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1 A History of Emacs

XEmacs is a powerful, customizable text editor and development environment. It began
as Lucid Emacs, which was in turn derived from GNU Emacs, a program written by Richard
Stallman of the Free Software Foundation. GNU Emacs dates back to the 1970’s, and was
modelled after a package called “Emacs”, written in 1976, that was a set of macros on
top of TECO, an old, old text editor written at MIT on the DEC PDP 10 under one of
the earliest time-sharing operating systems, I'TS (Incompatible Timesharing System). (ITS
dates back well before Unix.) ITS, TECO, and Emacs were products of a group of people
at MIT who called themselves “hackers”, who shared an idealistic belief system about the
free exchange of information and were fanatical in their devotion to and time spent with
computers. (The hacker subculture dates back to the late 1950’s at MIT and is described
in detail in Steven Levy’s book Hackers. This book also includes a lot of information about
Stallman himself and the development of Lisp, a programming language developed at MIT
that underlies Emacs.)

1.1 Through Version 18

Although the history of the early versions of GNU Emacs is unclear, the history is
well-known from the middle of 1985. A time line is:

e GNU Emacs version 15 (15.34) was released sometime in 1984 or 1985 and shared some
code with a version of Emacs written by James Gosling (the same James Gosling who
later created the Java language).

e GNU Emacs version 16 (first released version was 16.56) was released on July 15, 1985.
All Gosling code was removed due to potential copyright problems with the code.

e version 16.57: released on September 16, 1985.
e versions 16.58, 16.59: released on September 17, 1985.

e version 16.60: released on September 19, 1985. These later version 16’s incorporated
patches from the net, esp. for getting Emacs to work under System V.

e version 17.36 (first official v17 release) released on December 20, 1985. Included a
TeX-able user manual. First official unpatched version that worked on vanilla System
V machines.

e version 17.43 (second official v17 release) released on January 25, 1986.
e version 17.45 released on January 30, 1986.

e version 17.46 released on February 4, 1986.

e version 17.48 released on February 10, 1986.

e version 17.49 released on February 12, 1986.

e version 17.55 released on March 18, 1986.

e version 17.57 released on March 27, 1986.

e version 17.58 released on April 4, 1986.

e version 17.61 released on April 12, 1986.
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e version 17.63 released on May 7, 1986.

e version 17.64 released on May 12, 1986.

e version 18.24 (a beta version) released on October 2, 1986.

e version 18.30 (a beta version) released on November 15, 1986.
e version 18.31 (a beta version) released on November 23, 1986.
e version 18.32 (a beta version) released on December 7, 1986.
e version 18.33 (a beta version) released on December 12, 1986.
e version 18.35 (a beta version) released on January 5, 1987.

e version 18.36 (a beta version) released on January 21, 1987.

e January 27, 1987: The Great Usenet Renaming. net.emacs is now comp.emacs.
e version 18.37 (a beta version) released on February 12, 1987.
e version 18.38 (a beta version) released on March 3, 1987.

e version 18.39 (a beta version) released on March 14, 1987.

e version 18.40 (a beta version) released on March 18, 1987.

e version 18.41 (the first “official” release) released on March 22, 1987.
e version 18.45 released on June 2, 1987.

e version 18.46 released on June 9, 1987.

e version 18.47 released on June 18, 1987.

e version 18.48 released on September 3, 1987.

e version 18.49 released on September 18, 1987.

e version 18.50 released on February 13, 1988.

e version 18.51 released on May 7, 1988.

e version 18.52 released on September 1, 1988.

e version 18.53 released on February 24, 1989.

e version 18.54 released on April 26, 1989.

e version 18.55 released on August 23, 1989. This is the earliest version that is still
available by FTP.

e version 18.56 released on January 17, 1991.

e version 18.57 released late January, 1991.

e version 18.59 released October 31, 1992.

1.2 Lucid Emacs

Lucid Emacs was developed by the (now-defunct) Lucid Inc., a maker of C++ and Lisp
development environments. It began when Lucid decided they wanted to use Emacs as the
editor and cornerstone of their C++ development environment (called “Energize”). They
needed many features that were not available in the existing version of GNU Emacs (version
18.5something), in particular good and integrated support for GUI elements such as mouse
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support, multiple fonts, multiple window-system windows, etc. A branch of GNU Emacs
called Epoch, written at the University of Illinois, existed that supplied many of these
features; however, Lucid needed more than what existed in Epoch. At the time, the Free
Software Foundation was working on version 19 of Emacs (this was sometime around 1991),
which was planned to have similar features, and so Lucid decided to work with the Free
Software Foundation. Their plan was to add features that they needed, and coordinate with
the FSF so that the features would get included back into Emacs version 19.

Delays in the release of version 19 occurred, however (resulting in it finally being released
more than a year after what was initially planned), and Lucid encountered unexpected
technical resistance in getting their changes merged back into version 19, so they decided
to release their own version of Emacs, which became Lucid Emacs 19.0.

The initial authors of Lucid Emacs were Matthieu Devin, Harlan Sexton, and Eric
Benson, and the work was later taken over by Jamie Zawinski, who became “Mr. Lucid
Emacs” for many releases.

A time line for Lucid Emacs/XEmacs is

version 19.0 shipped with Energize 1.0, April 1992.

e version 19.1 released June 4, 1992.

e version 19.2 released June 19, 1992.

e version 19.3 released September 9, 1992.
e version 19.4 released January 21, 1993.

e version 19.5 was a repackaging of 19.4 with a few bug fixes and shipped with Energize
2.0. Never released to the net.

e version 19.6 released April 9, 1993.

e version 19.7 was a repackaging of 19.6 with a few bug fixes and shipped with Energize
2.1. Never released to the net.

e version 19.8 released September 6, 1993.

e version 19.9 released January 12, 1994.

e version 19.10 released May 27, 1994.

e version 19.11 (first XEmacs) released September 13, 1994.
e version 19.12 released June 23, 1995.

e version 19.13 released September 1, 1995.

e version 19.14 released June 23, 1996.

e version 20.0 released February 9, 1997.

e version 19.15 released March 28, 1997.

e version 20.1 (not released to the net) April 15, 1997.
e version 20.2 released May 16, 1997.

e version 19.16 released October 31, 1997.

e version 20.3 (the first stable version of XEmacs 20.x) released November 30, 1997.
version 20.4 released February 28, 1998.
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1.3 GNU Emacs 19

About a year after the initial release of Lucid Emacs, the FSF released a beta of their
version of Emacs 19 (referred to here as “GNU Emacs”). By this time, the current version
of Lucid Emacs was 19.6. (Strangely, the first released beta from the FSF was GNU Emacs
19.7.) A time line for GNU Emacs version 19 is

e version 19.8 (beta) released May 27, 1993.
e version 19.9 (beta) released May 27, 1993.
e version 19.10 (beta) released May 30, 1993.
e version 19.11 (beta) released June 1, 1993.

e version 19.12 (beta) released June 2, 1993.

e version 19.13 (beta) released June 8, 1993.

e version 19.14 (beta) released June 17, 1993.
e version 19.15 (beta) released June 19, 1993.
e version 19.16 (beta) released July 6, 1993.

e version 19.17 (beta) released late July, 1993.
e version 19.18 (beta) released August 9, 1993.
e version 19.19 (beta) released August 15, 1993.
e version 19.20 (beta) released November 17, 1993.

e version 19.21 (beta) released November 17, 1993.

e version 19.22 (beta) released November 28, 1993.

e version 19.23 (beta) released May 17, 1994.

e version 19.24 (beta) released May 16, 1994.

e version 19.25 (beta) released June 3, 1994.

e version 19.26 (beta) released September 11, 1994.

e version 19.27 (beta) released September 14, 1994.

e version 19.28 (first “official” release) released November 1, 1994.
e version 19.29 released June 21, 1995.

e version 19.30 released November 24, 1995.

e version 19.31 released May 25, 1996.

e version 19.32 released July 31, 1996.

e version 19.33 released August 11, 1996.

e version 19.34 released August 21, 1996.

e version 19.34b released September 6, 1996.

In some ways, GNU Emacs 19 was better than Lucid Emacs; in some ways, worse. Lucid
soon began incorporating features from GNU Emacs 19 into Lucid Emacs; the work was
mostly done by Richard Mlynarik, who had been working on and using GNU Emacs for a
long time (back as far as version 16 or 17).
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1.4 GNU Emacs 20

On February 2, 1997 work began on GNU Emacs to integrate Mule. The first release
was made in September of that year.

A timeline for Emacs 20 is
e version 20.1 released September 17, 1997.
e version 20.2 released September 20, 1997.
e version 20.3 released August 19, 1998.

1.5 XEmacs

Around the time that Lucid was developing Energize, Sun Microsystems was developing
their own development environment (called “SPARCWorks”) and also decided to use Emacs.
They joined forces with the Epoch team at the University of Illinois and later with Lucid.
The maintainer of the last-released version of Epoch was Marc Andreessen, but he dropped
out and the Epoch project, headed by Simon Kaplan, lured Chuck Thompson away from
a system administration job to become the primary Lucid Emacs author for Epoch and
Sun. Chuck’s area of specialty became the redisplay engine (he replaced the old Lucid
Emacs redisplay engine with a ported version from Epoch and then later rewrote it from
scratch). Sun also hired Ben Wing (the author of Win-Emacs, a port of Lucid Emacs to
Microsoft Windows 3.1) in 1993, for what was initially a one-month contract to fix some
event problems but later became a many-year involvement, punctuated by a six-month
contract with Amdahl Corporation.

In 1994, Sun and Lucid agreed to rename Lucid Emacs to XEmacs (a name not favorable
to either company); the first release called XEmacs was version 19.11. In June 1994, Lucid
folded and Jamie quit to work for the newly formed Mosaic Communications Corp., later
Netscape Communications Corp. (co-founded by the same Marc Andreessen, who had quit
his Epoch job to work on a graphical browser for the World Wide Web). Chuck then become
the primary maintainer of XEmacs, and put out versions 19.11 through 19.14 in conjunction
with Ben. For 19.12 and 19.13, Chuck added the new redisplay and many other display
improvements and Ben added MULE support (support for Asian and other languages) and
redesigned most of the internal Lisp subsystems to better support the MULE work and
the various other features being added to XEmacs. After 19.14 Chuck retired as primary
maintainer and Steve Baur stepped in.

Soon after 19.13 was released, work began in earnest on the MULE internationalization
code and the source tree was divided into two development paths. The MULE version
was initially called 19.20, but was soon renamed to 20.0. In 1996 Martin Buchholz of Sun
Microsystems took over the care and feeding of it and worked on it in parallel with the
19.14 development that was occurring at the same time. After much work by Martin, it
was decided to release 20.0 ahead of 19.15 in February 1997. The source tree remained
divided until 20.2 when the version 19 source was finally retired at version 19.16.

In 1997, Sun finally dropped all pretense of support for XEmacs and Martin Buchholz
left the company in November. Since then, and mostly for the previous year, because Steve
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Baur was never paid to work on XEmacs, XEmacs has existed solely on the contributions
of volunteers from the Free Software Community. Starting from 1997, Hrvoje Niksic and
Kyle Jones have figured prominently in XEmacs development.

Many attempts have been made to merge XEmacs and GNU Emacs, but they have
consistently failed.

A more detailed history is contained in the XEmacs About page.
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2 XEmacs From the Outside

XEmacs appears to the outside world as an editor, but it is really a Lisp environment.
At its heart is a Lisp interpreter; it also “happens” to contain many specialized object types
(e.g. buffers, windows, frames, events) that are useful for implementing an editor. Some
of these objects (in particular windows and frames) have displayable representations, and
XEmacs provides a function redisplay() that ensures that the display of all such objects
matches their internal state. Most of the time, a standard Lisp environment is in a read-
eval-print loop — i.e. “read some Lisp code, execute it, and print the results”. XEmacs has
a similar loop:

e read an event
e dispatch the event (i.e. “do it”)
e redisplay

Reading an event is done using the Lisp function next-event, which waits for something
to happen (typically, the user presses a key or moves the mouse) and returns an event object
describing this. Dispatching an event is done using the Lisp function dispatch-event,
which looks up the event in a keymap object (a particular kind of object that associates
an event with a Lisp function) and calls that function. The function “does” what the user
has requested by changing the state of particular frame objects, buffer objects, etc. Finally,
redisplay () is called, which updates the display to reflect those changes just made. Thus
is an “editor” born.

Note that you do not have to use XEmacs as an editor; you could just as well make it
do your taxes, compute pi, play bridge, etc. You’d just have to write functions to do those
operations in Lisp.
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3 The Lisp Language

Lisp is a general-purpose language that is higher-level than C and in many ways more
powerful than C. Powerful dialects of Lisp such as Common Lisp are probably much better
languages for writing very large applications than is C. (Unfortunately, for many non-
technical reasons C and its successor C++ have become the dominant languages for appli-
cation development. These languages are both inadequate for extremely large applications,
which is evidenced by the fact that newer, larger programs are becoming ever harder to
write and are requiring ever more programmers despite great increases in C development
environments; and by the fact that, although hardware speeds and reliability have been
growing at an exponential rate, most software is still generally considered to be slow and
buggy.)

The new Java language holds promise as a better general-purpose development language
than C. Java has many features in common with Lisp that are not shared by C (this is not
a coincidence, since Java was designed by James Gosling, a former Lisp hacker). This will
be discussed more later.

For those used to C, here is a summary of the basic differences between C and Lisp:

1. Lisp has an extremely regular syntax. Every function, expression, and control state-
ment is written in the form

(func argl arg2 ...)
This is as opposed to C, which writes functions as
func(argl, arg2, ...)
but writes expressions involving operators as (e.g.)
argl + arg?
and writes control statements as (e.g.)
while (expr) { statementl; statement2; ... }
Lisp equivalents of the latter two would be
(+ argl arg2 ...)
and
(while expr statementl statement2 ...)

2. Lisp is a safe language. Assuming there are no bugs in the Lisp interpreter/compiler,
it is impossible to write a program that “core dumps” or otherwise causes the machine
to execute an illegal instruction. This is very different from C, where perhaps the most
common outcome of a bug is exactly such a crash. A corollary of this is that the C
operation of casting a pointer is impossible (and unnecessary) in Lisp, and that it is
impossible to access memory outside the bounds of an array.

3. Programs and data are written in the same form. The parenthesis-enclosing form
described above for statements is the same form used for the most common data type
in Lisp, the list. Thus, it is possible to represent any Lisp program using Lisp data
types, and for one program to construct Lisp statements and then dynamically evaluate
them, or cause them to execute.
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4. All objects are dynamically typed. This means that part of every object is an indication

of what type it is. A Lisp program can manipulate an object without knowing what type
it is, and can query an object to determine its type. This means that, correspondingly,
variables and function parameters can hold objects of any type and are not normally
declared as being of any particular type. This is opposed to the static typing of C,
where variables can hold exactly one type of object and must be declared as such, and
objects do not contain an indication of their type because it’s implicit in the variables
they are stored in. It is possible in C to have a variable hold different types of objects
(e.g. through the use of void * pointers or variable-argument functions), but the type
information must then be passed explicitly in some other fashion, leading to additional
program complexity.

Allocated memory is automatically reclaimed when it is no longer in use. This opera-
tion is called garbage collection and involves looking through all variables to see what
memory is being pointed to, and reclaiming any memory that is not pointed to and is
thus “inaccessible” and out of use. This is as opposed to C, in which allocated memory
must be explicitly reclaimed using free (). If you simply drop all pointers to memory
without freeing it, it becomes “leaked” memory that still takes up space. Over a long
period of time, this can cause your program to grow and grow until it runs out of
memory.

Lisp has built-in facilities for handling errors and exceptions. In C, when an error
occurs, usually either the program exits entirely or the routine in which the error
occurs returns a value indicating this. If an error occurs in a deeply-nested routine,
then every routine currently called must unwind itself normally and return an error
value back up to the next routine. This means that every routine must explicitly check
for an error in all the routines it calls; if it does not do so, unexpected and often
random behavior results. This is an extremely common source of bugs in C programs.
An alternative would be to do a non-local exit using longjmp (), but that is often very
dangerous because the routines that were exited past had no opportunity to clean up
after themselves and may leave things in an inconsistent state, causing a crash shortly
afterwards.

Lisp provides mechanisms to make such non-local exits safe. When an error occurs, a
routine simply signals that an error of a particular class has occurred, and a non-local
exit takes place. Any routine can trap errors occurring in routines it calls by registering
an error handler for some or all classes of errors. (If no handler is registered, a default
handler, generally installed by the top-level event loop, is executed; this prints out the
error and continues.) Routines can also specify cleanup code (called an unwind-protect)
that will be called when control exits from a block of code, no matter how that exit
occurs — i.e. even if a function deeply nested below it causes a non-local exit back to
the top level.

Note that this facility has appeared in some recent vintages of C, in particular Visual
C++ and other PC compilers written for the Microsoft Win32 API.

In Emacs Lisp, local variables are dynamically scoped. This means that if you declare a
local variable in a particular function, and then call another function, that subfunction
can “see” the local variable you declared. This is actually considered a bug in Emacs
Lisp and in all other early dialects of Lisp, and was corrected in Common Lisp. (In
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Common Lisp, you can still declare dynamically scoped variables if you want to — they
are sometimes useful — but variables by default are lexically scoped as in C.)

For those familiar with Lisp, Emacs Lisp is modelled after MacLisp, an early dialect of

Lisp developed at MIT (no relation to the Macintosh computer). There is a Common Lisp
compatibility package available for Emacs that provides many of the features of Common
Lisp.

The Java language is derived in many ways from C, and shares a similar syntax, but has

the following features in common with Lisp (and different from C):

1.

Java is a safe language, like Lisp.

2. Java provides garbage collection, like Lisp.
3.
4

. Java has a type system that combines the best advantages of both static and dynamic

Java has built-in facilities for handling errors and exceptions, like Lisp.

typing. Objects (except very simple types) are explicitly marked with their type, as in
dynamic typing; but there is a hierarchy of types and functions are declared to accept
only certain types, thus providing the increased compile-time error-checking of static

typing.
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4 XEmacs From the Perspective of Building

The heart of XEmacs is the Lisp environment, which is written in C. This is contained
in the ‘src/’ subdirectory. Underneath ‘src/’ are two subdirectories of header files: ‘s/’
(header files for particular operating systems) and ‘m/’ (header files for particular machine
types). In practice the distinction between the two types of header files is blurred. These
header files define or undefine certain preprocessor constants and macros to indicate partic-
ular characteristics of the associated machine or operating system. As part of the configure
process, one ‘s/’ file and one ‘m/’ file is identified for the particular environment in which
XEmagcs is being built.

XEmacs also contains a great deal of Lisp code. This implements the operations that
make XEmacs useful as an editor as well as just a Lisp environment, and also contains many
add-on packages that allow XEmacs to browse directories, act as a mail and Usenet news
reader, compile Lisp code, etc. There is actually more Lisp code than C code associated
with XEmacs, but much of the Lisp code is peripheral to the actual operation of the editor.
The Lisp code all lies in subdirectories underneath the ‘1isp/’ directory.

The ‘lwlib/’ directory contains C code that implements a generalized interface onto
different X widget toolkits and also implements some widgets of its own that behave like
Motif widgets but are faster, free, and in some cases more powerful. The code in this
directory compiles into a library and is mostly independent from XEmacs.

The ‘etc/’ directory contains various data files associated with XEmacs. Some of them
are actually read by XEmacs at startup; others merely contain useful information of various
sorts.

The ‘1ib-src/’ directory contains C code for various auxiliary programs that are used in
connection with XEmacs. Some of them are used during the build process; others are used
to perform certain functions that cannot conveniently be placed in the XEmacs executable
(e.g. the ‘movemail’ program for fetching mail out of ‘/var/spool/mail’, which must be
setgid to ‘mail’ on many systems; and the ‘gnuclient’ program, which allows an external
script to communicate with a running XEmacs process).

The ‘man/’ directory contains the sources for the XEmacs documentation. It is mostly
in a form called Texinfo, which can be converted into either a printed document (by passing
it through TEX) or into on-line documentation called info files.

The ‘info/’ directory contains the results of formatting the XEmacs documentation as
info files, for on-line use. These files are used when you enter the Info system using C-h i
or through the Help menu.

The ‘dynodump/’ directory contains auxiliary code used to build XEmacs on Solaris
platforms.

The other directories contain various miscellaneous code and information that is not
normally used or needed.

The first step of building involves running the ‘configure’ program and passing it various
parameters to specify any optional features you want and compiler arguments and such, as
described in the ‘INSTALL’ file. This determines what the build environment is, chooses the
appropriate ‘s/’ and ‘m/’ file, and runs a series of tests to determine many details about



14 XEmacs Internals Manual

your environment, such as which library functions are available and exactly how they work.
(The ‘s/’ and ‘m/’ files only contain information that cannot be conveniently detected in
this fashion.) The reason for running these tests is that it allows XEmacs to be compiled
on a much wider variety of platforms than those that the XEmacs developers happen to be
familiar with, including various sorts of hybrid platforms. This is especially important now
that many operating systems give you a great deal of control over exactly what features
you want installed, and allow for easy upgrading of parts of a system without upgrading
the rest. It would be impossible to pre-determine and pre-specify the information for all
possible configurations.

When configure is done running, it generates ‘Makefile’s and the file ‘src/config.h’
(which describes the features of your system) from template files. You then run ‘make’,
which compiles the auxiliary code and programs in ‘lib-src/’ and ‘lwlib/’ and the main
XEmacs executable in ‘src/’. The result of compiling and linking is an executable called
‘temacs’, which is not the final XEmacs executable. ‘temacs’ by itself is not intended to
function as an editor or even display any windows on the screen, and if you simply run it,
it will exit immediately. The ‘Makefile’ runs ‘temacs’ with certain options that cause it
to initialize itself, read in a number of basic Lisp files, and then dump itself out into a new
executable called ‘xemacs’. This new executable has been pre-initialized and contains pre-
digested Lisp code that is necessary for the editor to function (this includes most basic Lisp
functions, e.g. not, that can be defined in terms of other Lisp primitives; some initialization
code that is called when certain objects, such as frames, are created; and all of the standard
keybindings and code for the actions they result in). This executable, ‘xemacs’, is the
executable that you run to use the XEmacs editor.

Although ‘temacs’ is not intended to be run as an editor, it can, by using the incantation
temacs -batch -1 loadup.el run-temacs. This is useful when the dumping procedure
described above is broken, or when using certain program debugging tools such as Purify.
These tools get mighty confused by the tricks played by the XEmacs build process, such as
allocation memory in one process, and freeing it in the next.
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5 XEmacs From the Inside

Internally, XEmacs is quite complex, and can be very confusing. To simplify things, it
can be useful to think of XEmacs as containing an event loop that “drives” everything, and
a number of other subsystems, such as a Lisp engine and a redisplay mechanism. Each of
these other subsystems exists simultaneously in XEmacs, and each has a certain state. The
flow of control continually passes in and out of these different subsystems in the course of
normal operation of the editor.

It is important to keep in mind that, most of the time, the editor is “driven” by the event
loop. Except during initialization and batch mode, all subsystems are entered directly or
indirectly through the event loop, and ultimately, control exits out of all subsystems back
up to the event loop. This cycle of entering a subsystem, exiting back out to the event loop,
and starting another iteration of the event loop occurs once each keystroke, mouse motion,
etc.

If you’re trying to understand a particular subsystem (other than the event loop), think
of it as a “daemon” process or “servant” that is responsible for one particular aspect of a
larger system, and periodically receives commands or environment changes that cause it to
do something. Ultimately, these commands and environment changes are always triggered
by the event loop. For example:

e The window and frame mechanism is responsible for keeping track of what windows and
frames exist, what buffers are in them, etc. It is periodically given commands (usually
from the user) to make a change to the current window/frame state: i.e. create a new
frame, delete a window, etc.

e The buffer mechanism is responsible for keeping track of what buffers exist and what
text is in them. It is periodically given commands (usually from the user) to insert or
delete text, create a buffer, etc. When it receives a text-change command, it notifies
the redisplay mechanism.

e The redisplay mechanism is responsible for making sure that windows and frames are
displayed correctly. It is periodically told (by the event loop) to actually “do its job”,
i.e. snoop around and see what the current state of the environment (mostly of the
currently-existing windows, frames, and buffers) is, and make sure that that state
matches what’s actually displayed. It keeps lots and lots of information around (such
as what is actually being displayed currently, and what the environment was last time
it checked) so that it can minimize the work it has to do. It is also helped along in
that whenever a relevant change to the environment occurs, the redisplay mechanism
is told about this, so it has a pretty good idea of where it has to look to find possible
changes and doesn’t have to look everywhere.

e The Lisp engine is responsible for executing the Lisp code in which most user commands
are written. It is entered through a call to eval or funcall, which occurs as a result
of dispatching an event from the event loop. The functions it calls issue commands to
the buffer mechanism, the window/frame subsystem, etc.

e The Lisp allocation subsystem is responsible for keeping track of Lisp objects. It is
given commands from the Lisp engine to allocate objects, garbage collect, etc.

etc.
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The important idea here is that there are a number of independent subsystems each
with its own responsibility and persistent state, just like different employees in a company,
and each subsystem is periodically given commands from other subsystems. Commands
can flow from any one subsystem to any other, but there is usually some sort of hierarchy,
with all commands originating from the event subsystem.

XEmacs is entered in main(), which is in ‘emacs.c’. When this is called the first time
(in a properly-invoked ‘temacs’), it does the following:

1. It does some very basic environment initializations, such as determining where it and
its directories (e.g. ‘lisp/’ and ‘etc/’) reside and setting up signal handlers.

2. It initializes the entire Lisp interpreter.

3. It sets the initial values of many built-in variables (including many variables that are
visible to Lisp programs), such as the global keymap object and the built-in faces (a face
is an object that describes the display characteristics of text). This involves creating
Lisp objects and thus is dependent on step (2).

4. It performs various other initializations that are relevant to the particular environment
it is running in, such as retrieving environment variables, determining the current date
and the user who is running the program, examining its standard input, creating any
necessary file descriptors, etc.

5. At this point, the C initialization is complete. A Lisp program that was specified
on the command line (usually ‘loadup.el’) is called (temacs is normally invoked as
temacs -batch -1 loadup.el dump). ‘loadup.el’ loads all of the other Lisp files that
are needed for the operation of the editor, calls the dump-emacs function to write out
‘xemacs’, and then kills the temacs process.

When ‘xemacs’ is then run, it only redoes steps (1) and (4) above; all variables already
contain the values they were set to when the executable was dumped, and all memory that
was allocated with malloc() is still around. (XEmacs knows whether it is being run as
‘xemacs’ or ‘temacs’ because it sets the global variable initialized to 1 after step (4)
above.) At this point, ‘xemacs’ calls a Lisp function to do any further initialization, which
includes parsing the command-line (the C code can only do limited command-line parsing,
which includes looking for the ‘-batch’ and ‘-1’ flags and a few other flags that it needs
to know about before initialization is complete), creating the first frame (or window in
standard window-system parlance), running the user’s init file (usually the file ‘.emacs’ in
the user’s home directory), etc. The function to do this is usually called normal-top-level;
‘loadup.el’ tells the C code about this function by setting its name as the value of the
Lisp variable top-level.

When the Lisp initialization code is done, the C code enters the event loop, and stays
there for the duration of the XEmacs process. The code for the event loop is contained
in ‘keyboard.c’, and is called Fcommand_loop_1(). Note that this event loop could very
well be written in Lisp, and in fact a Lisp version exists; but apparently, doing this makes
XEmacs run noticeably slower.

Notice how much of the initialization is done in Lisp, not in C. In general, XEmacs
tries to move as much code as is possible into Lisp. Code that remains in C is code that
implements the Lisp interpreter itself, or code that needs to be very fast, or code that needs
to do system calls or other such stuff that needs to be done in C, or code that needs to
have access to “forbidden” structures. (One conscious aspect of the design of Lisp under
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XEmacs is a clean separation between the external interface to a Lisp object’s functionality
and its internal implementation. Part of this design is that Lisp programs are forbidden
from accessing the contents of the object other than through using a standard API. In
this respect, XEmacs Lisp is similar to modern Lisp dialects but differs from GNU Emacs,
which tends to expose the implementation and allow Lisp programs to look at it directly.
The major advantage of hiding the implementation is that it allows the implementation to
be redesigned without affecting any Lisp programs, including those that might want to be
“clever” by looking directly at the object’s contents and possibly manipulating them.)

Moving code into Lisp makes the code easier to debug and maintain and makes it much
easier for people who are not XEmacs developers to customize XEmacs, because they can
make a change with much less chance of obscure and unwanted interactions occurring than
if they were to change the C code.
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6 The XEmacs Object System (Abstractly
Speaking)

At the heart of the Lisp interpreter is its management of objects. XEmacs Lisp contains
many built-in objects, some of which are simple and others of which can be very complex;
and some of which are very common, and others of which are rarely used or are only
used internally. (Since the Lisp allocation system, with its automatic reclamation of unused
storage, is so much more convenient than malloc () and free(), the C code makes extensive
use of it in its internal operations.)

The basic Lisp objects are

integer 28 bits of precision, or 60 bits on 64-bit machines; the reason for this is described
below when the internal Lisp object representation is described.

float Same precision as a double in C.

cons A simple container for two Lisp objects, used to implement lists and most other
data structures in Lisp.

char An object representing a single character of text; chars behave like integers in
many ways but are logically considered text rather than numbers and have a
different read syntax. (the read syntax for a char contains the char itself or
some textual encoding of it — for example, a Japanese Kanji character might be
encoded as ‘~ [$ (B#&~ [ (B’ using the ISO-2022 encoding standard — rather than
the numerical representation of the char; this way, if the mapping between chars
and integers changes, which is quite possible for Kanji characters and other
extended characters, the same character will still be created. Note that some
primitives confuse chars and integers. The worst culprit is eq, which makes a
special exception and considers a char to be eq to its integer equivalent, even
though in no other case are objects of two different types eq. The reason for
this monstrosity is compatibility with existing code; the separation of char from
integer came fairly recently.)

symbol An object that contains Lisp objects and is referred to by name; symbols are
used to implement variables and named functions and to provide the equivalent
of preprocessor constants in C.

vector A one-dimensional array of Lisp objects providing constant-time access to any
of the objects; access to an arbitrary object in a vector is faster than for lists,
but the operations that can be done on a vector are more limited.

string Self-explanatory; behaves much like a vector of chars but has a different read
syntax and is stored and manipulated more compactly and efficiently.

bit-vector
A vector of bits; similar to a string in spirit.

compiled-function
An object describing compiled Lisp code, known as byte code.

subr An object describing a Lisp primitive.
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Note that there is no basic “function” type, as in more powerful versions of Lisp (where
it’s called a closure). XEmacs Lisp does not provide the closure semantics implemented
by Common Lisp and Scheme. The guts of a function in XEmacs Lisp are represented in
one of four ways: a symbol specifying another function (when one function is an alias for
another), a list containing the function’s source code, a bytecode object, or a subr object.
(In other words, given a symbol specifying the name of a function, calling symbol-function
to retrieve the contents of the symbol’s function cell will return one of these types of objects.)

XEmacs Lisp also contains numerous specialized objects used to implement the editor:

buffer Stores text like a string, but is optimized for insertion and deletion and has
certain other properties that can be set.

frame An object with various properties whose displayable representation is a window
in window-system parlance.

window A section of a frame that displays the contents of a buffer; often called a pane
in window-system parlance.

window-configuration
An object that represents a saved configuration of windows in a frame.

device An object representing a screen on which frames can be displayed; equivalent
to a display in the X Window System and a TTY in character mode.

face An object specifying the appearance of text or graphics; it contains character-
istics such as font, foreground color, and background color.

marker An object that refers to a particular position in a buffer and moves around as
text is inserted and deleted to stay in the same relative position to the text
around it.

extent Similar to a marker but covers a range of text in a buffer; can also specify

properties of the text, such as a face in which the text is to be displayed,
whether the text is invisible or unmodifiable, etc.

event Generated by calling next-event and contains information describing a partic-
ular event happening in the system, such as the user pressing a key or a process
terminating.

keymap An object that maps from events (described using lists, vectors, and symbols

rather than with an event object because the mapping is for classes of events,
rather than individual events) to functions to execute or other events to recur-
sively look up; the functions are described by name, using a symbol, or using
lists to specify the function’s code.

glyph An object that describes the appearance of an image (e.g. pixmap) on the
screen; glyphs can be attached to the beginning or end of extents and in some
future version of XEmacs will be able to be inserted directly into a buffer.

process  An object that describes a connection to an externally-running process.
There are some other, less-commonly-encountered general objects:

hashtable
An object that maps from an arbitrary Lisp object to another arbitrary Lisp
object, using hashing for fast lookup.
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obarray A limited form of hashtable that maps from strings to symbols; obarrays are
used to look up a symbol given its name and are not actually their own ob-
ject type but are kludgily represented using vectors with hidden fields (this
representation derives from GNU Emacs).

specifier
A complex object used to specify the value of a display property; a default
value is given and different values can be specified for particular frames, buffers,
windows, devices, or classes of device.

char-table
An object that maps from chars or classes of chars to arbitrary Lisp objects;
internally char tables use a complex nested-vector representation that is opti-
mized to the way characters are represented as integers.

range—-table
An object that maps from ranges of integers to arbitrary Lisp objects.

And some strange special-purpose objects:

charset
coding-system
Objects used when MULE, or multi-lingual /Asian-language, support is enabled.

color-instance

font-instance

image-instance
An object that encapsulates a window-system resource; instances are mostly
used internally but are exposed on the Lisp level for cleanness of the specifier
model and because it’s occasionally useful for Lisp program to create or query
the properties of instances.

subwindow
An object that encapsulate a subwindow resource, i.e. a window-system child
window that is drawn into by an external process; this object should be inte-
grated into the glyph system but isn’t yet, and may change form when this is
done.

tooltalk-message

tooltalk-pattern
Objects that represent resources used in the ToolTalk interprocess communica-
tion protocol.

toolbar-button
An object used in conjunction with the toolbar.

X-resource
An object that encapsulates certain miscellaneous resources in the X window
system, used only when Epoch support is enabled.

And objects that are only used internally:

opaque A generic object for encapsulating arbitrary memory; this allows you the gen-
erality of malloc() and the convenience of the Lisp object system.
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Istream A buffering I/O stream, used to provide a unified interface to anything that
can accept output or provide input, such as a file descriptor, a stdio stream, a
chunk of memory, a Lisp buffer, a Lisp string, etc.; it’s a Lisp object to make
its memory management more convenient.

char-table-entry
Subsidiary objects in the internal char-table representation.

extent-auxiliary

menubar-data

toolbar-data
Various special-purpose objects that are basically just used to encapsulate mem-
ory for particular subsystems, similar to the more general “opaque” object.

symbol-value-forward

symbol-value-buffer-local

symbol-value-varalias

symbol-value-lisp-magic
Special internal-only objects that are placed in the value cell of a symbol to
indicate that there is something special with this variable — e.g. it has no value,
it mirrors another variable, or it mirrors some C variable; there is really only one
kind of object, called a symbol-value-magic, but it is sort-of halfway kludged
into semi-different object types.

Some types of objects are permanent, meaning that once created, they do not disap-
pear until explicitly destroyed, using a function such as delete-buffer, delete-window,
delete-frame, etc. Others will disappear once they are not longer used, through the
garbage collection mechanism. Buffers, frames, windows, devices, and processes are among
the objects that are permanent. Note that some objects can go both ways: Faces can be
created either way; extents are normally permanent, but detached extents (extents not re-
ferring to any text, as happens to some extents when the text they are referring to is deleted)
are temporary. Note that some permanent objects, such as faces and coding systems, cannot
be deleted. Note also that windows are unique in that they can be undeleted after having
previously been deleted. (This happens as a result of restoring a window configuration.)

Note that many types of objects have a read syntax, i.e. a way of specifying an object
of that type in Lisp code. When you load a Lisp file, or type in code to be evaluated, what
really happens is that the function read is called, which reads some text and creates an
object based on the syntax of that text; then eval is called, which possibly does something
special; then this loop repeats until there’s no more text to read. (eval only actually does
something special with symbols, which causes the symbol’s value to be returned, similar to
referencing a variable; and with conses [i.e. lists], which cause a function invocation. All
other values are returned unchanged.)

The read syntax
17297
converts to an integer whose value is 17297.
1.983e-4
converts to a float whose value is 1.983e-4, or .0001983.
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7b
converts to a char that represents the lowercase letter b.
7" [$(B#&" [(B

(where ‘[ actually is an ‘ESC’ character) converts to a particular Kanji character when
using an 1SO2022-based coding system for input. (To decode this gook: ‘ESC’ begins an
escape sequence; ‘ESC $ (' is a class of escape sequences meaning “switch to a 94x94 char-
acter set”; ‘ESC $ ( B’ means “switch to Japanese Kanji”; ‘#’ and ‘&’ collectively index into
a 94-by-94 array of characters [subtract 33 from the ASCII value of each character to get
the corresponding index]; ‘ESC (’ is a class of escape sequences meaning “switch to a 94
character set”; ‘ESC (B’ means “switch to US ASCII”. It is a coincidence that the letter ‘B’
is used to denote both Japanese Kanji and US ASCII. If the first ‘B’ were replaced with an
‘A’) you’d be requesting a Chinese Hanzi character from the GB2312 character set.)

"foobar"
converts to a string.
foobar

converts to a symbol whose name is "foobar". This is done by looking up the string
equivalent in the global variable obarray, whose contents should be an obarray. If no
symbol is found, a new symbol with the name "foobar" is automatically created and
added to obarray; this process is called interning the symbol.
(foo . bar)
converts to a cons cell containing the symbols foo and bar.
(1 a 2.5)

converts to a three-element list containing the specified objects (note that a list is actually
a set of nested conses; see the XEmacs Lisp Reference).

[1 a 2.5]
converts to a three-element vector containing the specified objects.
#l... ... ... ...]

converts to a compiled-function object (the actual contents are not shown since they are
not relevant here; look at a file that ends with ‘.elc’ for examples).

#%x01110110

converts to a bit-vector.
#s(range-table ... ...)

converts to a range table (the actual contents are not shown).
#s(char-table ... ...)

converts to a char table (the actual contents are not shown). (Note that the #s syntax
is the general syntax for structures, which are not really implemented in XEmacs Lisp but
should be.)

When an object is printed out (using print or a related function), the read syntax is
used, so that the same object can be read in again.

The other objects do not have read syntaxes, usually because it does not really make
sense to create them in this fashion (i.e. processes, where it doesn’t make sense to have
a subprocess created as a side effect of reading some Lisp code), or because they can’t be
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created at all (e.g. subrs). Permanent objects, as a rule, do not have a read syntax; nor do
most complex objects, which contain too much state to be easily initialized through a read
syntax.
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7 How Lisp Objects Are Represented in C

Lisp objects are represented in C using a 32- or 64-bit machine word (depending on the
processor; i.e. DEC Alphas use 64-bit Lisp objects and most other processors use 32-bit
Lisp objects). The representation stuffs a pointer together with a tag, as follows:

[33222222222211111111110000000000]
[10987654321098765432109876543210]

| tag a pointer to a structure, or an integer

‘——-> mark bit

The tag describes the type of the Lisp object. For integers and chars, the lower 28 bits
contain the value of the integer or char; for all others, the lower 28 bits contain a pointer.
The mark bit is used during garbage-collection, and is always 0 when garbage collection is
not happening. Many macros that extract out parts of a Lisp object expect that the mark
bit is 0, and will produce incorrect results if it’s not. (The way that garbage collection
works, basically, is that it loops over all places where Lisp objects could exist — this includes
all global variables in C that contain Lisp objects [including Vobarray, the C equivalent of
obarray; through this, all Lisp variables will get marked], plus various other places — and
recursively scans through the Lisp objects, marking each object it finds by setting the mark
bit. Then it goes through the lists of all objects allocated, freeing the ones that are not
marked and turning off the mark bit of the ones that are marked.)

Lisp objects use the typedef Lisp_0Object, but the actual C type used for the Lisp
object can vary. It can be either a simple type (long on the DEC Alpha, int on other
machines) or a structure whose fields are bit fields that line up properly (actually, a union
of structures that’s used). Generally the simple integral type is preferable because it ensures
that the compiler will actually use a machine word to represent the object (some compilers
will use more general and less efficient code for unions and structs even if they can fit in
a machine word). The union type, however, has the advantage of stricter type checking (if
you accidentally pass an integer where a Lisp object is desired, you get a compile error),
and it makes it easier to decode Lisp objects when debugging. The choice of which type to
use is determined by the presence or absence of the preprocessor constant USE_UNION_TYPE.

Note that there are only eight types that the tag can represent, but many more actual
types than this. This is handled by having one of the tag types specify a meta-type called
a record; for all such objects, the first four bytes of the pointed-to structure indicate what
the actual type is.

Note also that having 28 bits for pointers and integers restricts a lot of things to 256
megabytes of memory. (Basically, enough pointers and indices and whatnot get stuffed
into Lisp objects that the total amount of memory used by XEmacs can’t grow above 256
megabytes. In older versions of XEmacs and GNU Emacs, the tag was 5 bits wide, allowing
for 32 types, which was more than the actual number of types that existed at the time, and
no “record” type was necessary. However, this limited the editor to 64 megabytes total,
which some users who edited large files might conceivably exceed.)
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Also, note that there is an implicit assumption here that all pointers are low enough that
the top bits are all zero and can just be chopped off. On standard machines that allocate
memory from the bottom up (and give each process its own address space), this works fine.
Some machines, however, put the data space somewhere else in memory (e.g. beginning at
0x80000000). Those machines cope by defining DATA_SEG_BITS in the corresponding ‘m/’ or
‘s/’ file to the proper mask. Then, pointers retrieved from Lisp objects are automatically
OR’ed with this value prior to being used.

A corollary of the previous paragraph is that (pointers to) stack-allocated structures
cannot be put into Lisp objects. The stack is generally located near the top of memory; if
you put such a pointer into a Lisp object, it will get its top bits chopped off, and you will
lose.

Various macros are used to construct Lisp objects and extract the components. Macros
of the form XINT(), XCHAR(), XSTRING(), XSYMBOL(), etc. mask out the pointer/integer
field and cast it to the appropriate type. All of the macros that construct pointers will OR
with DATA_SEG_BITS if necessary. XINT() needs to be a bit tricky so that negative numbers
are properly sign-extended: Usually it does this by shifting the number four bits to the
left and then four bits to the right. This assumes that the right-shift operator does an
arithmetic shift (i.e. it leaves the most-significant bit as-is rather than shifting in a zero,
so that it mimics a divide-by-two even for negative numbers). Not all machines/compilers
do this, and on the ones that don’t, a more complicated definition is selected by defining
EXPLICIT_SIGN_EXTEND.

Note that when ERROR_CHECK_TYPECHECK is defined, the extractor macros become more
complicated — they check the tag bits and/or the type field in the first four bytes of a record
type to ensure that the object is really of the correct type. This is great for catching places
where an incorrect type is being dereferenced — this typically results in a pointer being
dereferenced as the wrong type of structure, with unpredictable (and sometimes not easily
traceable) results.

There are similar XSETTYPE () macros that construct a Lisp object. These macros are
of the form XSETTYPE (lIvalue, result), i.e. they have to be a statement rather than just
used in an expression. The reason for this is that standard C doesn’t let you “construct”
a structure (but GCC does). Granted, this sometimes isn’t too convenient; for the case of
integers, at least, you can use the function make_int (), which constructs and returns an
integer Lisp object. Note that the XSETTYPE () macros are also affected by ERROR_CHECK_
TYPECHECK and make sure that the structure is of the right type in the case of record types,
where the type is contained in the structure.



Chapter 8: Rules When Writing New C Code 27

8 Rules When Writing New C Code

The XEmacs C Code is extremely complex and intricate, and there are many rules that
are more or less consistently followed throughout the code. Many of these rules are not
obvious, so they are explained here. It is of the utmost importance that you follow them.
If you don’t, you may get something that appears to work, but which will crash in odd
situations, often in code far away from where the actual breakage is.

8.1 General Coding Rules

Almost every module contains a syms_of_*() function and a vars_of_x() function.
The former declares any Lisp primitives you have defined and defines any symbols you
will be using. The latter declares any global Lisp variables you have added and initializes
global C variables in the module. For each such function, declare it in ‘symsinit.h’ and
make sure it’s called in the appropriate place in ‘emacs.c’. Important: There are stringent
requirements on exactly what can go into these functions. See the comment in ‘emacs.c’.
The reason for this is to avoid obscure unwanted interactions during initialization. If you
don’t follow these rules, you’ll be sorry! If you want to do anything that isn’t allowed,
create a complex_vars_of_x*() function for it. Doing this is tricky, though: You have to
make sure your function is called at the right time so that all the initialization dependencies
work out.

Every module includes ‘<config.h>’ (angle brackets so that ‘--srcdir’ works correctly;
‘config.h’ may or may not be in the same directory as the C sources) and ‘lisp.h’.
‘config.h’ should always be included before any other header files (including system header
files) to ensure that certain tricks played by various ‘s/” and ‘m/’ files work out correctly.

All global and static variables that are to be modifiable must be declared uninitialized.
This means that you may not use the “declare with initializer” form for these variables,
such as int some_variable = 0;. The reason for this has to do with some kludges done
during the dumping process: If possible, the initialized data segment is re-mapped so that
it becomes part of the (unmodifiable) code segment in the dumped executable. This allows
this memory to be shared among multiple running XEmacs processes. XEmacs is careful to
place as much constant data as possible into initialized variables (in particular, into what’s
called the pure space — see below) during the ‘temacs’ phase.

Please note: This kludge only works on a few systems nowadays, and is rapidly becoming
irrelevant because most modern operating systems provide copy-on-write semantics. All
data is initially shared between processes, and a private copy is automatically made (on a
page-by-page basis) when a process first attempts to write to a page of memory.

Formerly, there was a requirement that static variables not be declared inside of func-
tions. This had to do with another hack along the same vein as what was just described:
old USG systems put statically-declared variables in the initialized data space, so those
header files had a #define static declaration. (That way, the data-segment remapping
described above could still work.) This fails badly on static variables inside of functions,
which suddenly become automatic variables; therefore, you weren’t supposed to have any
of them. This awful kludge has been removed in XEmacs because
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1. almost all of the systems that used this kludge ended up having to disable the data-
segment remapping anyway;

2. the only systems that didn’t were extremely outdated ones;

3. this hack completely messed up inline functions.

8.2 Writing Lisp Primitives

Lisp primitives are Lisp functions implemented in C. The details of interfacing the C
function so that Lisp can call it are handled by a few C macros. The only way to really
understand how to write new C code is to read the source, but we can explain some things
here.

An example of a special form is the definition of or, from ‘eval.c’. (An ordinary function
would have the same general appearance.)

DEFUN ("or", For, O, UNEVALLED, 0, /x
Eval args until one of them yields non-nil, then return that value.
The remaining args are not evalled at all.
If all args return nil, return nil.
*/
(args))

{

/* This function can GC */

Lisp_Object val = Qnil;

struct gcpro gcprol;

GCPRO1 (args);

while (!NILP (args))
{
val = Feval (XCAR (args));
if (INILP (val))
break;
args = XCDR (args);
}

UNGCPRO;
return val;
}
Let’s start with a precise explanation of the arguments to the DEFUN macro. Here is a
template for them:
DEFUN (Iname, fname, min, max, Iinteractive, /*
docstring
*/
(arglist) )

Iname This string is the name of the Lisp symbol to define as the function name; in
the example above, it is "or".



Chapter 8: Rules When Writing New C Code 29

fname

min

max

interactive

docstring

This is the C function name for this function. This is the name that is used in
C code for calling the function. The name is, by convention, ‘F’ prepended to
the Lisp name, with all dashes (‘") in the Lisp name changed to underscores.
Thus, to call this function from C code, call For. Remember that the arguments
are of type Lisp_0Object; various macros and functions for creating values of
type Lisp_Object are declared in the file ‘1lisp.h’.

Primitives whose names are special characters (e.g. + or <) are named by
spelling out, in some fashion, the special character: e.g. Fplus() or Flss().
Primitives whose names begin with normal alphanumeric characters but also
contain special characters are spelled out in some creative way, e.g. let* be-
comes FletX().

Fach function also has an associated structure that holds the data for the subr
object that represents the function in Lisp. This structure conveys the Lisp
symbol name to the initialization routine that will create the symbol and store
the subr object as its definition. The C variable name of this structure is always
‘S’ prepended to the fname. You hardly ever need to be aware of the existence
of this structure.

This is the minimum number of arguments that the function requires. The
function or allows a minimum of zero arguments.

This is the maximum number of arguments that the function accepts, if there is
a fixed maximum. Alternatively, it can be UNEVALLED, indicating a special form
that receives unevaluated arguments, or MANY, indicating an unlimited number
of evaluated arguments (the equivalent of &rest). Both UNEVALLED and MANY
are macros. If max is a number, it may not be less than min and it may not
be greater than 8. (If you need to add a function with more than 8 arguments,
either use the MANY form or edit the definition of DEFUN in ‘lisp.h’. If you
do the latter, make sure to also add another clause to the switch statement in
primitive_funcall().)

This is an interactive specification, a string such as might be used as the ar-
gument of interactive in a Lisp function. In the case of or, it is 0 (a null
pointer), indicating that or cannot be called interactively. A value of "" indi-
cates a function that should receive no arguments when called interactively.

This is the documentation string. It is written just like a documentation string
for a function defined in Lisp; in particular, the first line should be a single
sentence. Note how the documentation string is enclosed in a comment, none
of the documentation is placed on the same lines as the comment-start and
comment-end characters, and the comment-start characters are on the same
line as the interactive specification. ‘make-docfile’, which scans the C files for
documentation strings, is very particular about what it looks for, and will not
properly extract the doc string if it’s not in this exact format.

You are free to put the various arguments to DEFUN on separate lines to avoid
overly long lines. However, make sure to put the comment-start characters
for the doc string on the same line as the interactive specification, and put a
newline directly after them (and before the comment-end characters).
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arglist This is the comma-separated list of arguments to the C function. For a function
with a fixed maximum number of arguments, provide a C argument for each Lisp
argument. In this case, unlike regular C functions, the types of the arguments
are not declared; they are simply always of type Lisp_0Object.

The names of the C arguments will be used as the names of the arguments to
the Lisp primitive as displayed in its documentation, modulo the same concerns
described above for F. .. names (in particular, underscores in the C arguments
become dashes in the Lisp arguments).

i

There is one additional kludge: A trailing ‘> on the C argument is discarded
when forming the Lisp argument. This allows C language reserved words (like
default) or global symbols (like dirname) to be used as argument names with-
out compiler warnings or errors.

A Lisp function with max = UNEVALLED is a special form; its arguments are not
evaluated. Instead it receives one argument of type Lisp_Object, a (Lisp) list
of the unevaluated arguments, conventionally named (args).

When a Lisp function has no upper limit on the number of arguments, specify
max = MANY. In this case its implementation in C actually receives exactly two
arguments: the number of Lisp arguments (an int) and the address of a block
containing their values (a Lisp_Object *). In this case only are the C types
specified in the arglist: (int nargs, Lisp_Object *args).

Within the function For itself, note the use of the macros GCPRO1 and UNGCPRO. GCPRO1
is used to “protect” a variable from garbage collection—to inform the garbage collector
that it must look in that variable and regard its contents as an accessible object. This is
necessary whenever you call Feval or anything that can directly or indirectly call Feval
(this includes the QUIT macro!). At such a time, any Lisp object that you intend to refer
to again must be protected somehow. UNGCPRO cancels the protection of the variables that
are protected in the current function. It is necessary to do this explicitly.

The macro GCPRO1 protects just one local variable. If you want to protect two, use
GCPRO2 instead; repeating GCPRO1 will not work. Macros GCPRO3 and GCPR04 also exist.

These macros implicitly use local variables such as gcprol; you must declare these
explicitly, with type struct gecpro. Thus, if you use GCPR02, you must declare gcprol and
gcpro?2.

Note also that the general rule is caller-protects; i.e. you are only responsible for pro-
tecting those Lisp objects that you create. Any objects passed to you as parameters should
have been protected by whoever created them, so you don’t in general have to protect
them. For is an exception; it protects its parameters to provide extra assurance against
Lisp primitives elsewhere that are incorrectly written, and against malicious self-modifying
code. There are a few other standard functions that also do this.

GCPROing is perhaps the trickiest and most error-prone part of XEmacs coding. It is
extremely important that you get this right and use a great deal of discipline when writing
this code. See Section 10.3 [GCPROing|, page 63, for full details on how to do this.

What DEFUN actually does is declare a global structure of type Lisp_Subr whose name
begins with capital ‘SF’ and which contains information about the primitive (e.g. a pointer
to the function, its minimum and maximum allowed arguments, a string describing its Lisp
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name); DEFUN then begins a normal C function declaration using the F. .. name. The Lisp
subr object that is the function definition of a primitive (i.e. the object in the function slot
of the symbol that names the primitive) actually points to this ‘SF’ structure; when Feval
encounters a subr, it looks in the structure to find out how to call the C function.

Defining the C function is not enough to make a Lisp primitive available; you must
also create the Lisp symbol for the primitive (the symbol is interned; see Section 13.2
|Obarrays|, page 85) and store a suitable subr object in its function cell. (If you don’t do
this, the primitive won’t be seen by Lisp code.) The code looks like this:

DEFSUBR (fname) ;
Here fname is the name you used as the second argument to DEFUN.

This call to DEFSUBR should go in the syms_of _* () function at the end of the module. If
no such function exists, create it and make sure to also declare it in ‘symsinit.h’ and call
it from the appropriate spot in main(). See Section 8.1 [General Coding Rules|, page 27.

Note that C code cannot call functions by name unless they are defined in C. The
way to call a function written in Lisp from C is to use Ffuncall, which embodies the
Lisp function funcall. Since the Lisp function funcall accepts an unlimited number of
arguments, in C it takes two: the number of Lisp-level arguments, and a one-dimensional
array containing their values. The first Lisp-level argument is the Lisp function to call, and
the rest are the arguments to pass to it. Since Ffuncall can call the evaluator, you must
protect pointers from garbage collection around the call to Ffuncall. (However, Ffuncall
explicitly protects all of its parameters, so you don’t have to protect any pointers passed as
parameters to it.)

The C functions call0, calll, call2, and so on, provide handy ways to call a Lisp
function conveniently with a fixed number of arguments. They work by calling Ffuncall.

‘eval.c’is a very good file to look through for examples; ‘1isp.h’ contains the definitions
for some important macros and functions.

8.3 Adding Global Lisp Variables

Global variables whose names begin with ‘Q’ are constants whose value is a symbol of a
particular name. The name of the variable should be derived from the name of the symbol
using the same rules as for Lisp primitives. These variables are initialized using a call to
defsymbol() in the syms_of_x() function. (This call interns a symbol, sets the C variable
to the resulting Lisp object, and calls staticpro() on the C variable to tell the garbage-
collection mechanism about this variable. What staticpro() does is add a pointer to the
variable to a large global array; when garbage-collection happens, all pointers listed in the
array are used as starting points for marking Lisp objects. This is important because it’s
quite possible that the only current reference to the object is the C variable. In the case of
symbols, the staticpro() doesn’t matter all that much because the symbol is contained in
obarray, which is itself staticpro()ed. However, it’s possible that a naughty user could
do something like uninterning the symbol out of obarray or even setting obarray to a
different value [although this is likely to make XEmacs crash!].)

)

Please note: It is potentially deadly if you declare a ‘Q...’ variable in two different
modules. The two calls to defsymbol() are no problem, but some linkers will complain
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about multiply-defined symbols. The most insidious aspect of this is that often the link will
succeed anyway, but then the resulting executable will sometimes crash in obscure ways
during certain operations! To avoid this problem, declare any symbols with common names
(such as text) that are not obviously associated with this particular module in the module
‘general.c’.

Global variables whose names begin with ‘V’ are variables that contain Lisp objects.
The convention here is that all global variables of type Lisp_Object begin with ‘V’, and
all others don’t (including integer and boolean variables that have Lisp equivalents). Most
of the time, these variables have equivalents in Lisp, but some don’t. Those that do are
declared this way by a call to DEFVAR_LISP () in the vars_of_* () initializer for the module.
What this does is create a special symbol-value-forward Lisp object that contains a pointer
to the C variable, intern a symbol whose name is as specified in the call to DEFVAR_LISP(),
and set its value to the symbol-value-forward Lisp object; it also calls staticpro() on
the C variable to tell the garbage-collection mechanism about the variable. When eval
(or actually symbol-value) encounters this special object in the process of retrieving a
variable’s value, it follows the indirection to the C variable and gets its value. setq does
similar things so that the C variable gets changed.

Whether or not you DEFVAR_LISP() a variable, you need to initialize it in the vars_
of _*() function; otherwise it will end up as all zeroes, which is the integer 0 (not nil),
and this is probably not what you want. Also, if the variable is not DEFVAR_LISP()ed,
you must call staticpro() on the C variable in the vars_of_*() function. Otherwise, the
garbage-collection mechanism won’t know that the object in this variable is in use, and will
happily collect it and reuse its storage for another Lisp object, and you will be the one
who’s unhappy when you can’t figure out how your variable got overwritten.

8.4 Coding for Mule

Although Mule support is not compiled by default in XEmacs, many people are using it,
and we consider it crucial that new code works correctly with multibyte characters. This
is not hard; it is only a matter of following several simple user-interface guidelines. Even
if you never compile with Mule, with a little practice you will find it quite easy to code
Mule-correctly.

Note that these guidelines are not necessarily tied to the current Mule implementation;
they are also a good idea to follow on the grounds of code generalization for future 118N
work.

8.4.1 Character-Related Data Types

First, we will list the basic character-related datatypes used by XEmacs. Note that the
separate typedefs are not required for the code to work (all of them boil down to unsigned
char or int), but they improve clarity of code a great deal, because one glance at the
declaration can tell the intended use of the variable.

Emchar An Emchar holds a single Emacs character.
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Bufbyte

Bufpos
Charcount

Bytind
Bytecount

Extbyte
Extcount

Obviously, the equality between characters and bytes is lost in the Mule world.
Characters can be represented by one or more bytes in the buffer, and Emchar
is the C type large enough to hold any character.

Without Mule support, an Emchar is equivalent to an unsigned char.

The data representing the text in a buffer or string is logically a set of Bufbytes.

XEmacs does not work with character formats all the time; when reading char-
acters from the outside, it decodes them to an internal format, and likewise
encodes them when writing. Bufbyte (in fact unsigned char) is the basic unit
of XEmacs internal buffers and strings format.

One character can correspond to one or more Bufbytes. In the current im-
plementation, an ASCII character is represented by the same Bufbyte, and
extended characters are represented by a sequence of Bufbytes.

Without Mule support, a Bufbyte is equivalent to an Emchar.

A Bufpos represents a character position in a buffer or string. A Charcount
represents a number (count) of characters. Logically, subtracting two Bufpos
values yields a Charcount value. Although all of these are typedefed to int,
we use them in preference to int to make it clear what sort of position is being
used.

Bufpos and Charcount values are the only ones that are ever visible to Lisp.

A Bytind represents a byte position in a buffer or string. A Bytecount rep-
resents the distance between two positions in bytes. The relationship between
Bytind and Bytecount is the same as the relationship between Bufpos and
Charcount.

When dealing with the outside world, XEmacs works with Extbytes, which are
equivalent to unsigned char. Obviously, an Extcount is the distance between
two Extbytes. Extbytes and Extcounts are not all that frequent in XEmacs
code.

8.4.2 Working With Character and Byte Positions

Now that we have defined the basic character-related types, we can look at the macros
and functions designed for work with them and for conversion between them. Most of these
macros are defined in ‘buffer.h’, and we don’t discuss all of them here, but only the most
important ones. Examining the existing code is the best way to learn about them.

MAX_EMCHAR_LEN

This preprocessor constant is the maximum number of buffer bytes per Emacs
character, i.e. the byte length of an Emchar. It is useful when allocating tem-
porary strings to keep a known number of characters. For instance:
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{

Charcount cclen;

/* Allocate place for cclen characters. */
Bufbyte *tmp_buf = (Bufbyte *)alloca (cclen * MAX_EMCHAR_LEN) ;

If you followed the previous section, you can guess that, logically, multiplying
a Charcount value with MAX_EMCHAR_LEN produces a Bytecount value.

In the current Mule implementation, MAX_EMCHAR_LEN equals 4. Without Mule,
it is 1.

charptr_emchar

set_charptr_emchar
charptr_emchar macro takes a Bufbyte pointer and returns the underlying
Emchar. If it were a function, its prototype would be:

Emchar charptr_emchar (Bufbyte *p);

set_charptr_emchar stores an Emchar to the specified byte position. It returns
the number of bytes stored:

Bytecount set_charptr_emchar (Bufbyte *p, Emchar c);

It is important to note that set_charptr_emchar is safe only for appending a
character at the end of a buffer, not for overwriting a character in the middle.
This is because the width of characters varies, and set_charptr_emchar can-
not resize the string if it writes, say, a two-byte character where a single-byte
character used to reside.

A typical use of set_charptr_emchar can be demonstrated by this example,
which copies characters from buffer buf to a temporary string of Bufbytes.

{
Bufpos pos;
for (pos = beg; pos < end; pos++)
{
Emchar c¢ = BUF_FETCH_CHAR (buf, pos);
p += set_charptr_emchar (buf, c);
}
}

Note how set_charptr_emchar is used to store the Emchar and increment the
counter, at the same time.

INC_CHARPTR

DEC_CHARPTR
These two macros increment and decrement a Bufbyte pointer, respectively.
The pointer needs to be correctly positioned at the beginning of a valid character
position.

Without Mule support, INC_CHARPTR (p) and DEC_CHARPTR (p) simply expand
to p++ and p--, respectively.
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bytecount_to_charcount
Given a pointer to a text string and a length in bytes, return the equivalent
length in characters.

Charcount bytecount_to_charcount (Bufbyte *p, Bytecount bc);

charcount_to_bytecount
Given a pointer to a text string and a length in characters, return the equivalent
length in bytes.

Bytecount charcount_to_bytecount (Bufbyte *p, Charcount cc);

charptr_n_addr
Return a pointer to the beginning of the character offset cc (in characters) from
D-
Bufbyte *charptr_n_addr (Bufbyte *p, Charcount cc);

8.4.3 Conversion of External Data

When an external function, such as a C library function, returns a char pointer, you
should never treat it as Bufbyte. This is because these returned strings may contain 8bit
characters which can be misinterpreted by XEmacs, and cause a crash. Instead, you should
use a conversion macro. Many different conversion macros are defined in ‘buffer.h’, so |
will try to order them logically, by direction and by format.

Thus the basic conversion macros are GET_CHARPTR_INT_DATA_ALLOCA and GET_
CHARPTR_EXT_DATA_ALLOCA. The former is used to convert external data to internal
format, and the latter is used to convert the other way around. The arguments each of
these receives are ptr (pointer to the text in external format), len (length of texts in bytes),
fmt (format of the external text), ptr_out (lvalue to which new text should be copied),
and len_out (Ivalue which will be assigned the length of the internal text in bytes). The
resulting text is stored to a stack-allocated buffer. If the text doesn’t need changing, these
macros will do nothing, except for setting len_out.

Currently meaningful formats are FORMAT_BINARY, FORMAT_FILENAME, FORMAT_OS, and
FORMAT_CTEXT.

The two macros above take many arguments which makes them unwieldy. For this
reason, several convenience macros are defined with obvious functionality, but accepting
less arguments:

GET_C_CHARPTR_EXT_DATA_ALLOCA

GET_C_CHARPTR_INT_DATA_ALLOCA
These two macros work on “C char pointers”, which are zero-terminated, and
thus do not need len or len_out parameters.

GET_STRING_EXT_DATA_ALLOCA

GET_C_STRING_EXT_DATA_ALLQOCA
These two macros work on Lisp strings, thus also not needing a len parame-
ter. However, GET_STRING_EXT_DATA_ALLOCA still provides a len_out parame-
ter. Note that for Lisp strings only one conversion direction makes sense.
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GET_C_CHARPTR_EXT_BINARY_DATA_ALLOCA

GET_C_CHARPTR_EXT_FILENAME_DATA_ALLOCA

GET_C_CHARPTR_EXT_CTEXT_DATA_ALLOCA
These macros are a combination of the above, but with the fmt argument
encoded into the name of the macro.

8.4.4 General Guidelines for Writing Mule-Aware Code

This section contains some general guidance on how to write Mule-aware code, as well
as some pitfalls you should avoid.

Never use char and char *.
In XFEmacs, the use of char and char * is almost always a mistake. If you
want to manipulate an Emacs character from “C”, use Emchar. If you want
to examine a specific octet in the internal format, use Bufbyte. If you want
a Lisp-visible character, use a Lisp_0Object and make_char. If you want a
pointer to move through the internal text, use Bufbyte *. Also note that you
almost certainly do not need Emchar *.

Be careful not to confuse Charcount, Bytecount, and Bufpos.
The whole point of using different types is to avoid confusion about the use
of certain variables. Lest this effect be nullified, you need to be careful about
using the right types.

Always convert external data
It is extremely important to always convert external data, because XEmacs can
crash if unexpected 8bit sequences are copied to its internal buffers literally.

This means that when a system function, such as readdir, returns a string, you
need to convert it using one of the conversion macros described in the previous
chapter, before passing it further to Lisp. In the case of readdir, you would
use the GET_C_CHARPTR_INT_FILENAME_DATA_ALLOCA macro.

Also note that many internal functions, such as make_string, accept Bufbytes,
which removes the need for them to convert the data they receive. This increases
efficiency because that way external data needs to be decoded only once, when
it is read. After that, it is passed around in internal format.

8.4.5 An Example of Mule-Aware Code

As an example of Mule-aware code, we shall will analyze the string function, which
conses up a Lisp string from the character arguments it receives. Here is the definition,
pasted from alloc.c:
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DEFUN ("string", Fstring, 0, MANY, O, /*
Concatenate all the argument characters and make the result a string.
*/
(int nargs, Lisp_0Object *args))
{
Bufbyte *storage = alloca_array (Bufbyte, nargs * MAX_EMCHAR_LEN);
Bufbyte *p = storage;

for (; nargs; nargs--, args++)
{
Lisp_Object lisp_char = *args;
CHECK_CHAR_COERCE_INT (lisp_char);
p += set_charptr_emchar (p, XCHAR (lisp_char));
}

return make_string (storage, p - storage);

¥

Now we can analyze the source line by line.

Obviously, string will be as long as there are arguments to the function. This is why we
allocate MAX_EMCHAR_LEN * nargs bytes on the stack, i.e. the worst-case number of bytes
for nargs Emchars to fit in the string.

Then, the loop checks that each element is a character, converting integers in the pro-
cess. Like many other functions in XEmacs, this function silently accepts integers where
characters are expected, for historical and compatibility reasons. Unless you know what you
are doing, CHECK_CHAR will also suffice. XCHAR (lisp_char) extracts the Emchar from the
Lisp_Object, and set_charptr_emchar stores it to storage, increasing p in the process.

Other instructing examples of correct coding under Mule can be found all over XEmacs
code. For starters, I recommend Fnormalize_menu_item_name in ‘menubar.c’. After you
have understood this section of the manual and studied the examples, you can proceed
writing new Mule-aware code.

8.5 Techniques for XEmacs Developers

To make a quantified XEmacs, do: make quantmacs.

You simply can’t dump Quantified and Purified images. Run the image like so:
quantmacs -batch -1 loadup.el run-temacs -q.

Before you go through the trouble, are you compiling with all debugging and error-
checking off? If not try that first. Be warned that while Quantify is directly responsible for
quite a few optimizations which have been made to XEmacs, doing a run which generates
results which can be acted upon is not necessarily a trivial task.

Also, if you're still willing to do some runs make sure you configure with the ‘--quantify’
flag. That will keep Quantify from starting to record data until after the loadup is completed
and will shut off recording right before it shuts down (which generates enough bogus data
to throw most results off). It also enables three additional elisp commands: quantify-
start-recording-data, quantify-stop-recording-data and quantify-clear-data.
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To get started debugging XEmacs, take a look at the ‘gdbinit’ and ‘dbxrc’ files in the
¢’ directory. See section “Q2.1.15 - How to Debug an XEmacs problem with a debugger”

in XEmacs FAQ.

Here are things to know when you create a new source file:

All .c files should #include <config.h> first. Almost all .c files should #include
"lisp.h" second.

Generated header files should be included using the <> syntax, not the "" syntax. The
generated headers are:

config.h puresize-adjust.h sheap-adjust.h paths.h Emacs.ad.h

The basic rule is that you should assume builds using --srcdir and the <> syntax
needs to be used when the to-be-included generated file is in a potentially different
directory at compile time.

Header files should not include <config.h> and "lisp.h". It is the responsibility of the
.c files that use it to do so.

If the header uses INLINE, either directly or though DECLARE_LRECORD, then it
must be added to inline.c’s includes.

Try compiling at least once with

gcc ——with-mule --with-union-type --error-checking=all
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9 A Summary of the Various XEmacs Modules

This is accurate as of XEmacs 20.0.

9.1 Low-Level Modules

18150 config.h

This is automatically generated from ‘config.h.in’ based on the results of configure
tests and user-selected optional features and contains preprocessor definitions specifying the
nature of the environment in which XEmacs is being compiled.

2347 paths.h

This is automatically generated from ‘paths.h.in’ based on supplied configure values,
and allows for non-standard installed configurations of the XEmacs directories. It’s cur-
rently broken, though.

47878 emacs.c
20239 signal.c

‘emacs.c’ contains main() and other code that performs the most basic environment
initializations and handles shutting down the XEmacs process (this includes kill-emacs,
the normal way that XEmacs is exited; dump-emacs, which is used during the build process
to write out the XEmacs executable; run-emacs-from-temacs, which can be used to start
XEmacs directly when temacs has finished loading all the Lisp code; and emergency code
to handle crashes [XEmacs tries to auto-save all files before it crashes]).

Low-level code that directly interacts with the Unix signal mechanism, however, is in
‘signal.c’. Note that this code does not handle system dependencies in interfacing to
signals; that is handled using the ‘syssignal.h’ header file, described in section J below

23458 unexaix.c
9893 wunexalpha.c
11302 unexapollo.c
16544 unexconvex.c

31967 unexec.c
30959 unexelf.c
35791 wunexelfsgi.c
3207 unexencap.c
7276 unexenix.c
20539 unexfreebsd.c
1153 unexfx2800.c
13432 unexhp9k3.c
11049 unexhp9k800.c
9165 unexmips.c
8981 unexnext.c
1673 unexsol2.c
19261 unexsunos4.c
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These modules contain code dumping out the XEmacs executable on various different
systems. (This process is highly machine-specific and requires intimate knowledge of the
executable format and the memory map of the process.) Only one of these modules is
actually used; this is chosen by ‘configure’.

15715 crtO.c
1484 lastfile.c
1115 pre-crt0O.c

These modules are used in conjunction with the dump mechanism. On some systems,
an alternative version of the C startup code (the actual code that receives control from the
operating system when the process is started, and which calls main()) is required so that
the dumping process works properly; ‘crt0.c’ provides this.

‘pre-crt0.c’ and ‘lastfile.c’ should be the very first and very last file linked, respec-
tively. (Actually, this is not really true. ‘lastfile.c’ should be after all Emacs modules
whose initialized data should be made constant, and before all other Emacs files and all
libraries. In particular, the allocation modules ‘gmalloc.c’, ‘alloca.c’, etc. are normally
placed past ‘lastfile.c’, and all of the files that implement Xt widget classes must be
placed after ‘lastfile.c’ because they contain various structures that must be statically
initialized and into which Xt writes at various times.) ‘pre-crt0.c’ and ‘lastfile.c’ con-
tain exported symbols that are used to determine the start and end of XEmacs’ initialized
data space when dumping.

14786 alloca.c
16678 free-hook.c

1692 getpagesize.h
41936 gmalloc.c
25141 malloc.c

3802 mem-limits.h
39011 ralloc.c

3436 vm-limit.c

These handle basic C allocation of memory. ‘alloca.c’ is an emulation of the stack
allocation function alloca() on machines that lack this. (XEmacs makes extensive use of
alloca() in its code.)

‘gmalloc.c’ and ‘malloc.c’ are two implementations of the standard C functions
malloc(), realloc() and free(). They are often used in place of the standard
system-provided malloc() because they usually provide a much faster implementation,
at the expense of additional memory use. ‘gmalloc.c’ is a newer i