct the C
variable name of the lrecord implementation structure and related structures using the ‘##’
macro concatenation operator), a string that names the type on the Lisp level (this may
not be the same as the C type name; typically, the C type name has underscores, while the
Lisp string has dashes), various method pointers, and the name of the C structure that
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contains the object. The methods are used to encapsulate type-specific information about
the object, such as how to print it or mark it for garbage collection, so that it’s easy to
add new object types without having to add a specific case for each new type in a bunch
of different places.

The difference between DEFINE_LRECORD_IMPLEMENTATION() and DEFINE_LRECORD_
SEQUENCE_IMPLEMENTATION() is that the former is used for fixed-size object types and the
latter is for variable-size object types. Most object types are fixed-size; some complex
types, however (e.g. window configurations), are variable-size. Variable-size object types
have an extra method, which is called to determine the actual size of a particular object of
that type. (Currently this is only used for keeping allocation statistics.)

For the purpose of keeping allocation statistics, the allocation engine keeps a list of all the
different types that exist. Note that, since DEFINE_LRECORD_IMPLEMENTATION() is a macro
that is specified at top-level, there is no way for it to add to the list of all existing types.
What happens instead is that each implementation structure contains in it a dynamically
assigned number that is particular to that type. (Or rather, it contains a pointer to another
structure that contains this number. This evasiveness is done so that the implementation
structure can be declared const.) In the sweep stage of garbage collection, each lrecord is
examined to see if its implementation structure has its dynamically-assigned number set.
If not, it must be a new type, and it is added to the list of known types and a new number
assigned. The number is used to index into an array holding the number of objects of
each type and the total memory allocated for objects of that type. The statistics in this
array are also computed during the sweep stage. These statistics are returned by the call
to garbage-collect and are printed out at the end of the loadup phase.

Note that for every type defined with a DEFINE_LRECORD_*() macro, there needs to be
a DECLARE_LRECORD_IMPLEMENTATION() somewhere in a ‘.h’ file, and this ‘.h’ file needs to
be included by ‘inline.c’.

Furthermore, there should generally be a set of XFOOBAR(), FOOBARP(), etc. macros in
a ‘.h’ (or occasionally ‘.c’) file. To create one of these, copy an existing model and modify
as necessary.

The various methods in the lrecord implementation structure are:
1. A mark method. This is called during the marking stage and passed a function pointer

(usually the mark_object() function), which is used to mark an object. All Lisp objects
that are contained within the object need to be marked by applying this function to
them. The mark method should also return a Lisp object, which should be either nil or
an object to mark. (This can be used in lieu of calling mark_object() on the object,
to reduce the recursion depth, and consequently should be the most heavily nested
sub-object, such as a long list.)
Please note: When the mark method is called, garbage collection is in progress, and
special precautions need to be taken when accessing objects; see section (B) above.
If your mark method does not need to do anything, it can be NULL.

2. A print method. This is called to create a printed representation of the object, whenever
princ, prin1, or the like is called. It is passed the object, a stream to which the
output is to be directed, and an escapeflag which indicates whether the object’s
printed representation should be escaped so that it is readable. (This corresponds
to the difference between princ and prin1.) Basically, escaped means that strings



68 XEmacs Internals Manual

will have quotes around them and confusing characters in the strings such as quotes,
backslashes, and newlines will be backslashed; and that special care will be taken to
make symbols print in a readable fashion (e.g. symbols that look like numbers will
be backslashed). Other readable objects should perhaps pass escapeflag on when
sub-objects are printed, so that readability is preserved when necessary (or if not,
always pass in a 1 for escapeflag). Non-readable objects should in general ignore
escapeflag, except that some use it as an indication that more verbose output should
be given.
Sub-objects are printed using print_internal(), which takes exactly the same argu-
ments as are passed to the print method.
Literal C strings should be printed using write_c_string(), or write_string_1()
for non-null-terminated strings.
Functions that do not have a readable representation should check the print_readably
flag and signal an error if it is set.
If you specify NULL for the print method, the default_object_printer() will be
used.

3. A finalize method. This is called at the beginning of the sweep stage on lcrecords that
are about to be freed, and should be used to perform any extra object cleanup. This
typically involves freeing any extra malloc()ed memory associated with the object,
releasing any operating-system and window-system resources associated with the object
(e.g. pixmaps, fonts), etc.
The finalize method can be NULL if nothing needs to be done.
WARNING #1: The finalize method is also called at the end of the dump phase;
this time with the for disksave parameter set to non-zero. The object is not about
to disappear, so you have to make sure to not free any extra malloc()ed memory if
you’re going to need it later. (Also, signal an error if there are any operating-system
and window-system resources here, because they can’t be dumped.)
Finalize methods should, as a rule, set to zero any pointers after they’ve been freed, and
check to make sure pointers are not zero before freeing. Although I’m pretty sure that
finalize methods are not called twice on the same object (except for the for_disksave
proviso), we’ve gotten nastily burned in some cases by not doing this.
WARNING #2: The finalize method is only called for lcrecords, not for simply lrecords.
If you need a finalize method for simple lrecords, you have to stick it in the ADDITIONAL_
FREE_foo() macro in ‘alloc.c’.
WARNING #3: Things are in an extremely bizarre state when ADDITIONAL_FREE_
foo() is called, so you have to be incredibly careful when writing one of these functions.
See the comment in gc_sweep(). If you ever have to add one of these, consider using
an lcrecord or dealing with the problem in a different fashion.

4. An equal method. This compares the two objects for similarity, when equal is called.
It should compare the contents of the objects in some reasonable fashion. It is passed
the two objects and a depth value, which is used to catch circular objects. To compare
sub-Lisp-objects, call internal_equal() and bump the depth value by one. If this
value gets too high, a circular-object error will be signaled.
If this is NULL, objects are equal only when they are eq, i.e. identical.
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5. A hash method. This is used to hash objects when they are to be compared with
equal. The rule here is that if two objects are equal, they must hash to the same
value; i.e. your hash function should use some subset of the sub-fields of the object that
are compared in the “equal” method. If you specify this method as NULL, the object’s
pointer will be used as the hash, which will fail if the object has an equal method, so
don’t do this.

To hash a sub-Lisp-object, call internal_hash(). Bump the depth by one, just like
in the “equal” method.

To convert a Lisp object directly into a hash value (using its pointer), use LISP_HASH().
This is what happens when the hash method is NULL.

To hash two or more values together into a single value, use HASH2(), HASH3(),
HASH4(), etc.

6. getprop, putprop, remprop, and plist methods. These are used for object types
that have properties. I don’t feel like documenting them here. If you create
one of these objects, you have to use different macros to define them, i.e.
DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS() or DEFINE_LRECORD_SEQUENCE_
IMPLEMENTATION_WITH_PROPS().

7. A size in bytes method, when the object is of variable-size. (i.e. declared with a
_SEQUENCE_IMPLEMENTATION macro.) This should simply return the object’s size in
bytes, exactly as you might expect. For an example, see the methods for window
configurations and opaques.

10.7 Low-level allocation

Memory that you want to allocate directly should be allocated using xmalloc() rather
than malloc(). This implements error-checking on the return value, and once upon a time
did some more vital stuff (i.e. BLOCK_INPUT, which is no longer necessary). Free using
xfree(), and realloc using xrealloc(). Note that xmalloc() will do a non-local exit if
the memory can’t be allocated. (Many functions, however, do not expect this, and thus
XEmacs will likely crash if this happens. This is a bug. If you can, you should strive
to make your function handle this OK. However, it’s difficult in the general circumstance,
perhaps requiring extra unwind-protects and such.)

Note that XEmacs provides two separate replacements for the standard malloc() li-
brary function. These are called old GNU malloc (‘malloc.c’) and new GNU malloc
(‘gmalloc.c’), respectively. New GNU malloc is better in pretty much every way than old
GNU malloc, and should be used if possible. (It used to be that on some systems, the old
one worked but the new one didn’t. I think this was due specifically to a bug in SunOS,
which the new one now works around; so I don’t think the old one ever has to be used
any more.) The primary difference between both of these mallocs and the standard system
malloc is that they are much faster, at the expense of increased space. The basic idea is
that memory is allocated in fixed chunks of powers of two. This allows for basically con-
stant malloc time, since the various chunks can just be kept on a number of free lists. (The
standard system malloc typically allocates arbitrary-sized chunks and has to spend some
time, sometimes a significant amount of time, walking the heap looking for a free block to
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use and cleaning things up.) The new GNU malloc improves on things by allocating large
objects in chunks of 4096 bytes rather than in ever larger powers of two, which results in
ever larger wastage. There is a slight speed loss here, but it’s of doubtful significance.

NOTE: Apparently there is a third-generation GNU malloc that is significantly better
than the new GNU malloc, and should probably be included in XEmacs.

There is also the relocating allocator, ‘ralloc.c’. This actually moves blocks of memory
around so that the sbrk() pointer shrunk and virtual memory released back to the system.
On some systems, this is a big win. On all systems, it causes a noticeable (and sometimes
huge) speed penalty, so I turn it off by default. ‘ralloc.c’ only works with the new GNU
malloc in ‘gmalloc.c’. There are also two versions of ‘ralloc.c’, one that uses mmap()
rather than block copies to move data around. This purports to be faster, although that
depends on the amount of data that would have had to be block copied and the system-call
overhead for mmap(). I don’t know exactly how this works, except that the relocating-
allocation routines are pretty much used only for the memory allocated for a buffer, which
is the biggest consumer of space, esp. of space that may get freed later.

Note that the GNU mallocs have some “memory warning” facilities. XEmacs taps into
them and issues a warning through the standard warning system, when memory gets to
75%, 85%, and 95% full. (On some systems, the memory warnings are not functional.)

Allocated memory that is going to be used to make a Lisp object is created using
allocate_lisp_storage(). This calls xmalloc() but also verifies that the pointer to the
memory can fit into a Lisp word (remember that some bits are taken away for a type tag and
a mark bit). If not, an error is issued through memory_full(). allocate_lisp_storage()
is called by alloc_lcrecord(), ALLOCATE_FIXED_TYPE(), and the vector and bit-vector
creation routines. These routines also call INCREMENT_CONS_COUNTER() at the appropriate
times; this keeps statistics on how much memory is allocated, so that garbage-collection
can be invoked when the threshold is reached.

10.8 Pure Space

Not yet documented.

10.9 Cons

Conses are allocated in standard frob blocks. The only thing to note is that conses can
be explicitly freed using free_cons() and associated functions free_list() and free_
alist(). This immediately puts the conses onto the cons free list, and decrements the
statistics on memory allocation appropriately. This is used to good effect by some extremely
commonly-used code, to avoid generating extra objects and thereby triggering GC sooner.
However, you have to be extremely careful when doing this. If you mess this up, you will
get BADLY BURNED, and it has happened before.
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10.10 Vector

As mentioned above, each vector is malloc()ed individually, and all are threaded
through the variable all_vectors. Vectors are marked strangely during garbage
collection, by kludging the size field. Note that the struct Lisp_Vector is declared with
its contents field being a stretchy array of one element. It is actually malloc()ed with
the right size, however, and access to any element through the contents array works fine.

10.11 Bit Vector

Bit vectors work exactly like vectors, except for more complicated code to access an
individual bit, and except for the fact that bit vectors are lrecords while vectors are not.
(The only difference here is that there’s an lrecord implementation pointer at the beginning
and the tag field in bit vector Lisp words is “lrecord” rather than “vector”.)

10.12 Symbol

Symbols are also allocated in frob blocks. Note that the code exists for symbols to be
either lrecords (category (c) above) or simple types (category (b) above), and are lrecords
by default (I think), although there is no good reason for this.

Note that symbols in the awful horrible obarray structure are chained through their next
field.

Remember that intern looks up a symbol in an obarray, creating one if necessary.

10.13 Marker

Markers are allocated in frob blocks, as usual. They are kept in a buffer unordered, but
in a doubly-linked list so that they can easily be removed. (Formerly this was a singly-
linked list, but in some cases garbage collection took an extraordinarily long time due to
the O(N^2) time required to remove lots of markers from a buffer.) Markers are removed
from a buffer in the finalize stage, in ADDITIONAL_FREE_marker().

10.14 String

As mentioned above, strings are a special case. A string is logically two parts, a fixed-
size object (containing the length, property list, and a pointer to the actual data), and the
actual data in the string. The fixed-size object is a struct Lisp_String and is allocated in
frob blocks, as usual. The actual data is stored in special string-chars blocks, which are 8K
blocks of memory. Currently-allocated strings are simply laid end to end in these string-
chars blocks, with a pointer back to the struct Lisp_String stored before each string in
the string-chars block. When a new string needs to be allocated, the remaining space at
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the end of the last string-chars block is used if there’s enough, and a new string-chars block
is created otherwise.

There are never any holes in the string-chars blocks due to the string compaction and
relocation that happens at the end of garbage collection. During the sweep stage of garbage
collection, when objects are reclaimed, the garbage collector goes through all string-chars
blocks, looking for unused strings. Each chunk of string data is preceded by a pointer to the
corresponding struct Lisp_String, which indicates both whether the string is used and
how big the string is, i.e. how to get to the next chunk of string data. Holes are compressed
by block-copying the next string into the empty space and relocating the pointer stored in
the corresponding struct Lisp_String. This means you have to be careful with strings in
your code. See the section above on GCPROing.

Note that there is one situation not handled: a string that is too big to fit into a string-
chars block. Such strings, called big strings, are all malloc()ed as their own block. (####
Although it would make more sense for the threshold for big strings to be somewhat lower,
e.g. 1/2 or 1/4 the size of a string-chars block. It seems that this was indeed the case
formerly – indeed, the threshold was set at 1/8 – but Mly forgot about this when rewriting
things for 19.8.)

Note also that the string data in string-chars blocks is padded as necessary so that proper
alignment constraints on the struct Lisp_String back pointers are maintained.

Finally, strings can be resized. This happens in Mule when a character is substituted
with a different-length character, or during modeline frobbing. (You could also export this
to Lisp, but it’s not done so currently.) Resizing a string is a potentially tricky process.
If the change is small enough that the padding can absorb it, nothing other than a simple
memory move needs to be done. Keep in mind, however, that the string can’t shrink too
much because the offset to the next string in the string-chars block is computed by looking
at the length and rounding to the nearest multiple of four or eight. If the string would
shrink or expand beyond the correct padding, new string data needs to be allocated at the
end of the last string-chars block and the data moved appropriately. This leaves some dead
string data, which is marked by putting a special marker of 0xFFFFFFFF in the struct
Lisp_String pointer before the data (there’s no real struct Lisp_String to point to and
relocate), and storing the size of the dead string data (which would normally be obtained
from the now-non-existent struct Lisp_String) at the beginning of the dead string data
gap. The string compactor recognizes this special 0xFFFFFFFF marker and handles it
correctly.

10.15 Bytecode

Not yet documented.
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11 Events and the Event Loop

11.1 Introduction to Events

An event is an object that encapsulates information about an interesting occurrence in
the operating system. Events are generated either by user action, direct (e.g. typing on the
keyboard or moving the mouse) or indirect (moving another window, thereby generating an
expose event on an Emacs frame), or as a result of some other typically asynchronous action
happening, such as output from a subprocess being ready or a timer expiring. Events come
into the system in an asynchronous fashion (typically through a callback being called) and
are converted into a synchronous event queue (first-in, first-out) in a process that we will
call collection.

Note that each application has its own event queue. (It is immaterial whether the
collection process directly puts the events in the proper application’s queue, or puts them
into a single system queue, which is later split up.)

The most basic level of event collection is done by the operating system or window
system. Typically, XEmacs does its own event collection as well. Often there are multiple
layers of collection in XEmacs, with events from various sources being collected into a queue,
which is then combined with other sources to go into another queue (i.e. a second level of
collection), with perhaps another level on top of this, etc.

XEmacs has its own types of events (called Emacs events), which provides an abstract
layer on top of the system-dependent nature of the most basic events that are received.
Part of the complex nature of the XEmacs event collection process involves converting from
the operating-system events into the proper Emacs events – there may not be a one-to-one
correspondence.

Emacs events are documented in ‘events.h’; I’ll discuss them later.

11.2 Main Loop

The command loop is the top-level loop that the editor is always running. It loops
endlessly, calling next-event to retrieve an event and dispatch-event to execute it.
dispatch-event does the appropriate thing with non-user events (process, timeout, magic,
eval, mouse motion); this involves calling a Lisp handler function, redrawing a newly-
exposed part of a frame, reading subprocess output, etc. For user events, dispatch-event
looks up the event in relevant keymaps or menubars; when a full key sequence or menubar
selection is reached, the appropriate function is executed. dispatch-event may have to
keep state across calls; this is done in the “command-builder” structure associated with
each console (remember, there’s usually only one console), and the engine that looks up
keystrokes and constructs full key sequences is called the command builder. This is docu-
mented elsewhere.
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The guts of the command loop are in command_loop_1(). This function doesn’t catch
errors, though – that’s the job of command_loop_2(), which is a condition-case (i.e. error-
trapping) wrapper around command_loop_1(). command_loop_1() never returns, but may
get thrown out of.

When an error occurs, cmd_error() is called, which usually invokes the Lisp error
handler in command-error; however, a default error handler is provided if command-error
is nil (e.g. during startup). The purpose of the error handler is simply to display the error
message and do associated cleanup; it does not need to throw anywhere. When the error
handler finishes, the condition-case in command_loop_2() will finish and command_loop_2()
will reinvoke command_loop_1().

command_loop_2() is invoked from three places: from initial_command_loop() (called
from main() at the end of internal initialization), from the Lisp function recursive-edit,
and from call_command_loop().

call_command_loop() is called when a macro is started and when the minibuffer is
entered; normal termination of the macro or minibuffer causes a throw out of the recursive
command loop. (To execute-kbd-macro for macros and exit for minibuffers. Note also
that the low-level minibuffer-entering function, read-minibuffer-internal, provides its
own error handling and does not need command_loop_2()’s error encapsulation; so it tells
call_command_loop() to invoke command_loop_1() directly.)

Note that both read-minibuffer-internal and recursive-edit set up a catch for exit; this
is why abort-recursive-edit, which throws to this catch, exits out of either one.

initial_command_loop(), called from main(), sets up a catch for top-level when
invoking command_loop_2(), allowing functions to throw all the way to the top level if
they really need to. Before invoking command_loop_2(), initial_command_loop() calls
top_level_1(), which handles all of the startup stuff (creating the initial frame, handling
the command-line options, loading the user’s ‘.emacs’ file, etc.). The function that actually
does this is in Lisp and is pointed to by the variable top-level; normally this function is
normal-top-level. top_level_1() is just an error-handling wrapper similar to command_
loop_2(). Note also that initial_command_loop() sets up a catch for top-level when
invoking top_level_1(), just like when it invokes command_loop_2().

11.3 Specifics of the Event Gathering Mechanism

Here is an approximate diagram of the collection processes at work in XEmacs, under
TTY’s (TTY’s are simpler than X so we’ll look at this first):

asynch. asynch. asynch. asynch. [Collectors in
kbd events kbd events process process the OS]

| | output output
| | | |
| | | | SIGINT, [signal handlers
| | | | SIGQUIT, in XEmacs]
V V V V SIGWINCH,
file file file file SIGALRM
desc. desc. desc. desc. |
(TTY) (TTY) (pipe) (pipe) |
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| | | | fake timeouts
| | | | file |
| | | | desc. |
| | | | (pipe) |
| | | | | |
| | | | | |
| | | | | |
V V V V V V
------>-----------<----------------<----------------

|
|
| [collected using select() in emacs_tty_next_event()
| and converted to the appropriate Emacs event]
|
|
V (above this line is TTY-specific)

Emacs ------------------------------------------------
event (below this line is the generic event mechanism)

|
|

was there if not, call
a SIGINT? emacs_tty_next_event()

| |
| |
| |
V V
--->-------<----

|
| [collected in event_stream_next_event();
| SIGINT is converted using maybe_read_quit_event()]
V

Emacs
event
|
\---->------>----- maybe_kbd_translate() ---->---\

|
|
|

command event queue |
if not from command

(contains events that were event queue, call
read earlier but not processed, event_stream_next_event()
typically when waiting in a |
sit-for, sleep-for, etc. for |
a particular event to be received) |

| |
| |
V V
---->------------------------------------<----
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|
| [collected in
| next_event_internal()]
|

unread- unread- event from |
command- command- keyboard else, call
events event macro next_event_internal()

| | | |
| | | |
| | | |
V V V V
--------->----------------------<------------

|
| [collected in ‘next-event’, which may loop
| more than once if the event it gets is on
| a dead frame, device, etc.]
|
|
V

feed into top-level event loop,
which repeatedly calls ‘next-event’
and then dispatches the event
using ‘dispatch-event’

Notice the separation between TTY-specific and generic event mechanism. When using
the Xt-based event loop, the TTY-specific stuff is replaced but the rest stays the same.

It’s also important to realize that only one different kind of system-specific event loop can
be operating at a time, and must be able to receive all kinds of events simultaneously. For the
two existing event loops (implemented in ‘event-tty.c’ and ‘event-Xt.c’, respectively),
the TTY event loop only handles TTY consoles, while the Xt event loop handles both TTY
and X consoles. This situation is different from all of the output handlers, where you simply
have one per console type.

Here’s the Xt Event Loop Diagram (notice that below a certain point, it’s the same as
the above diagram):

asynch. asynch. asynch. asynch. [Collectors in
kbd kbd process process the OS]
events events output output

| | | |
| | | | asynch. asynch. [Collectors in the
| | | | X X OS and X Window System]
| | | | events events
| | | | | |
| | | | | |
| | | | | | SIGINT, [signal handlers
| | | | | | SIGQUIT, in XEmacs]
| | | | | | SIGWINCH,
| | | | | | SIGALRM
| | | | | | |
| | | | | | |
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| | | | | | | timeouts
| | | | | | | |
| | | | | | | |
| | | | | | V |
V V V V V V fake |
file file file file file file file |
desc. desc. desc. desc. desc. desc. desc. |
(TTY) (TTY) (pipe) (pipe) (socket) (socket) (pipe) |
| | | | | | | |
| | | | | | | |
| | | | | | | |
V V V V V V V V
--->----------------------------------------<---------<------

| | |
| | | [collected using select() in
| | | _XtWaitForSomething(), called
| | | from XtAppProcessEvent(), called
| | | in emacs_Xt_next_event();
| | | dispatched to various callbacks]
| | |
| | |

emacs_Xt_ p_s_callback(), | [popup_selection_callback]
event_handler() x_u_v_s_callback(),| [x_update_vertical_scrollbar_

| x_u_h_s_callback(),| callback]
| search_callback() | [x_update_horizontal_scrollbar_
| | | callback]
| | |
| | |

enqueue_Xt_ signal_special_ |
dispatch_event() Xt_user_event() |
[maybe multiple | |
times, maybe 0 | |
times] | |

| enqueue_Xt_ |
| dispatch_event() |
| | |
| | |
V V |
-->----------<-- |

| |
| |

dispatch Xt_what_callback()
event sets flags
queue |

| |
| |
| |
| |
---->-----------<--------
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|
|
| [collected and converted as appropriate in
| emacs_Xt_next_event()]
|
|
V (above this line is Xt-specific)

Emacs ------------------------------------------------
event (below this line is the generic event mechanism)

|
|

was there if not, call
a SIGINT? emacs_Xt_next_event()

| |
| |
| |
V V
--->-------<----

|
| [collected in event_stream_next_event();
| SIGINT is converted using maybe_read_quit_event()]
V

Emacs
event

|
\---->------>----- maybe_kbd_translate() -->-----\

|
|
|

command event queue |
if not from command

(contains events that were event queue, call
read earlier but not processed, event_stream_next_event()
typically when waiting in a |
sit-for, sleep-for, etc. for |
a particular event to be received) |

| |
| |
V V
---->----------------------------------<------

|
| [collected in
| next_event_internal()]
|

unread- unread- event from |
command- command- keyboard else, call
events event macro next_event_internal()

| | | |
| | | |



Chapter 11: Events and the Event Loop 79

| | | |
V V V V
--------->----------------------<------------

|
| [collected in ‘next-event’, which may loop
| more than once if the event it gets is on
| a dead frame, device, etc.]
|
|
V

feed into top-level event loop,
which repeatedly calls ‘next-event’
and then dispatches the event
using ‘dispatch-event’

11.4 Specifics About the Emacs Event

11.5 The Event Stream Callback Routines

11.6 Other Event Loop Functions

detect_input_pending() and input-pending-p look for input by calling
event_stream->event_pending_p and looking in [V]unread-command-event and the
command_event_queue (they do not check for an executing keyboard macro, though).

discard-input cancels any command events pending (and any keyboard macros cur-
rently executing), and puts the others onto the command_event_queue. There is a comment
about a “race condition”, which is not a good sign.

next-command-event and read-char are higher-level interfaces to next-event. next-
command-event gets the next command event (i.e. keypress, mouse event, menu selection, or
scrollbar action), calling dispatch-event on any others. read-char calls next-command-
event and uses event_to_character() to return the character equivalent. With the right
kind of input method support, it is possible for (read-char) to return a Kanji character.

11.7 Converting Events

character_to_event(), event_to_character(), event-to-character, and
character-to-event convert between characters and keypress events corresponding
to the characters. If the event was not a keypress, event_to_character() returns
-1 and event-to-character returns nil. These functions convert between character
representation and the split-up event representation (keysym plus mod keys).
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11.8 Dispatching Events; The Command Builder

Not yet documented.
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12 Evaluation; Stack Frames; Bindings

12.1 Evaluation

Feval() evaluates the form (a Lisp object) that is passed to it. Note that evaluation is
only non-trivial for two types of objects: symbols and conses. A symbol is evaluated simply
by calling symbol-value on it and returning the value.

Evaluating a cons means calling a function. First, eval checks to see if garbage-collection
is necessary, and calls Fgarbage_collect() if so. It then increases the evaluation depth by 1
(lisp_eval_depth, which is always less than max_lisp_eval_depth) and adds an element
to the linked list of struct backtrace’s (backtrace_list). Each such structure contains a
pointer to the function being called plus a list of the function’s arguments. Originally these
values are stored unevalled, and as they are evaluated, the backtrace structure is updated.
Garbage collection pays attention to the objects pointed to in the backtrace structures
(garbage collection might happen while a function is being called or while an argument
is being evaluated, and there could easily be no other references to the arguments in the
argument list; once an argument is evaluated, however, the unevalled version is not needed
by eval, and so the backtrace structure is changed).

At this point, the function to be called is determined by looking at the car of the cons (if
this is a symbol, its function definition is retrieved and the process repeated). The function
should then consist of either a Lisp_Subr (built-in function), a Lisp_Compiled_Function
object, or a cons whose car is the symbol autoload, macro or lambda.

If the function is a Lisp_Subr, the lisp object points to a struct Lisp_Subr (created by
DEFUN()), which contains a pointer to the C function, a minimum and maximum number
of arguments (possibly the special constants MANY or UNEVALLED), a pointer to the sym-
bol referring to that subr, and a couple of other things. If the subr wants its arguments
UNEVALLED, they are passed raw as a list. Otherwise, an array of evaluated arguments
is created and put into the backtrace structure, and either passed whole (MANY) or each
argument is passed as a C argument.

If the function is a Lisp_Compiled_Function object or a lambda, apply_lambda() is
called. If the function is a macro, [..... fill in] is done. If the function is an autoload,
do_autoload() is called to load the definition and then eval starts over [explain this more].

When Feval exits, the evaluation depth is reduced by one, the debugger is called if
appropriate, and the current backtrace structure is removed from the list.

apply_lambda() is passed a function, a list of arguments, and a flag indicating whether
to evaluate the arguments. It creates an array of (possibly) evaluated arguments and fixes
up the backtrace structure, just like eval does. Then it calls funcall_lambda().

funcall_lambda() goes through the formal arguments to the function and binds them to
the actual arguments, checking for &rest and &optional symbols in the formal arguments
and making sure the number of actual arguments is correct. Then either progn or byte-
code is called to actually execute the body and return a value.
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Ffuncall() implements Lisp funcall. (funcall fun x1 x2 x3 ...) is equivalent to
(eval (list fun (quote x1) (quote x2) (quote x3) ...)). Ffuncall() contains its
own code to do the evaluation, however, and is almost identical to eval.

Fapply() implements Lisp apply, which is very similar to funcall except that if the
last argument is a list, the result is the same as if each of the arguments in the list had been
passed separately. Fapply() does some business to expand the last argument if it’s a list,
then calls Ffuncall() to do the work.

apply1(), call0(), call1(), call2(), and call3() call a function, passing it the
argument(s) given (the arguments are given as separate C arguments rather than being
passed as an array). apply1() uses apply while the others use funcall.

12.2 Dynamic Binding; The specbinding Stack; Unwind-
Protects

struct specbinding
{

Lisp_Object symbol, old_value;
Lisp_Object (*func) (Lisp_Object); /* for unwind-protect */

};

struct specbinding is used for local-variable bindings and unwind-protects. specpdl
holds an array of struct specbinding’s, specpdl_ptr points to the beginning of the free
bindings in the array, specpdl_size specifies the total number of binding slots in the
array, and max_specpdl_size specifies the maximum number of bindings the array can be
expanded to hold. grow_specpdl() increases the size of the specpdl array, multiplying its
size by 2 but never exceeding max_specpdl_size (except that if this number is less than
400, it is first set to 400).

specbind() binds a symbol to a value and is used for local variables and let forms. The
symbol and its old value (which might be Qunbound, indicating no prior value) are recorded
in the specpdl array, and specpdl_size is increased by 1.

record_unwind_protect() implements an unwind-protect, which, when placed around
a section of code, ensures that some specified cleanup routine will be executed even if the
code exits abnormally (e.g. through a throw or quit). record_unwind_protect() simply
adds a new specbinding to the specpdl array and stores the appropriate information in it.
The cleanup routine can either be a C function, which is stored in the func field, or a progn
form, which is stored in the old_value field.

unbind_to() removes specbindings from the specpdl array until the specified position
is reached. Each specbinding can be one of three types:

1. an unwind-protect with a C cleanup function (func is not 0, and old_value holds an
argument to be passed to the function);

2. an unwind-protect with a Lisp form (func is 0, symbol is nil, and old_value holds
the form to be executed with Fprogn()); or

3. a local-variable binding (func is 0, symbol is not nil, and old_value holds the old
value, which is stored as the symbol’s value).
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12.3 Simple Special Forms

or, and, if, cond, progn, prog1, prog2, setq, quote, function, let*, let, while
All of these are very simple and work as expected, calling Feval() or Fprogn() as

necessary and (in the case of let and let*) using specbind() to create bindings and
unbind_to() to undo the bindings when finished. Note that these functions do a lot of
GCPROing to protect their arguments from garbage collection because they call Feval() (see
Section 10.2 [Garbage Collection], page 62).

12.4 Catch and Throw

struct catchtag
{
Lisp_Object tag;
Lisp_Object val;
struct catchtag *next;
struct gcpro *gcpro;
jmp_buf jmp;
struct backtrace *backlist;
int lisp_eval_depth;
int pdlcount;

};

catch is a Lisp function that places a catch around a body of code. A catch is a means
of non-local exit from the code. When a catch is created, a tag is specified, and executing
a throw to this tag will exit from the body of code caught with this tag, and its value will
be the value given in the call to throw. If there is no such call, the code will be executed
normally.

Information pertaining to a catch is held in a struct catchtag, which is placed at the
head of a linked list pointed to by catchlist. internal_catch() is passed a C function
to call (Fprogn() when Lisp catch is called) and arguments to give it, and places a catch
around the function. Each struct catchtag is held in the stack frame of the internal_
catch() instance that created the catch.

internal_catch() is fairly straightforward. It stores into the struct catchtag the
tag name and the current values of backtrace_list, lisp_eval_depth, gcprolist, and
the offset into the specpdl array, sets a jump point with _setjmp() (storing the jump
point into the struct catchtag), and calls the function. Control will return to internal_
catch() either when the function exits normally or through a _longjmp() to this jump
point. In the latter case, throw will store the value to be returned into the struct catchtag
before jumping. When it’s done, internal_catch() removes the struct catchtag from
the catchlist and returns the proper value.

Fthrow() goes up through the catchlist until it finds one with a matching tag. It then
calls unbind_catch() to restore everything to what it was when the appropriate catch was
set, stores the return value in the struct catchtag, and jumps (with _longjmp()) to its
jump point.
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unbind_catch() removes all catches from the catchlist until it finds the correct one.
Some of the catches might have been placed for error-trapping, and if so, the appropriate
entries on the handlerlist must be removed (see “errors”). unbind_catch() also restores
the values of gcprolist, backtrace_list, and lisp_eval, and calls unbind_to() to undo
any specbindings created since the catch.
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13 Symbols and Variables

13.1 Introduction to Symbols

A symbol is basically just an object with four fields: a name (a string), a value (some
Lisp object), a function (some Lisp object), and a property list (usually a list of alternating
keyword/value pairs). What makes symbols special is that there is usually only one symbol
with a given name, and the symbol is referred to by name. This makes a symbol a convenient
way of calling up data by name, i.e. of implementing variables. (The variable’s value is
stored in the value slot.) Similarly, functions are referenced by name, and the definition
of the function is stored in a symbol’s function slot. This means that there can be a
distinct function and variable with the same name. The property list is used as a more
general mechanism of associating additional values with particular names, and once again
the namespace is independent of the function and variable namespaces.

13.2 Obarrays

The identity of symbols with their names is accomplished through a structure called an
obarray, which is just a poorly-implemented hash table mapping from strings to symbols
whose name is that string. (I say “poorly implemented” because an obarray appears in Lisp
as a vector with some hidden fields rather than as its own opaque type. This is an Emacs
Lisp artifact that should be fixed.)

Obarrays are implemented as a vector of some fixed size (which should be a prime for
best results), where each “bucket” of the vector contains one or more symbols, threaded
through a hidden next field in the symbol. Lookup of a symbol in an obarray, and adding
a symbol to an obarray, is accomplished through standard hash-table techniques.

The standard Lisp function for working with symbols and obarrays is intern. This looks
up a symbol in an obarray given its name; if it’s not found, a new symbol is automatically
created with the specified name, added to the obarray, and returned. This is what happens
when the Lisp reader encounters a symbol (or more precisely, encounters the name of a
symbol) in some text that it is reading. There is a standard obarray called obarray that is
used for this purpose, although the Lisp programmer is free to create his own obarrays and
intern symbols in them.

Note that, once a symbol is in an obarray, it stays there until something is done about
it, and the standard obarray obarray always stays around, so once you use any particular
variable name, a corresponding symbol will stay around in obarray until you exit XEmacs.

Note that obarray itself is a variable, and as such there is a symbol in obarray whose
name is "obarray" and which contains obarray as its value.

Note also that this call to intern occurs only when in the Lisp reader, not when the code
is executed (at which point the symbol is already around, stored as such in the definition
of the function).
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You can create your own obarray using make-vector (this is horrible but is an artifact)
and intern symbols into that obarray. Doing that will result in two or more symbols with
the same name. However, at most one of these symbols is in the standard obarray: You
cannot have two symbols of the same name in any particular obarray. Note that you cannot
add a symbol to an obarray in any fashion other than using intern: i.e. you can’t take
an existing symbol and put it in an existing obarray. Nor can you change the name of an
existing symbol. (Since obarrays are vectors, you can violate the consistency of things by
storing directly into the vector, but let’s ignore that possibility.)

Usually symbols are created by intern, but if you really want, you can explicitly create
a symbol using make-symbol, giving it some name. The resulting symbol is not in any
obarray (i.e. it is uninterned), and you can’t add it to any obarray. Therefore its primary
purpose is as a symbol to use in macros to avoid namespace pollution. It can also be used
as a carrier of information, but cons cells could probably be used just as well.

You can also use intern-soft to look up a symbol but not create a new one, and
unintern to remove a symbol from an obarray. This returns the removed symbol. (Re-
member: You can’t put the symbol back into any obarray.) Finally, mapatoms maps over
all of the symbols in an obarray.

13.3 Symbol Values

The value field of a symbol normally contains a Lisp object. However, a symbol can be
unbound, meaning that it logically has no value. This is internally indicated by storing a
special Lisp object, called the unbound marker and stored in the global variable Qunbound.
The unbound marker is of a special Lisp object type called symbol-value-magic. It is
impossible for the Lisp programmer to directly create or access any object of this type.

You must not let any “symbol-value-magic” object escape to the Lisp level. Printing
any of these objects will cause the message ‘INTERNAL EMACS BUG’ to appear as part of the
print representation. (You may see this normally when you call debug_print() from the
debugger on a Lisp object.) If you let one of these objects escape to the Lisp level, you will
violate a number of assumptions contained in the C code and make the unbound marker
not function right.

When a symbol is created, its value field (and function field) are set to Qunbound. The
Lisp programmer can restore these conditions later using makunbound or fmakunbound, and
can query to see whether the value of function fields are bound (i.e. have a value other than
Qunbound) using boundp and fboundp. The fields are set to a normal Lisp object using set
(or setq) and fset.

Other symbol-value-magic objects are used as special markers to indicate variables that
have non-normal properties. This includes any variables that are tied into C variables
(setting the variable magically sets some global variable in the C code, and likewise for
retrieving the variable’s value), variables that magically tie into slots in the current buffer,
variables that are buffer-local, etc. The symbol-value-magic object is stored in the value cell
in place of a normal object, and the code to retrieve a symbol’s value (i.e. symbol-value)
knows how to do special things with them. This means that you should not just fetch the
value cell directly if you want a symbol’s value.
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The exact workings of this are rather complex and involved and are well-documented in
comments in ‘buffer.c’, ‘symbols.c’, and ‘lisp.h’.
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14 Buffers and Textual Representation

14.1 Introduction to Buffers

A buffer is logically just a Lisp object that holds some text. In this, it is like a string, but
a buffer is optimized for frequent insertion and deletion, while a string is not. Furthermore:
1. Buffers are permanent objects, i.e. once you create them, they remain around, and

need to be explicitly deleted before they go away.
2. Each buffer has a unique name, which is a string. Buffers are normally referred to by

name. In this respect, they are like symbols.
3. Buffers have a default insertion position, called point. Inserting text (unless you ex-

plicitly give a position) goes at point, and moves point forward past the text. This is
what is going on when you type text into Emacs.

4. Buffers have lots of extra properties associated with them.
5. Buffers can be displayed. What this means is that there exist a number of windows,

which are objects that correspond to some visible section of your display, and each
window has an associated buffer, and the current contents of the buffer are shown in
that section of the display. The redisplay mechanism (which takes care of doing this)
knows how to look at the text of a buffer and come up with some reasonable way of
displaying this. Many of the properties of a buffer control how the buffer’s text is
displayed.

6. One buffer is distinguished and called the current buffer. It is stored in the variable
current_buffer. Buffer operations operate on this buffer by default. When you are
typing text into a buffer, the buffer you are typing into is always current_buffer.
Switching to a different window changes the current buffer. Note that Lisp code can
temporarily change the current buffer using set-buffer (often enclosed in a save-
excursion so that the former current buffer gets restored when the code is finished).
However, calling set-buffer will NOT cause a permanent change in the current buffer.
The reason for this is that the top-level event loop sets current_buffer to the buffer
of the selected window, each time it finishes executing a user command.

Make sure you understand the distinction between current buffer and buffer of the se-
lected window, and the distinction between point of the current buffer and window-point
of the selected window. (This latter distinction is explained in detail in the section on
windows.)

14.2 The Text in a Buffer

The text in a buffer consists of a sequence of zero or more characters. A character is
an integer that logically represents a letter, number, space, or other unit of text. Most of
the characters that you will typically encounter belong to the ASCII set of characters, but
there are also characters for various sorts of accented letters, special symbols, Chinese and
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Japanese ideograms (i.e. Kanji, Katakana, etc.), Cyrillic and Greek letters, etc. The actual
number of possible characters is quite large.

For now, we can view a character as some non-negative integer that has some shape
that defines how it typically appears (e.g. as an uppercase A). (The exact way in which a
character appears depends on the font used to display the character.) The internal type of
characters in the C code is an Emchar; this is just an int, but using a symbolic type makes
the code clearer.

Between every character in a buffer is a buffer position or character position. We can
speak of the character before or after a particular buffer position, and when you insert a
character at a particular position, all characters after that position end up at new positions.
When we speak of the character at a position, we really mean the character after the
position. (This schizophrenia between a buffer position being “between” a character and
“on” a character is rampant in Emacs.)

Buffer positions are numbered starting at 1. This means that position 1 is before the
first character, and position 0 is not valid. If there are N characters in a buffer, then buffer
position N+1 is after the last one, and position N+2 is not valid.

The internal makeup of the Emchar integer varies depending on whether we have com-
piled with MULE support. If not, the Emchar integer is an 8-bit integer with possible values
from 0 - 255. 0 - 127 are the standard ASCII characters, while 128 - 255 are the characters
from the ISO-8859-1 character set. If we have compiled with MULE support, an Emchar is
a 19-bit integer, with the various bits having meanings according to a complex scheme that
will be detailed later. The characters numbered 0 - 255 still have the same meanings as for
the non-MULE case, though.

Internally, the text in a buffer is represented in a fairly simple fashion: as a contiguous
array of bytes, with a gap of some size in the middle. Although the gap is of some substantial
size in bytes, there is no text contained within it: From the perspective of the text in
the buffer, it does not exist. The gap logically sits at some buffer position, between two
characters (or possibly at the beginning or end of the buffer). Insertion of text in a buffer
at a particular position is always accomplished by first moving the gap to that position
(i.e. through some block moving of text), then writing the text into the beginning of the
gap, thereby shrinking the gap. If the gap shrinks down to nothing, a new gap is created.
(What actually happens is that a new gap is “created” at the end of the buffer’s text, which
requires nothing more than changing a couple of indices; then the gap is “moved” to the
position where the insertion needs to take place by moving up in memory all the text after
that position.) Similarly, deletion occurs by moving the gap to the place where the text is
to be deleted, and then simply expanding the gap to include the deleted text. (Expanding
and shrinking the gap as just described means just that the internal indices that keep track
of where the gap is located are changed.)

Note that the total amount of memory allocated for a buffer text never decreases while
the buffer is live. Therefore, if you load up a 20-megabyte file and then delete all but one
character, there will be a 20-megabyte gap, which won’t get any smaller (except by inserting
characters back again). Once the buffer is killed, the memory allocated for the buffer text
will be freed, but it will still be sitting on the heap, taking up virtual memory, and will
not be released back to the operating system. (However, if you have compiled XEmacs
with rel-alloc, the situation is different. In this case, the space will be released back to the
operating system. However, this tends to result in a noticeable speed penalty.)
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Astute readers may notice that the text in a buffer is represented as an array of bytes,
while (at least in the MULE case) an Emchar is a 19-bit integer, which clearly cannot fit
in a byte. This means (of course) that the text in a buffer uses a different representation
from an Emchar: specifically, the 19-bit Emchar becomes a series of one to four bytes. The
conversion between these two representations is complex and will be described later.

In the non-MULE case, everything is very simple: An Emchar is an 8-bit value, which
fits neatly into one byte.

If we are given a buffer position and want to retrieve the character at that position, we
need to follow these steps:

1. Pretend there’s no gap, and convert the buffer position into a byte index that indexes
to the appropriate byte in the buffer’s stream of textual bytes. By convention, byte
indices begin at 1, just like buffer positions. In the non-MULE case, byte indices and
buffer positions are identical, since one character equals one byte.

2. Convert the byte index into a memory index, which takes the gap into account. The
memory index is a direct index into the block of memory that stores the text of a buffer.
This basically just involves checking to see if the byte index is past the gap, and if so,
adding the size of the gap to it. By convention, memory indices begin at 1, just like
buffer positions and byte indices, and when referring to the position that is at the gap,
we always use the memory position at the beginning, not at the end, of the gap.

3. Fetch the appropriate bytes at the determined memory position.

4. Convert these bytes into an Emchar.

In the non-Mule case, (3) and (4) boil down to a simple one-byte memory access.

Note that we have defined three types of positions in a buffer:

1. buffer positions or character positions, typedef Bufpos

2. byte indices, typedef Bytind

3. memory indices, typedef Memind

All three typedefs are just ints, but defining them this way makes things a lot clearer.

Most code works with buffer positions. In particular, all Lisp code that refers to text in
a buffer uses buffer positions. Lisp code does not know that byte indices or memory indices
exist.

Finally, we have a typedef for the bytes in a buffer. This is a Bufbyte, which is an
unsigned char. Referring to them as Bufbytes underscores the fact that we are working
with a string of bytes in the internal Emacs buffer representation rather than in one of a
number of possible alternative representations (e.g. EUC-encoded text, etc.).

14.3 Buffer Lists

Recall earlier that buffers are permanent objects, i.e. that they remain around until
explicitly deleted. This entails that there is a list of all the buffers in existence. This list
is actually an assoc-list (mapping from the buffer’s name to the buffer) and is stored in the
global variable Vbuffer_alist.
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The order of the buffers in the list is important: the buffers are ordered approximately
from most-recently-used to least-recently-used. Switching to a buffer using switch-to-
buffer, pop-to-buffer, etc. and switching windows using other-window, etc. usually
brings the new current buffer to the front of the list. switch-to-buffer, other-buffer,
etc. look at the beginning of the list to find an alternative buffer to suggest. You can also
explicitly move a buffer to the end of the list using bury-buffer.

In addition to the global ordering in Vbuffer_alist, each frame has its own ordering
of the list. These lists always contain the same elements as in Vbuffer_alist although
possibly in a different order. buffer-list normally returns the list for the selected frame.
This allows you to work in separate frames without things interfering with each other.

The standard way to look up a buffer given a name is get-buffer, and the standard
way to create a new buffer is get-buffer-create, which looks up a buffer with a given
name, creating a new one if necessary. These operations correspond exactly with the symbol
operations intern-soft and intern, respectively. You can also force a new buffer to be
created using generate-new-buffer, which takes a name and (if necessary) makes a unique
name from this by appending a number, and then creates the buffer. This is basically like
the symbol operation gensym.

14.4 Markers and Extents

Among the things associated with a buffer are things that are logically attached to
certain buffer positions. This can be used to keep track of a buffer position when text is
inserted and deleted, so that it remains at the same spot relative to the text around it; to
assign properties to particular sections of text; etc. There are two such objects that are
useful in this regard: they are markers and extents.

A marker is simply a flag placed at a particular buffer position, which is moved around
as text is inserted and deleted. Markers are used for all sorts of purposes, such as the mark
that is the other end of textual regions to be cut, copied, etc.

An extent is similar to two markers plus some associated properties, and is used to keep
track of regions in a buffer as text is inserted and deleted, and to add properties (e.g. fonts)
to particular regions of text. The external interface of extents is explained elsewhere.

The important thing here is that markers and extents simply contain buffer positions
in them as integers, and every time text is inserted or deleted, these positions must be
updated. In order to minimize the amount of shuffling that needs to be done, the positions
in markers and extents (there’s one per marker, two per extent) and stored in Meminds.
This means that they only need to be moved when the text is physically moved in memory;
since the gap structure tries to minimize this, it also minimizes the number of marker and
extent indices that need to be adjusted. Look in ‘insdel.c’ for the details of how this
works.

One other important distinction is that markers are temporary while extents are perma-
nent. This means that markers disappear as soon as there are no more pointers to them,
and correspondingly, there is no way to determine what markers are in a buffer if you are
just given the buffer. Extents remain in a buffer until they are detached (which could hap-
pen as a result of text being deleted) or the buffer is deleted, and primitives do exist to
enumerate the extents in a buffer.
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14.5 Bufbytes and Emchars

Not yet documented.

14.6 The Buffer Object

Buffers contain fields not directly accessible by the Lisp programmer. We describe them
here, naming them by the names used in the C code. Many are accessible indirectly in Lisp
programs via Lisp primitives.

name The buffer name is a string that names the buffer. It is guaranteed to be unique.
See section “Buffer Names” in XEmacs Lisp Programmer’s Manual.

save_modified
This field contains the time when the buffer was last saved, as an integer. See
section “Buffer Modification” in XEmacs Lisp Programmer’s Manual.

modtime This field contains the modification time of the visited file. It is set when the
file is written or read. Every time the buffer is written to the file, this field is
compared to the modification time of the file. See section “Buffer Modification”
in XEmacs Lisp Programmer’s Manual.

auto_save_modified
This field contains the time when the buffer was last auto-saved.

last_window_start
This field contains the window-start position in the buffer as of the last time
the buffer was displayed in a window.

undo_list
This field points to the buffer’s undo list. See section “Undo” in XEmacs Lisp
Programmer’s Manual.

syntax_table_v
This field contains the syntax table for the buffer. See section “Syntax Tables”
in XEmacs Lisp Programmer’s Manual.

downcase_table
This field contains the conversion table for converting text to lower case. See
section “Case Tables” in XEmacs Lisp Programmer’s Manual.

upcase_table
This field contains the conversion table for converting text to upper case. See
section “Case Tables” in XEmacs Lisp Programmer’s Manual.

case_canon_table
This field contains the conversion table for canonicalizing text for case-folding
search. See section “Case Tables” in XEmacs Lisp Programmer’s Manual.

case_eqv_table
This field contains the equivalence table for case-folding search. See section
“Case Tables” in XEmacs Lisp Programmer’s Manual.
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display_table
This field contains the buffer’s display table, or nil if it doesn’t have one. See
section “Display Tables” in XEmacs Lisp Programmer’s Manual.

markers This field contains the chain of all markers that currently point into the buffer.
Deletion of text in the buffer, and motion of the buffer’s gap, must check each
of these markers and perhaps update it. See section “Markers” in XEmacs Lisp
Programmer’s Manual.

backed_up
This field is a flag that tells whether a backup file has been made for the visited
file of this buffer.

mark This field contains the mark for the buffer. The mark is a marker, hence it
is also included on the list markers. See section “The Mark” in XEmacs Lisp
Programmer’s Manual.

mark_active
This field is non-nil if the buffer’s mark is active.

local_var_alist
This field contains the association list describing the variables local in this
buffer, and their values, with the exception of local variables that have special
slots in the buffer object. (Those slots are omitted from this table.) See section
“Buffer-Local Variables” in XEmacs Lisp Programmer’s Manual.

modeline_format
This field contains a Lisp object which controls how to display the mode line
for this buffer. See section “Modeline Format” in XEmacs Lisp Programmer’s
Manual.

base_buffer
This field holds the buffer’s base buffer (if it is an indirect buffer), or nil.



Chapter 15: MULE Character Sets and Encodings 95

15 MULE Character Sets and Encodings

Recall that there are two primary ways that text is represented in XEmacs. The buffer
representation sees the text as a series of bytes (Bufbytes), with a variable number of
bytes used per character. The character representation sees the text as a series of integers
(Emchars), one per character. The character representation is a cleaner representation from
a theoretical standpoint, and is thus used in many cases when lots of manipulations on a
string need to be done. However, the buffer representation is the standard representation
used in both Lisp strings and buffers, and because of this, it is the “default” representation
that text comes in. The reason for using this representation is that it’s compact and is
compatible with ASCII.

15.1 Character Sets

A character set (or charset) is an ordered set of characters. A particular character in a
charset is indexed using one or more position codes, which are non-negative integers. The
number of position codes needed to identify a particular character in a charset is called the
dimension of the charset. In XEmacs/Mule, all charsets have dimension 1 or 2, and the size
of all charsets (except for a few special cases) is either 94, 96, 94 by 94, or 96 by 96. The
range of position codes used to index characters from any of these types of character sets
is as follows:

Charset type Position code 1 Position code 2
------------------------------------------------------------
94 33 - 126 N/A
96 32 - 127 N/A
94x94 33 - 126 33 - 126
96x96 32 - 127 32 - 127

Note that in the above cases position codes do not start at an expected value such as 0
or 1. The reason for this will become clear later.

For example, Latin-1 is a 96-character charset, and JISX0208 (the Japanese national
character set) is a 94x94-character charset.

[Note that, although the ranges above define the valid position codes for a charset, some
of the slots in a particular charset may in fact be empty. This is the case for JISX0208, for
example, where (e.g.) all the slots whose first position code is in the range 118 - 127 are
empty.]

There are three charsets that do not follow the above rules. All of them have one
dimension, and have ranges of position codes as follows:

Charset name Position code 1
------------------------------------
ASCII 0 - 127
Control-1 0 - 31
Composite 0 - some large number

(The upper bound of the position code for composite characters has not yet been deter-
mined, but it will probably be at least 16,383).
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ASCII is the union of two subsidiary character sets: Printing-ASCII (the printing ASCII
character set, consisting of position codes 33 - 126, like for a standard 94-character charset)
and Control-ASCII (the non-printing characters that would appear in a binary file with
codes 0 - 32 and 127).

Control-1 contains the non-printing characters that would appear in a binary file with
codes 128 - 159.

Composite contains characters that are generated by overstriking one or more characters
from other charsets.

Note that some characters in ASCII, and all characters in Control-1, are control (non-
printing) characters. These have no printed representation but instead control some other
function of the printing (e.g. TAB or 8 moves the current character position to the next
tab stop). All other characters in all charsets are graphic (printing) characters.

When a binary file is read in, the bytes in the file are assigned to character sets as follows:
Bytes Character set Range
--------------------------------------------------
0 - 127 ASCII 0 - 127
128 - 159 Control-1 0 - 31
160 - 255 Latin-1 32 - 127

This is a bit ad-hoc but gets the job done.

15.2 Encodings

An encoding is a way of numerically representing characters from one or more character
sets. If an encoding only encompasses one character set, then the position codes for the
characters in that character set could be used directly. This is not possible, however, if
more than one character set is to be used in the encoding.

For example, the conversion detailed above between bytes in a binary file and characters
is effectively an encoding that encompasses the three character sets ASCII, Control-1, and
Latin-1 in a stream of 8-bit bytes.

Thus, an encoding can be viewed as a way of encoding characters from a specified group
of character sets using a stream of bytes, each of which contains a fixed number of bits (but
not necessarily 8, as in the common usage of “byte”).

Here are descriptions of a couple of common encodings:

15.2.1 Japanese EUC (Extended Unix Code)

This encompasses the character sets Printing-ASCII, Japanese-JISSX0201, and
Japanese-JISX0208-Kana (half-width katakana, the right half of JISX0201). It uses 8-bit
bytes.

Note that Printing-ASCII and Japanese-JISX0201-Kana are 94-character charsets, while
Japanese-JISX0208 is a 94x94-character charset.

The encoding is as follows:
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Character set Representation (PC=position-code)
------------- --------------
Printing-ASCII PC1
Japanese-JISX0201-Kana 0x8E | PC1 + 0x80
Japanese-JISX0208 PC1 + 0x80 | PC2 + 0x80
Japanese-JISX0212 PC1 + 0x80 | PC2 + 0x80

15.2.2 JIS7

This encompasses the character sets Printing-ASCII, Japanese-JISX0201-Roman (the
left half of JISX0201; this character set is very similar to Printing-ASCII and is a 94-
character charset), Japanese-JISX0208, and Japanese-JISX0201-Kana. It uses 7-bit bytes.

Unlike Japanese EUC, this is a modal encoding, which means that there are multiple
states that the encoding can be in, which affect how the bytes are to be interpreted. Special
sequences of bytes (called escape sequences) are used to change states.

The encoding is as follows:
Character set Representation (PC=position-code)
------------- --------------
Printing-ASCII PC1
Japanese-JISX0201-Roman PC1
Japanese-JISX0201-Kana PC1
Japanese-JISX0208 PC1 PC2

Escape sequence ASCII equivalent Meaning
--------------- ---------------- -------
0x1B 0x28 0x4A ESC ( J invoke Japanese-JISX0201-Roman
0x1B 0x28 0x49 ESC ( I invoke Japanese-JISX0201-Kana
0x1B 0x24 0x42 ESC $ B invoke Japanese-JISX0208
0x1B 0x28 0x42 ESC ( B invoke Printing-ASCII

Initially, Printing-ASCII is invoked.

15.3 Internal Mule Encodings

In XEmacs/Mule, each character set is assigned a unique number, called a leading byte.
This is used in the encodings of a character. Leading bytes are in the range 0x80 - 0xFF
(except for ASCII, which has a leading byte of 0), although some leading bytes are reserved.

Charsets whose leading byte is in the range 0x80 - 0x9F are called official and are used
for built-in charsets. Other charsets are called private and have leading bytes in the range
0xA0 - 0xFF; these are user-defined charsets.

More specifically:
Character set Leading byte
------------- ------------
ASCII 0
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Composite 0x80
Dimension-1 Official 0x81 - 0x8D

(0x8E is free)
Control-1 0x8F
Dimension-2 Official 0x90 - 0x99

(0x9A - 0x9D are free;
0x9E and 0x9F are reserved)

Dimension-1 Private 0xA0 - 0xEF
Dimension-2 Private 0xF0 - 0xFF

There are two internal encodings for characters in XEmacs/Mule. One is called string
encoding and is an 8-bit encoding that is used for representing characters in a buffer or
string. It uses 1 to 4 bytes per character. The other is called character encoding and is a
19-bit encoding that is used for representing characters individually in a variable.

(In the following descriptions, we’ll ignore composite characters for the moment. We
also give a general (structural) overview first, followed later by the exact details.)

15.3.1 Internal String Encoding

ASCII characters are encoded using their position code directly. Other characters are
encoded using their leading byte followed by their position code(s) with the high bit set.
Characters in private character sets have their leading byte prefixed with a leading byte
prefix, which is either 0x9E or 0x9F. (No character sets are ever assigned these leading
bytes.) Specifically:

Character set Encoding (PC=position-code, LB=leading-byte)
------------- --------
ASCII PC-1 |
Control-1 LB | PC1 + 0xA0 |
Dimension-1 official LB | PC1 + 0x80 |
Dimension-1 private 0x9E | LB | PC1 + 0x80 |
Dimension-2 official LB | PC1 + 0x80 | PC2 + 0x80 |
Dimension-2 private 0x9F | LB | PC1 + 0x80 | PC2 + 0x80

The basic characteristic of this encoding is that the first byte of all characters is in the
range 0x00 - 0x9F, and the second and following bytes of all characters is in the range 0xA0
- 0xFF. This means that it is impossible to get out of sync, or more specifically:
1. Given any byte position, the beginning of the character it is within can be determined

in constant time.
2. Given any byte position at the beginning of a character, the beginning of the next

character can be determined in constant time.
3. Given any byte position at the beginning of a character, the beginning of the previous

character can be determined in constant time.
4. Textual searches can simply treat encoded strings as if they were encoded in a one-

byte-per-character fashion rather than the actual multi-byte encoding.

None of the standard non-modal encodings meet all of these conditions. For example,
EUC satisfies only (2) and (3), while Shift-JIS and Big5 (not yet described) satisfy only
(2). (All non-modal encodings must satisfy (2), in order to be unambiguous.)
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15.3.2 Internal Character Encoding

One 19-bit word represents a single character. The word is separated into three fields:
Bit number: 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

<------------> <------------------> <------------------>
Field: 1 2 3

Note that fields 2 and 3 hold 7 bits each, while field 1 holds 5 bits.
Character set Field 1 Field 2 Field 3
------------- ------- ------- -------
ASCII 0 0 PC1

range: (00 - 7F)
Control-1 0 1 PC1

range: (00 - 1F)
Dimension-1 official 0 LB - 0x80 PC1

range: (01 - 0D) (20 - 7F)
Dimension-1 private 0 LB - 0x80 PC1

range: (20 - 6F) (20 - 7F)
Dimension-2 official LB - 0x8F PC1 PC2

range: (01 - 0A) (20 - 7F) (20 - 7F)
Dimension-2 private LB - 0xE1 PC1 PC2

range: (0F - 1E) (20 - 7F) (20 - 7F)
Composite 0x1F ? ?

Note that character codes 0 - 255 are the same as the “binary encoding” described above.

15.4 CCL

CCL PROGRAM SYNTAX:
CCL_PROGRAM := (CCL_MAIN_BLOCK

[ CCL_EOF_BLOCK ])

CCL_MAIN_BLOCK := CCL_BLOCK
CCL_EOF_BLOCK := CCL_BLOCK

CCL_BLOCK := STATEMENT | (STATEMENT [STATEMENT ...])
STATEMENT :=

SET | IF | BRANCH | LOOP | REPEAT | BREAK
| READ | WRITE

SET := (REG = EXPRESSION) | (REG SELF_OP EXPRESSION)
| INT-OR-CHAR

EXPRESSION := ARG | (EXPRESSION OP ARG)

IF := (if EXPRESSION CCL_BLOCK CCL_BLOCK)
BRANCH := (branch EXPRESSION CCL_BLOCK [CCL_BLOCK ...])
LOOP := (loop STATEMENT [STATEMENT ...])
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BREAK := (break)
REPEAT := (repeat)

| (write-repeat [REG | INT-OR-CHAR | string])
| (write-read-repeat REG [INT-OR-CHAR | string | ARRAY]?)

READ := (read REG) | (read REG REG)
| (read-if REG ARITH_OP ARG CCL_BLOCK CCL_BLOCK)
| (read-branch REG CCL_BLOCK [CCL_BLOCK ...])

WRITE := (write REG) | (write REG REG)
| (write INT-OR-CHAR) | (write STRING) | STRING
| (write REG ARRAY)

END := (end)

REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
ARG := REG | INT-OR-CHAR
OP := + | - | * | / | % | & | ’|’ | ^ | << | >> | <8 | >8 | //

| < | > | == | <= | >= | !=
SELF_OP :=

+= | -= | *= | /= | %= | &= | ’|=’ | ^= | <<= | >>=
ARRAY := ’[’ INT-OR-CHAR ... ’]’
INT-OR-CHAR := INT | CHAR

MACHINE CODE:

The machine code consists of a vector of 32-bit words.
The first such word specifies the start of the EOF section of the code;
this is the code executed to handle any stuff that needs to be done
(e.g. designating back to ASCII and left-to-right mode) after all
other encoded/decoded data has been written out. This is not used for
charset CCL programs.

REGISTER: 0..7 -- refered by RRR or rrr

OPERATOR BIT FIELD (27-bit): XXXXXXXXXXXXXXX RRR TTTTT
TTTTT (5-bit): operator type
RRR (3-bit): register number
XXXXXXXXXXXXXXXX (15-bit):

CCCCCCCCCCCCCCC: constant or address
000000000000rrr: register number

AAAA: 00000 +
00001 -
00010 *
00011 /
00100 %
00101 &
00110 |
00111 ~

01000 <<
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01001 >>
01010 <8
01011 >8
01100 //
01101 not used
01110 not used
01111 not used

10000 <
10001 >
10010 ==
10011 <=
10100 >=
10101 !=

OPERATORS: TTTTT RRR XX..

SetCS: 00000 RRR C...C RRR = C...C
SetCL: 00001 RRR ..... RRR = c...c

c.............c
SetR: 00010 RRR ..rrr RRR = rrr
SetA: 00011 RRR ..rrr RRR = array[rrr]

C.............C size of array = C...C
c.............c contents = c...c

Jump: 00100 000 c...c jump to c...c
JumpCond: 00101 RRR c...c if (!RRR) jump to c...c
WriteJump: 00110 RRR c...c Write1 RRR, jump to c...c
WriteReadJump: 00111 RRR c...c Write1, Read1 RRR, jump to c...c
WriteCJump: 01000 000 c...c Write1 C...C, jump to c...c

C...C
WriteCReadJump: 01001 RRR c...c Write1 C...C, Read1 RRR,

C.............C and jump to c...c
WriteSJump: 01010 000 c...c WriteS, jump to c...c

C.............C
S.............S
...

WriteSReadJump: 01011 RRR c...c WriteS, Read1 RRR, jump to c...c
C.............C
S.............S
...

WriteAReadJump: 01100 RRR c...c WriteA, Read1 RRR, jump to c...c
C.............C size of array = C...C
c.............c contents = c...c
...

Branch: 01101 RRR C...C if (RRR >= 0 && RRR < C..)
c.............c branch to (RRR+1)th address

Read1: 01110 RRR ... read 1-byte to RRR
Read2: 01111 RRR ..rrr read 2-byte to RRR and rrr
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ReadBranch: 10000 RRR C...C Read1 and Branch
c.............c
...

Write1: 10001 RRR ..... write 1-byte RRR
Write2: 10010 RRR ..rrr write 2-byte RRR and rrr
WriteC: 10011 000 ..... write 1-char C...CC

C.............C
WriteS: 10100 000 ..... write C..-byte of string

C.............C
S.............S
...

WriteA: 10101 RRR ..... write array[RRR]
C.............C size of array = C...C
c.............c contents = c...c
...

End: 10110 000 ..... terminate the execution

SetSelfCS: 10111 RRR C...C RRR AAAAA= C...C
..........AAAAA

SetSelfCL: 11000 RRR ..... RRR AAAAA= c...c
c.............c
..........AAAAA

SetSelfR: 11001 RRR ..Rrr RRR AAAAA= rrr
..........AAAAA

SetExprCL: 11010 RRR ..Rrr RRR = rrr AAAAA c...c
c.............c
..........AAAAA

SetExprR: 11011 RRR ..rrr RRR = rrr AAAAA Rrr
............Rrr
..........AAAAA

JumpCondC: 11100 RRR c...c if !(RRR AAAAA C..) jump to c...c
C.............C
..........AAAAA

JumpCondR: 11101 RRR c...c if !(RRR AAAAA rrr) jump to c...c
............rrr
..........AAAAA

ReadJumpCondC: 11110 RRR c...c Read1 and JumpCondC
C.............C
..........AAAAA

ReadJumpCondR: 11111 RRR c...c Read1 and JumpCondR
............rrr
..........AAAAA
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16 The Lisp Reader and Compiler

Not yet documented.



104 XEmacs Internals Manual



Chapter 17: Lstreams 105

17 Lstreams

An lstream is an internal Lisp object that provides a generic buffering stream imple-
mentation. Conceptually, you send data to the stream or read data from the stream, not
caring what’s on the other end of the stream. The other end could be another stream, a
file descriptor, a stdio stream, a fixed block of memory, a reallocating block of memory,
etc. The main purpose of the stream is to provide a standard interface and to do buffering.
Macros are defined to read or write characters, so the calling functions do not have to worry
about blocking data together in order to achieve efficiency.

17.1 Creating an Lstream

Lstreams come in different types, depending on what is being interfaced to. Although
the primitive for creating new lstreams is Lstream_new(), generally you do not call this
directly. Instead, you call some type-specific creation function, which creates the lstream
and initializes it as appropriate for the particular type.

All lstream creation functions take a mode argument, specifying what mode the lstream
should be opened as. This controls whether the lstream is for input and output, and
optionally whether data should be blocked up in units of MULE characters. Note that
some types of lstreams can only be opened for input; others only for output; and others
can be opened either way. #### Richard Mlynarik thinks that there should be a strict
separation between input and output streams, and he’s probably right.

mode is a string, one of

"r" Open for reading.

"w" Open for writing.

"rc" Open for reading, but “read” never returns partial MULE characters.

"wc" Open for writing, but never writes partial MULE characters.

17.2 Lstream Types

stdio

filedesc

lisp-string

fixed-buffer
resizing-buffer
dynarr

lisp-buffer

print
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decoding

encoding

17.3 Lstream Functions

FunctionLstream * Lstream new (Lstream_implementation *imp, CONST
char *mode)

Allocate and return a new Lstream. This function is not really meant to be called
directly; rather, each stream type should provide its own stream creation function,
which creates the stream and does any other necessary creation stuff (e.g. opening a
file).

Functionvoid Lstream set buffering (Lstream *lstr, Lstream_buffering
buffering, int buffering size)

Change the buffering of a stream. See ‘lstream.h’. By default the buffering is
STREAM_BLOCK_BUFFERED.

Functionint Lstream flush (Lstream *lstr)
Flush out any pending unwritten data in the stream. Clear any buffered input data.
Returns 0 on success, -1 on error.

Macroint Lstream putc (Lstream *stream, int c)
Write out one byte to the stream. This is a macro and so it is very efficient. The
c argument is only evaluated once but the stream argument is evaluated more than
once. Returns 0 on success, -1 on error.

Macroint Lstream getc (Lstream *stream)
Read one byte from the stream. This is a macro and so it is very efficient. The stream
argument is evaluated more than once. Return value is -1 for EOF or error.

Macrovoid Lstream ungetc (Lstream *stream, int c)
Push one byte back onto the input queue. This will be the next byte read from the
stream. Any number of bytes can be pushed back and will be read in the reverse
order they were pushed back – most recent first. (This is necessary for consistency –
if there are a number of bytes that have been unread and I read and unread a byte,
it needs to be the first to be read again.) This is a macro and so it is very efficient.
The c argument is only evaluated once but the stream argument is evaluated more
than once.

Functionint Lstream fputc (Lstream *stream, int c)
Functionint Lstream fgetc (Lstream *stream)
Functionvoid Lstream fungetc (Lstream *stream, int c)

Function equivalents of the above macros.
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Functionint Lstream read (Lstream *stream, void *data, int size)
Read size bytes of data from the stream. Return the number of bytes read. 0 means
EOF. -1 means an error occurred and no bytes were read.

Functionint Lstream write (Lstream *stream, void *data, int size)
Write size bytes of data to the stream. Return the number of bytes written. -1 means
an error occurred and no bytes were written.

Functionvoid Lstream unread (Lstream *stream, void *data, int size)
Push back size bytes of data onto the input queue. The next call to Lstream_read()
with the same size will read the same bytes back. Note that this will be the case even
if there is other pending unread data.

Functionint Lstream close (Lstream *stream)
Close the stream. All data will be flushed out.

Functionvoid Lstream reopen (Lstream *stream)
Reopen a closed stream. This enables I/O on it again. This is not meant to be called
except from a wrapper routine that reinitializes variables and such – the close routine
may well have freed some necessary storage structures, for example.

Functionvoid Lstream rewind (Lstream *stream)
Rewind the stream to the beginning.

17.4 Lstream Methods

Lstream Methodint reader (Lstream *stream, unsigned char *data, int size)
Read some data from the stream’s end and store it into data, which can hold size
bytes. Return the number of bytes read. A return value of 0 means no bytes can be
read at this time. This may be because of an EOF, or because there is a granularity
greater than one byte that the stream imposes on the returned data, and size is less
than this granularity. (This will happen frequently for streams that need to return
whole characters, because Lstream_read() calls the reader function repeatedly until
it has the number of bytes it wants or until 0 is returned.) The lstream functions do
not treat a 0 return as EOF or do anything special; however, the calling function will
interpret any 0 it gets back as EOF. This will normally not happen unless the caller
calls Lstream_read() with a very small size.
This function can be NULL if the stream is output-only.

Lstream Methodint writer (Lstream *stream, CONST unsigned char *data, int
size)

Send some data to the stream’s end. Data to be sent is in data and is size bytes.
Return the number of bytes sent. This function can send and return fewer bytes than
is passed in; in that case, the function will just be called again until there is no data
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left or 0 is returned. A return value of 0 means that no more data can be currently
stored, but there is no error; the data will be squirreled away until the writer can
accept data. (This is useful, e.g., if you’re dealing with a non-blocking file descriptor
and are getting EWOULDBLOCK errors.) This function can be NULL if the stream is
input-only.

Lstream Methodint rewinder (Lstream *stream)
Rewind the stream. If this is NULL, the stream is not seekable.

Lstream Methodint seekable p (Lstream *stream)
Indicate whether this stream is seekable – i.e. it can be rewound. This method is
ignored if the stream does not have a rewind method. If this method is not present,
the result is determined by whether a rewind method is present.

Lstream Methodint flusher (Lstream *stream)
Perform any additional operations necessary to flush the data in this stream.

Lstream Methodint pseudo closer (Lstream *stream)

Lstream Methodint closer (Lstream *stream)
Perform any additional operations necessary to close this stream down. May be
NULL. This function is called when Lstream_close() is called or when the stream is
garbage-collected. When this function is called, all pending data in the stream will
already have been written out.

Lstream MethodLisp_Object marker (Lisp_Object lstream, void (*markfun)
(Lisp_Object))

Mark this object for garbage collection. Same semantics as a standard Lisp_Object
marker. This function can be NULL.
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18 Consoles; Devices; Frames; Windows

18.1 Introduction to Consoles; Devices; Frames; Windows

A window-system window that you see on the screen is called a frame in Emacs terminol-
ogy. Each frame is subdivided into one or more non-overlapping panes, called (confusingly)
windows. Each window displays the text of a buffer in it. (See above on Buffers.) Note that
buffers and windows are independent entities: Two or more windows can be displaying the
same buffer (potentially in different locations), and a buffer can be displayed in no windows.

A single display screen that contains one or more frames is called a display. Under most
circumstances, there is only one display. However, more than one display can exist, for
example if you have a multi-headed console, i.e. one with a single keyboard but multiple
displays. (Typically in such a situation, the various displays act like one large display, in
that the mouse is only in one of them at a time, and moving the mouse off of one moves it
into another.) In some cases, the different displays will have different characteristics, e.g.
one color and one mono.

XEmacs can display frames on multiple displays. It can even deal simultaneously with
frames on multiple keyboards (called consoles in XEmacs terminology). Here is one case
where this might be useful: You are using XEmacs on your workstation at work, and leave it
running. Then you go home and dial in on a TTY line, and you can use the already-running
XEmacs process to display another frame on your local TTY.

Thus, there is a hierarchy console -> display -> frame -> window. There is a separate
Lisp object type for each of these four concepts. Furthermore, there is logically a selected
console, selected display, selected frame, and selected window. Each of these objects is
distinguished in various ways, such as being the default object for various functions that
act on objects of that type. Note that every containing object rememembers the “selected”
object among the objects that it contains: e.g. not only is there a selected window, but
every frame remembers the last window in it that was selected, and changing the selected
frame causes the remembered window within it to become the selected window. Similar
relationships apply for consoles to devices and devices to frames.

18.2 Point

Recall that every buffer has a current insertion position, called point. Now, two or more
windows may be displaying the same buffer, and the text cursor in the two windows (i.e.
point) can be in two different places. You may ask, how can that be, since each buffer has
only one value of point? The answer is that each window also has a value of point that is
squirreled away in it. There is only one selected window, and the value of “point” in that
buffer corresponds to that window. When the selected window is changed from one window
to another displaying the same buffer, the old value of point is stored into the old window’s
“point” and the value of point from the new window is retrieved and made the value of
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point in the buffer. This means that window-point for the selected window is potentially
inaccurate, and if you want to retrieve the correct value of point for a window, you must
special-case on the selected window and retrieve the buffer’s point instead. This is related
to why save-window-excursion does not save the selected window’s value of point.

18.3 Window Hierarchy

If a frame contains multiple windows (panes), they are always created by splitting an
existing window along the horizontal or vertical axis. Terminology is a bit confusing here: to
split a window horizontally means to create two side-by-side windows, i.e. to make a vertical
cut in a window. Likewise, to split a window vertically means to create two windows, one
above the other, by making a horizontal cut.

If you split a window and then split again along the same axis, you will end up with a
number of panes all arranged along the same axis. The precise way in which the splits were
made should not be important, and this is reflected internally. Internally, all windows are
arranged in a tree, consisting of two types of windows, combination windows (which have
children, and are covered completely by those children) and leaf windows, which have no
children and are visible. Every combination window has two or more children, all arranged
along the same axis. There are (logically) two subtypes of windows, depending on whether
their children are horizontally or vertically arrayed. There is always one root window, which
is either a leaf window (if the frame contains only one window) or a combination window (if
the frame contains more than one window). In the latter case, the root window will have
two or more children, either horizontally or vertically arrayed, and each of those children
will be either a leaf window or another combination window.

Here are some rules:

1. Horizontal combination windows can never have children that are horizontal combina-
tion windows; same for vertical.

2. Only leaf windows can be split (obviously) and this splitting does one of two things:
(a) turns the leaf window into a combination window and creates two new leaf children,
or (b) turns the leaf window into one of the two new leaves and creates the other leaf.
Rule (1) dictates which of these two outcomes happens.

3. Every combination window must have at least two children.

4. Leaf windows can never become combination windows. They can be deleted, however.
If this results in a violation of (3), the parent combination window also gets deleted.

5. All functions that accept windows must be prepared to accept combination windows,
and do something sane (e.g. signal an error if so). Combination windows do escape to
the Lisp level.

6. All windows have three fields governing their contents: these are hchild (a list of
horizontally-arrayed children), vchild (a list of vertically-arrayed children), and buffer
(the buffer contained in a leaf window). Exactly one of these will be non-nil. Remember
that horizontally-arrayed means “side-by-side” and vertically-arrayed means one above
the other.
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7. Leaf windows also have markers in their start (the first buffer position displayed in the
window) and pointm (the window’s stashed value of point – see above) fields, while
combination windows have nil in these fields.

8. The list of children for a window is threaded through the next and prev fields of each
child window.

9. Deleted windows can be undeleted. This happens as a result of restoring a window
configuration, and is unlike frames, displays, and consoles, which, once deleted, can
never be restored. Deleting a window does nothing except set a special dead bit to 1
and clear out the next, prev, hchild, and vchild fields, for GC purposes.

10. Most frames actually have two top-level windows – one for the minibuffer and one (the
root) for everything else. The modeline (if present) separates these two. The next
field of the root points to the minibuffer, and the prev field of the minibuffer points
to the root. The other next and prev fields are nil, and the frame points to both of
these windows. Minibuffer-less frames have no minibuffer window, and the next and
prev of the root window are nil. Minibuffer-only frames have no root window, and
the next of the minibuffer window is nil but the prev points to itself. (#### This
is an artifact that should be fixed.)

18.4 The Window Object

Windows have the following accessible fields:

frame The frame that this window is on.

mini_p Non-nil if this window is a minibuffer window.

buffer The buffer that the window is displaying. This may change often during the
life of the window.

dedicated
Non-nil if this window is dedicated to its buffer.

pointm This is the value of point in the current buffer when this window is selected;
when it is not selected, it retains its previous value.

start The position in the buffer that is the first character to be displayed in the
window.

force_start
If this flag is non-nil, it says that the window has been scrolled explicitly by
the Lisp program. This affects what the next redisplay does if point is off the
screen: instead of scrolling the window to show the text around point, it moves
point to a location that is on the screen.

last_modified
The modified field of the window’s buffer, as of the last time a redisplay com-
pleted in this window.

last_point
The buffer’s value of point, as of the last time a redisplay completed in this
window.
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left This is the left-hand edge of the window, measured in columns. (The leftmost
column on the screen is column 0.)

top This is the top edge of the window, measured in lines. (The top line on the
screen is line 0.)

height The height of the window, measured in lines.

width The width of the window, measured in columns.

next This is the window that is the next in the chain of siblings. It is nil in a
window that is the rightmost or bottommost of a group of siblings.

prev This is the window that is the previous in the chain of siblings. It is nil in a
window that is the leftmost or topmost of a group of siblings.

parent Internally, XEmacs arranges windows in a tree; each group of siblings has a
parent window whose area includes all the siblings. This field points to a
window’s parent.
Parent windows do not display buffers, and play little role in display except to
shape their child windows. Emacs Lisp programs usually have no access to the
parent windows; they operate on the windows at the leaves of the tree, which
actually display buffers.

hscroll This is the number of columns that the display in the window is scrolled hori-
zontally to the left. Normally, this is 0.

use_time This is the last time that the window was selected. The function get-lru-
window uses this field.

display_table
The window’s display table, or nil if none is specified for it.

update_mode_line
Non-nil means this window’s mode line needs to be updated.

base_line_number
The line number of a certain position in the buffer, or nil. This is used for
displaying the line number of point in the mode line.

base_line_pos
The position in the buffer for which the line number is known, or nil meaning
none is known.

region_showing
If the region (or part of it) is highlighted in this window, this field holds the
mark position that made one end of that region. Otherwise, this field is nil.
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19 The Redisplay Mechanism

The redisplay mechanism is one of the most complicated sections of XEmacs, especially
from a conceptual standpoint. This is doubly so because, unlike for the basic aspects of the
Lisp interpreter, the computer science theories of how to efficiently handle redisplay are not
well-developed.

When working with the redisplay mechanism, remember the Golden Rules of Redisplay:
1. It Is Better To Be Correct Than Fast.
2. Thou Shalt Not Run Elisp From Within Redisplay.
3. It Is Better To Be Fast Than Not To Be.

19.1 Critical Redisplay Sections

Within this section, we are defenseless and assume that the following cannot happen:
1. garbage collection
2. Lisp code evaluation
3. frame size changes

We ensure (3) by calling hold_frame_size_changes(), which will cause any pending
frame size changes to get put on hold till after the end of the critical section. (1) follows
automatically if (2) is met. #### Unfortunately, there are some places where Lisp code
can be called within this section. We need to remove them.

If Fsignal() is called during this critical section, we will abort().
If garbage collection is called during this critical section, we simply return. #### We

should abort instead.
#### If a frame-size change does occur we should probably actually be preempting

redisplay.

19.2 Line Start Cache

The traditional scrolling code in Emacs breaks in a variable height world. It depends
on the key assumption that the number of lines that can be displayed at any given time
is fixed. This led to a complete separation of the scrolling code from the redisplay code.
In order to fully support variable height lines, the scrolling code must actually be tightly
integrated with redisplay. Only redisplay can determine how many lines will be displayed
on a screen for any given starting point.

What is ideally wanted is a complete list of the starting buffer position for every possible
display line of a buffer along with the height of that display line. Maintaining such a full list
would be very expensive. We settle for having it include information for all areas which we
happen to generate anyhow (i.e. the region currently being displayed) and for those areas
we need to work with.
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In order to ensure that the cache accurately represents what redisplay would actually
show, it is necessary to invalidate it in many situations. If the buffer changes, the starting
positions may no longer be correct. If a face or an extent has changed then the line heights
may have altered. These events happen frequently enough that the cache can end up being
constantly disabled. With this potentially constant invalidation when is the cache ever
useful?

Even if the cache is invalidated before every single usage, it is necessary. Scrolling often
requires knowledge about display lines which are actually above or below the visible region.
The cache provides a convenient light-weight method of storing this information for multiple
display regions. This knowledge is necessary for the scrolling code to always obey the First
Golden Rule of Redisplay.

If the cache already contains all of the information that the scrolling routines happen
to need so that it doesn’t have to go generate it, then we are able to obey the Third
Golden Rule of Redisplay. The first thing we do to help out the cache is to always add the
displayed region. This region had to be generated anyway, so the cache ends up getting
the information basically for free. In those cases where a user is simply scrolling around
viewing a buffer there is a high probability that this is sufficient to always provide the
needed information. The second thing we can do is be smart about invalidating the cache.

TODO – Be smart about invalidating the cache. Potential places:
• Insertions at end-of-line which don’t cause line-wraps do not alter the starting positions

of any display lines. These types of buffer modifications should not invalidate the cache.
This is actually a large optimization for redisplay speed as well.

• Buffer modifications frequently only affect the display of lines at and below where they
occur. In these situations we should only invalidate the part of the cache starting at
where the modification occurs.

In case you’re wondering, the Second Golden Rule of Redisplay is not applicable.
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20 Extents

20.1 Introduction to Extents

Extents are regions over a buffer, with a start and an end position denoting the region
of the buffer included in the extent. In addition, either end can be closed or open, meaning
that the endpoint is or is not logically included in the extent. Insertion of a character at a
closed endpoint causes the character to go inside the extent; insertion at an open endpoint
causes the character to go outside.

Extent endpoints are stored using memory indices (see ‘insdel.c’), to minimize the
amount of adjusting that needs to be done when characters are inserted or deleted.

(Formerly, extent endpoints at the gap could be either before or after the gap, depending
on the open/closedness of the endpoint. The intent of this was to make it so that insertions
would automatically go inside or out of extents as necessary with no further work needing
to be done. It didn’t work out that way, however, and just ended up complexifying and
buggifying all the rest of the code.)

20.2 Extent Ordering

Extents are compared using memory indices. There are two orderings for extents and
both orders are kept current at all times. The normal or display order is as follows:

Extent A is ‘‘less than’’ extent B, that is, earlier in the display order,
if: A-start < B-start,
or if: A-start = B-start, and A-end > B-end

So if two extents begin at the same position, the larger of them is the earlier one in the
display order (EXTENT_LESS is true).

For the e-order, the same thing holds:
Extent A is ‘‘less than’’ extent B in e-order, that is, later in the buffer,
if: A-end < B-end,
or if: A-end = B-end, and A-start > B-start

So if two extents end at the same position, the smaller of them is the earlier one in the
e-order (EXTENT_E_LESS is true).

The display order and the e-order are complementary orders: any theorem about the
display order also applies to the e-order if you swap all occurrences of “display order” and
“e-order”, “less than” and “greater than”, and “extent start” and “extent end”.

20.3 Format of the Extent Info

An extent-info structure consists of a list of the buffer or string’s extents and a stack of
extents that lists all of the extents over a particular position. The stack-of-extents info is



116 XEmacs Internals Manual

used for optimization purposes – it basically caches some info that might be expensive to
compute. Certain otherwise hard computations are easy given the stack of extents over a
particular position, and if the stack of extents over a nearby position is known (because it
was calculated at some prior point in time), it’s easy to move the stack of extents to the
proper position.

Given that the stack of extents is an optimization, and given that it requires memory, a
string’s stack of extents is wiped out each time a garbage collection occurs. Therefore, any
time you retrieve the stack of extents, it might not be there. If you need it to be there, use
the _force version.

Similarly, a string may or may not have an extent info structure. (Generally it won’t if
there haven’t been any extents added to the string.) So use the _force version if you need
the extent info structure to be there.

A list of extents is maintained as a double gap array: one gap array is ordered by start
index (the display order) and the other is ordered by end index (the e-order). Note that
positions in an extent list should logically be conceived of as referring to a particular extent
(as is the norm in programs) rather than sitting between two extents. Note also that callers
of these functions should not be aware of the fact that the extent list is implemented as an
array, except for the fact that positions are integers (this should be generalized to handle
integers and linked list equally well).

20.4 Zero-Length Extents

Extents can be zero-length, and will end up that way if their endpoints are explicitly set
that way or if their detachable property is nil and all the text in the extent is deleted. (The
exception is open-open zero-length extents, which are barred from existing because there
is no sensible way to define their properties. Deletion of the text in an open-open extent
causes it to be converted into a closed-open extent.) Zero-length extents are primarily used
to represent annotations, and behave as follows:
1. Insertion at the position of a zero-length extent expands the extent if both endpoints

are closed; goes after the extent if it is closed-open; and goes before the extent if it is
open-closed.

2. Deletion of a character on a side of a zero-length extent whose corresponding endpoint
is closed causes the extent to be detached if it is detachable; if the extent is not
detachable or the corresponding endpoint is open, the extent remains in the buffer,
moving as necessary.

Note that closed-open, non-detachable zero-length extents behave exactly like mark-
ers and that open-closed, non-detachable zero-length extents behave like the “point-type”
marker in Mule.

20.5 Mathematics of Extent Ordering

The extents in a buffer are ordered by “display order” because that is that order that the
redisplay mechanism needs to process them in. The e-order is an auxiliary ordering used
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to facilitate operations over extents. The operations that can be performed on the ordered
list of extents in a buffer are

1. Locate where an extent would go if inserted into the list.
2. Insert an extent into the list.
3. Remove an extent from the list.
4. Map over all the extents that overlap a range.

(4) requires being able to determine the first and last extents that overlap a range.

NOTE: overlap is used as follows:

• two ranges overlap if they have at least one point in common. Whether the endpoints
are open or closed makes a difference here.

• a point overlaps a range if the point is contained within the range; this is equivalent to
treating a point P as the range [P, P ].

• In the case of an extent overlapping a point or range, the extent is normally treated as
having closed endpoints. This applies consistently in the discussion of stacks of extents
and such below. Note that this definition of overlap is not necessarily consistent with
the extents that map-extents maps over, since map-extents sometimes pays attention
to whether the endpoints of an extents are open or closed. But for our purposes, it
greatly simplifies things to treat all extents as having closed endpoints.

First, define >, <, < =, etc. as applied to extents to mean comparison according to the
display order. Comparison between an extent E and an index I means comparison between
E and the range [I, I].

Also define e>, e<, e< =, etc. to mean comparison according to the e-order.

For any range R, define R(0) to be the starting index of the range and R(1) to be the
ending index of the range.

For any extent E, define E(next) to be the extent directly following E, and E(prev) to
be the extent directly preceding E. Assume E(next) and E(prev) can be determined from
E in constant time. (This is because we store the extent list as a doubly linked list.)

Similarly, define E(e − next) and E(e − prev) to be the extents directly following and
preceding E in the e-order.

Now:

Let R be a range. Let F be the first extent overlapping R. Let L be the last extent
overlapping R.

Theorem 1: R(1) lies between L and L(next), i.e. L< = R(1)<L(next).

This follows easily from the definition of display order. The basic reason that this
theorem applies is that the display order sorts by increasing starting index.

Therefore, we can determine L just by looking at where we would insert R(1) into the
list, and if we know F and are moving forward over extents, we can easily determine when
we’ve hit L by comparing the extent we’re at to R(1).

Theorem 2: F (e− prev) e< [1, R(0)] e< = F.

This is the analog of Theorem 1, and applies because the e-order sorts by increasing
ending index.
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Therefore, F can be found in the same amount of time as operation (1), i.e. the time
that it takes to locate where an extent would go if inserted into the e-order list.

If the lists were stored as balanced binary trees, then operation (1) would take logarithmic
time, which is usually quite fast. However, currently they’re stored as simple doubly-linked
lists, and instead we do some caching to try to speed things up.

Define a stack of extents (or SOE) as the set of extents (ordered in the display order)
that overlap an index I, together with the SOE’s previous extent, which is an extent that
precedes I in the e-order. (Hopefully there will not be very many extents between I and
the previous extent.)

Now:
Let I be an index, let S be the stack of extents on I, let F be the first extent in S, and

let P be S’s previous extent.
Theorem 3: The first extent in S is the first extent that overlaps any range [I, J ].
Proof: Any extent that overlaps [I, J ] but does not include I must have a start index

>I, and thus be greater than any extent in S.
Therefore, finding the first extent that overlaps a range R is the same as finding the first

extent that overlaps R(0).
Theorem 4: Let I2 be an index such that I2>I, and let F2 be the first extent that

overlaps I2. Then, either F2 is in S or F2 is greater than any extent in S.
Proof: If F2 does not include I then its start index is greater than I and thus it is

greater than any extent in S, including F . Otherwise, F2 includes I and thus is in S, and
thus F2> = F .

20.6 Extent Fragments

Imagine that the buffer is divided up into contiguous, non-overlapping runs of text such
that no extent starts or ends within a run (extents that abut the run don’t count).

An extent fragment is a structure that holds data about the run that contains a particular
buffer position (if the buffer position is at the junction of two runs, the run after the position
is used) – the beginning and end of the run, a list of all of the extents in that run, the merged
face that results from merging all of the faces corresponding to those extents, the begin and
end glyphs at the beginning of the run, etc. This is the information that redisplay needs in
order to display this run.

Extent fragments have to be very quick to update to a new buffer position when moving
linearly through the buffer. They rely on the stack-of-extents code, which does the heavy-
duty algorithmic work of determining which extents overly a particular position.
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21 Faces and Glyphs

Not yet documented.
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22 Specifiers

Not yet documented.
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23 Menus

A menu is set by setting the value of the variable current-menubar (which may be
buffer-local) and then calling set-menubar-dirty-flag to signal a change. This will cause
the menu to be redrawn at the next redisplay. The format of the data in current-menubar
is described in ‘menubar.c’.

Internally the data in current-menubar is parsed into a tree of widget_value’s (defined
in ‘lwlib.h’); this is accomplished by the recursive function menu_item_descriptor_to_
widget_value(), called by compute_menubar_data(). Such a tree is deallocated using
free_widget_value().

update_screen_menubars() is one of the external entry points. This checks to see, for
each screen, if that screen’s menubar needs to be updated. This is the case if
1. set-menubar-dirty-flag was called since the last redisplay. (This function sets the

C variable menubar has changed.)
2. The buffer displayed in the screen has changed.
3. The screen has no menubar currently displayed.

set_screen_menubar() is called for each such screen. This function calls compute_
menubar_data() to create the tree of widget value’s, then calls lw_create_widget(), lw_
modify_all_widgets(), and/or lw_destroy_all_widgets() to create the X-Toolkit wid-
get associated with the menu.

update_psheets(), the other external entry point, actually changes the menus being
displayed. It uses the widgets fixed by update_screen_menubars() and calls various X
functions to ensure that the menus are displayed properly.

The menubar widget is set up so that pre_activate_callback() is called when the
menu is first selected (i.e. mouse button goes down), and menubar_selection_callback()
is called when an item is selected. pre_activate_callback() calls the function in activate-
menubar-hook, which can change the menubar (this is described in ‘menubar.c’). If the
menubar is changed, set_screen_menubars() is called. menubar_selection_callback()
enqueues a menu event, putting in it a function to call (either eval or call-interactively)
and its argument, which is the callback function or form given in the menu’s description.
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24 Subprocesses

The fields of a process are:

name A string, the name of the process.

command A list containing the command arguments that were used to start this process.

filter A function used to accept output from the process instead of a buffer, or nil.

sentinel A function called whenever the process receives a signal, or nil.

buffer The associated buffer of the process.

pid An integer, the Unix process id.

childp A flag, non-nil if this is really a child process. It is nil for a network connection.

mark A marker indicating the position of the end of the last output from this process
inserted into the buffer. This is often but not always the end of the buffer.

kill_without_query
If this is non-nil, killing XEmacs while this process is still running does not
ask for confirmation about killing the process.

raw_status_low
raw_status_high

These two fields record 16 bits each of the process status returned by the wait
system call.

status The process status, as process-status should return it.

tick
update_tick

If these two fields are not equal, a change in the status of the process needs
to be reported, either by running the sentinel or by inserting a message in the
process buffer.

pty_flag Non-nil if communication with the subprocess uses a pty; nil if it uses a pipe.

infd The file descriptor for input from the process.

outfd The file descriptor for output to the process.

subtty The file descriptor for the terminal that the subprocess is using. (On some
systems, there is no need to record this, so the value is -1.)

tty_name The name of the terminal that the subprocess is using, or nil if it is using
pipes.
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25 Interface to X Windows

Not yet documented.
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